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Abstract

Parallel systems that support the shared memory abstraction are becoming
widely accepted in many areas of computing.  Writing correct and efficient
programs for such systems requires a formal specification of memory semantics,
called a memory consistency model. The most intuitive model---sequential
consistency---greatly restricts the use of many performance optimizations com-
monly used by uniprocessor hardware and compiler designers, thereby reducing
the benefit of using a multiprocessor.  To alleviate this problem, many current
multiprocessors support more relaxed consistency models. Unfortunately, the
models supported by various systems differ from each other in subtle yet impor-
tant ways. Furthermore, precisely defining the semantics of each model often
leads to complex specifications that are difficult to understand for typical users
and builders of computer systems.

The purpose of this tutorial paper is to describe issues related to memory con-
sistency models in a way that would be understandable to most computer profes-
sionals. We focus on consistency models proposed for hardware-based shared-
memory systems. Many of these models are originally specified with an emphasis
on the system optimizations they allow. We retain the system-centric emphasis,
but use uniform and simple terminology to describe the different models. We also
briefly discuss an alternate programmer-centric view that describes the models in
terms of program behavior rather than specific system optimizations.

i



1 Introduction

The shared memory or single address space abstraction provides several advantages over the message passing (or
private memory) abstraction by presenting a more natural transition from uniprocessors and by simplifying difficult
programming tasks such as data partitioning and dynamic load distribution. For this reason, parallel systems that
support shared memory are gaining wide acceptance in both technical and commercial computing.

To write correct and efficient shared memory programs, programmers need a precise notion of how memory
behaves with respect to read and write operations from multiple processors. For example, consider the shared
memory program fragment in Figure 1, which represents a fragment of the LocusRoute program from the SPLASH
application suite. The figure shows processor P1 repeatedly allocating a task record, updating a data field within
the record, and inserting the record into a task queue. When no more tasks are left, processor P1 updates a pointer,
Head, to point to the first record in the task queue. Meanwhile, the other processors wait for Head to have a
non-null value, dequeue the task pointed to by Headwithin a critical section, and finally access the data field within
the dequeued record. What does the programmer expect from the memory system to ensure correct execution of
this program fragment? One important requirement is that the value read from the data field within a dequeued
record should be the same as that written by P1 in that record. However, in many commercial shared memory
systems, it is possible for processors to observe the old value of the data field (i.e., the value prior to P1’s write of
the field), leading to behavior different from the programmer’s expectations.

Initially all pointers = null, all integers = 0.

P1 P2, P3, ..., Pn

while (there are more tasks) f while (MyTask == null) f
Task = GetFromFreeList(); Begin Critical Section
Task ! Data = ...; if (Head != null) f
insert Task in task queue MyTask = Head;

g Head = Head ! Next;
Head = head of task queue; g

End Critical Section
g
... = MyTask ! Data;

Figure 1: What value can a read return?

The memory consistency model of a shared-memory multiprocessor provides a formal specification of how
the memory system will appear to the programmer, eliminating the gap between the behavior expected by the
programmer and the actual behavior supported by a system. Effectively, the consistency model places restrictions
on the values that can be returned by a read in a shared-memory program execution. Intuitively, a read should return
the value of the “last” write to the same memory location. In uniprocessors, “last” is precisely defined by program
order, i.e., the order in which memory operations appear in the program. This is not the case in multiprocessors.
For example, in Figure 1, the write and read of the Data field within a record are not related by program order
because they reside on two different processors. Nevertheless, an intuitive extension of the uniprocessor model
can be applied to the multiprocessor case. This model is called sequential consistency. Informally, sequential
consistency requires that all memory operations appear to execute one at a time, and the operations of a single
processor appear to execute in the order described by that processor’s program. Referring back to the program in
Figure 1, this model ensures that the reads of the data field within a dequeued record will return the new values
written by processor P1.

Sequential consistency provides a simple and intuitive programming model. However, it disallows many
hardware and compiler optimizations that are possible in uniprocessors by enforcing a strict order among shared
memory operations. For this reason, a number of more relaxed memory consistency models have been proposed,
including some that are supported by commercially available architectures such as Digital Alpha, SPARC V8 and
V9, and IBM PowerPC. Unfortunately, there has been a vast variety of relaxed consistency models proposed in the
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literature that differ from one another in subtle but important ways. Furthermore, the complex and non-uniform
terminology that is used to describe these models makes it difficult to understand and compare them. This variety
and complexity also often leads to misconceptions about relaxed memory consistency models, some of which are
described in Figure 2.

The goal of this tutorial article is to provide a description of sequential consistency and other more relaxed
memory consistency models in a way that would be understandable to most computer professionals. Such an
understanding is important if the performance enhancing features that are being incorporated by system designers
are to be correctly and widely used by programmers. To achieve this goal, we describe the semantics of different
models using a simple and uniform terminology. We focus on consistency models proposed for hardware-based
shared-memory systems. The original specifications of most of these models emphasized the system optimizations
allowed by these models. We retain this system-centric emphasis in our descriptions to enable capturing the
original semantics of the models. We also briefly describe an alternative, programmer-centric view of relaxed
consistency models. This view describes models in terms of program behavior, rather than in terms of hardware or
compiler optimizations. Readers interested in further pursuing a more formal treatment of both the system-centric
and programmer-centric views may refer to our previous work [1, 6, 8].

The rest of this article is organized as follows. We begin with a short note on who should be concerned with
the memory consistency model of a system. We next describe the programming model offered by sequential
consistency, and the implications of sequential consistency on hardware and compiler implementations. We then
describe several relaxed memory consistency models using a simple and uniform terminology. The last part of the
article describes the programmer-centric view of relaxed memory consistency models.

2 Memory Consistency Models - Who Should Care?

As the interface between the programmer and the system, the effect of the memory consistency model is pervasive
in a shared memory system. The model affects programmability because programmers must use it to reason about
the correctness of their programs. The model affects the performance of the system because it determines the types
of optimizations that may be exploited by the hardware and the system software. Finally, due to a lack of consensus
on a single model, portability can be affected when moving software across systems supporting different models.

A memory consistency model specification is required for every level at which an interface is defined between
the programmer and the system. At the machine code interface, the memory model specification affects the designer
of the machine hardware and the programmer who writes or reasons about machine code. At the high level language
interface, the specification affects the programmers who use the high level language and the designers of both the
software that converts high-level language code into machine code and the hardware that executes this code.
Therefore, the programmability, performance, and portability concerns may be present at several different levels.

In summary, the memory model influences the writing of parallel programs from the programmer’s perspective,
and virtually all aspects of designing a parallel system (including the processor, memory system, interconnection
network, compiler, and programming languages) from a system designer’s perspective.

3 Memory Semantics in Uniprocessor Systems

Most high-level uniprocessor languages present simple sequential semantics for memory operations. These
semantics allow the programmer to assume that all memory operations will occur one at a time in the sequential
order specified by the program (i.e., program order). Thus, the programmer expects a read will return the value
of the last write to the same location before it by the sequential program order. Fortunately, the illusion of
sequentiality can be supported efficiently. For example, it is sufficient to only maintain uniprocessor data and
control dependences, i.e., execute two operations in program order when they are to the same location or when one
controls the execution of the other. As long as these uniprocessor data and control dependences are respected, the
compiler and hardware can freely reorder operations to different locations. This enables compiler optimizations
such as register allocation, code motion, and loop transformations, and hardware optimizations, such as pipelining,
multiple issue, write buffer bypassing and forwarding, and lockup-free caches, all of which lead to overlapping
and reordering of memory operations. Overall, the sequential semantics of uniprocessors provide the programmer
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Myth Reality

A memory consistency model only applies
to systems that allow multiple copies of
shared data; e.g., through caching.

Figure 5 illustrates several counter-examples.

Most current systems are sequentially
consistent.

Figure 9 mentions several commercial systems that are not sequen-
tially consistent.

The memory consistency model only af-
fects the design of the hardware.

The article describes how the memory consistency model affects
many aspects of system design, including optimizations allowed in
the compiler.

The relationship of cache coherence pro-
tocols to memory consistency models:
(i) a cache coherence protocol inherently
supports sequential consistency,
(ii) the memory consistency model de-
pends on whether the system supports
an invalidate or update based coherence
protocol.

The article discusses how the cache coherence protocol is only a
part of the memory consistency model. Other aspects include the
order in which a processor issues memory operations to the memory
system, and whether a write executes atomically. The article also
discusses how a given memory consistency model can allow both
an invalidate or an update coherence protocol.

The memory model for a system may be
defined solely by specifying the behavior
of the processor (or the memory system).

The article describes how the memory consistency model is affected
by the behavior of both the processor and the memory system.

Relaxed memory consistency models may
not be used to hide read latency.

Many of the models described in this article allow hiding both read
and write latencies.

Relaxed consistency models require the
use of extra synchronization.

Most of the relaxed models discussed in this article do not require ex-
tra synchronization in the program. In particular, the programmer-
centric framework only requires that operations be distinguished
or labeled correctly. Other models provide safety nets that allow
the programmer to enforce the required constraints for achieving
correctness.

Relaxed memory consistency models do
not allow chaotic (or asynchronous)
algorithms.

The models discussed in this article allow chaotic (or asynchronous)
algorithms. With system-centric models, the programmer can rea-
son about the correctness of such algorithms by considering the op-
timizations that are enabled by the model. The programmer-centric
approach simply requires the programmer to explicitly identify the
operations that are involved in a race. For many chaotic algorithms,
the former approach may provide higher performance since such
algorithms do not depend on sequential consistency for correctness.

Figure 2: Some myths about memory consistency models.
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P1 P2 P3 Pn

MEMORY

Figure 3: Programmer’s view of sequential consistency.

with a simple and intuitive model and yet allow a wide range of efficient system designs.

4 Understanding Sequential Consistency

The most commonly assumed memory consistency model for shared memory multiprocessors is sequential con-
sistency, formally defined by Lamport as follows [16].

Definition: [A multiprocessor system is sequentially consistent if] the result of any execution is
the same as if the operations of all the processors were executed in some sequential order, and the
operations of each individual processor appear in this sequence in the order specified by its program.

There are two aspects to sequential consistency: (1) maintaining program order among operations from
individual processors, and (2) maintaining a single sequential order among operations from all processors. The
latter aspect makes it appear as if a memory operation executes atomically or instantaneously with respect to other
memory operations.

Sequential consistency provides a simple view of the system to programmers as illustrated in Figure 3.
Conceptually, there is a single global memory and a switch that connects an arbitrary processor to memory at
any time step. Each processor issues memory operations in program order and the switch provides the global
serialization among all memory operations.

Figure 4 provides two examples to illustrate the semantics of sequential consistency. Figure 4(a) illustrates
the importance of program order among operations from a single processor. The code segment depicts an
implementation of Dekker’s algorithm for critical sections, involving two processors (P1 and P2) and two flag
variables (Flag1 and Flag2) that are initialized to 0. When P1 attempts to enter the critical section, it updates
Flag1 to 1, and checks the value of Flag2. The value 0 for Flag2 indicates that P2 has not yet tried to enter
the critical section; therefore, it is safe for P1 to enter. This algorithm relies on the assumption that a value of 0
returned by P1’s read implies that P1’s write has occurred before P2’s write and read operations. Therefore, P2’s
read of the flag will return the value 1, prohibiting P2 from also entering the critical section. Sequential consistency
ensures the above by requiring that program order among the memory operations of P1 and P2 be maintained, thus
precluding the possibility of both processors reading the value 0 and entering the critical section.

Figure 4(b) illustrates the importance of atomic execution of memory operations. The figure shows three
processors sharing variables A and B, both initialized to 0. Suppose processor P2 returns the value 1 (written by
P1) for its read of A, writes to variable B, and processor P3 returns the value 1 (written by P2) for B. The atomicity
aspect of sequential consistency allows us to assume the effect of P1’s write is seen by the entire system at the
same time. Therefore, P3 is guaranteed to see the effect of P1’s write in the above execution and must return the
value 1 for its read of A (since P3 sees the effect of P2’s write after P2 sees the effect of P1’s write to A).

5 Implementing Sequential Consistency

This section describes how the intuitive abstraction of sequential consistency shown in Figure 3 can be realized in
a practical system. We will see that unlike uniprocessors, preserving the order of operations on a per-location basis
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Initially Flag1 = Flag2 = 0 Initially A = B = 0

P1 P2 P1 P2 P3

Flag1 = 1 Flag2 = 1 A = 1
if (Flag2 == 0) if (Flag1 == 0) if (A ==1)

critical section critical section B = 1
if (B==1)

register1 = A

(a) (b)

Figure 4: Examples for sequential consistency.

is not sufficient for maintaining sequential consistency in multiprocessors.

We begin by considering the interaction of sequential consistency with common hardware optimizations. To
separate the issues of program order and atomicity, we first describe implementations of sequential consistency in
architectures without caches and next consider the effects of caching shared data. The latter part of the section
describes the interaction of sequential consistency with common compiler optimizations.

5.1 Architectures Without Caches

We have chosen three canonical hardware optimizations as illustrative examples of typical interactions that arise in
implementing sequential consistency in the absence of data caching. A large number of other common hardware
optimizations can lead to interactions similar to those illustrated by our canonical examples. As will become
apparent, the key issue in correctly supporting sequential consistency in an environment without caches lies in
maintaining the program order among operations from each processor. Figure 5 illustrates the various interactions
discussed below. The terms t1, t2, t3, ... indicate the order in which the corresponding memory operations execute
at memory.

5.1.1 Write Buffers with Bypassing Capability

The first optimization we consider illustrates the importance of maintaining program order between a write and
a following read operation. Figure 5(a) shows an example bus-based shared-memory system with no caches.
Assume a simple processor that issues memory operations one-at-a-time in program order. The only optimization
we consider (compared to the abstraction of Figure 3) is the use of a write buffer with bypassing capability. On a
write, a processor simply inserts the write operation into the write buffer and proceeds without waiting for the write
to complete. Subsequent reads are allowed to bypass any previous writes in the write buffer for faster completion.
This bypassing is allowed as long as the read address does not match the address of any of the buffered writes. The
above constitutes a common hardware optimization used in uniprocessors to effectively hide the latency of write
operations.

To see how the use of write buffers can violate sequential consistency, consider the program in Figure 5(a).
The program depicts Dekker’s algorithm also shown earlier in Figure 4(a). As explained earlier, a sequentially
consistent system must prohibit an outcome where both the reads of the flags return the value 0. However, this
outcome can occur in our example system. Each processor can buffer its write and allow the subsequent read to
bypass the write in its write buffer. Therefore, both reads may be serviced by the memory system before either
write is serviced, allowing both reads to return the value of 0.

The above optimization is safe in a conventional uniprocessor since bypassing (between operations to different
locations) does not lead to a violation of uniprocessor data dependence. However, as our example illustrates, such
a reordering can easily violate the semantics of sequential consistency in a multiprocessor environment.
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(b) overlapped writes

(a) write buffer

P2

Flag2 = 1

critical section

P1

Flag1 = 1

critical section

P1

Read
Flag2

Flag1: 0
Flag2: 0

Memory

Shared Bus

t1

P2

Read
Flag1

t2
t4t3 Write Flag2Write Flag1

P2P1

Data = 2000

Head = 1

while (Head == 0) {;}

... = Data

P1

Memory

P2

Write Head
t1

Write Data
t4

Data: 0

General Interconnect Read Headt2
t3Read Data

Head: 0

P2P1

Data = 2000

Head = 1

while (Head == 0) {;}

... = Data

(c) non−blocking reads

P1

Memory

P2

Data: 0

General InterconnectWrite Data t2
Write Headt3

Read Data
t1

Head: 0

if (Flag2 == 0) if (Flag1 == 0)

Read Head
t4

Figure 5: Canonical optimizations that may violate sequential consistency.
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5.1.2 Overlapping Write Operations

The second optimization illustrates the importance of maintaining program order between two write operations.
Figure 5(b) shows an example system with a general (non-bus) interconnection network and multiple memory
modules. A general interconnection network alleviates the serialization bottleneck of a bus-based design, and
multiple memory modules provide the ability to service multiple operations simultaneously. We still assume
processors issue memory operations in program order and proceed with subsequent operations without waiting for
previous write operations to complete. The key difference compared to the previous example is that multiple write
operations issued by the same processor may be simultaneously serviced by different memory modules.

The example program fragment in Figure 5(b) illustrates how the above optimization can violate sequential
consistency; the example is a simplified version of the code shown in Figure 1. A sequentially consistent system
guarantees that the read of Data by P2 will return the value written by P1. However, allowing the writes on P1 to
be overlapped in the system shown in Figure 5(b) can easily violate this guarantee. Assume the Data and Head
variables reside in different memory modules as shown in the figure. Since the write to Head may be injected
into the network before the write to Data has reached its memory module, the two writes could complete out of
program order. Therefore, it is possible for another processor to observe the new value of Head and yet obtain
the old value of Data. Other common optimizations, such as coalescing writes to the same cache line in a write
buffer (as in the Digital Alpha processors), can also lead to a similar reordering of write operations.

Again, while allowing writes to different locations to be reordered is safe for uniprocessor programs, the
above example shows that such reordering can easily violate the semantics of sequential consistency. One way to
remedy this problem is to wait for a write operation to reach its memory module before allowing the next write
operation from the same processor to be injected into the network. Enforcing the above order typically requires
an acknowledgement response for writes to notify the issuing processor that the write has reached its target. The
acknowledgement response is also useful for maintaining program order from a write to a subsequent read in
systems with general interconnection networks.

5.1.3 Non-Blocking Read Operations

The third optimization illustrates the importance of maintaining program order between a read and a following
read or write operation. We consider supporting non-blocking reads in the system represented by Figure 5(b) and
repeated in Figure 5(c). While most early RISC processors stall for the return value of a read operation (i.e.,
blocking read), many of the current and next generation processors have the capability to proceed past a read
operation by using techniques such as non-blocking (lockup-free) caches, speculative execution, and dynamic
scheduling.

Figure 5(c) shows an example of how overlapping reads from the same processor can violate sequential
consistency. The program is the same as the one used for the previous optimization. Assume P1 ensures that its
writes arrive at their respective memory modules in program order. Nevertheless, if P2 is allowed to issue its read
operations in an overlapped fashion, there is the possibility for the read of Data to arrive at its memory module
before the write from P1 while the read of Head reaches its memory module after the write from P1, which leads
to a non-sequentially-consistent outcome. Overlapping a read with a following write operation can also present
problems analogous to the above; this latter optimization is not commonly used in current processors, however.

5.2 Architectures With Caches

The previous section described complications that arise due to memory operation reordering when implementing
the sequential consistency model in the absence of caches. Caching (or replication) of shared data can present
similar reordering behavior that would violate sequential consistency. For example, a first level write through cache
can lead to reordering similar to that allowed by a write buffer with bypassing capability, because reads that follow
a write in program order may be serviced by the cache before the write completes. Therefore, an implementation
with caches must also take precautions to maintain the illusion of program order execution for operations from
each processor. Most notably, even if a read by a processor hits in the processor’s cache, the processor typically
cannot read the cached value until its previous operations by program order are complete.

The replication of shared data introduces three additional issues. First, the presence of multiple copies requires
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a mechanism, often referred to as the cache coherence protocol, to propagate a newly written value to all cached
copies of the modified location. Second, detecting when a write is complete (to preserve program order between
a write and its following operations) requires more transactions in the presence of replication. Third, propagating
changes to multiple copies is inherently a non-atomic operation, making it more challenging to preserve the illusion
of atomicity for writes with respect to other operations. We discuss each of these three issues in more detail below.

5.2.1 Cache Coherence and Sequential Consistency

Several definitions for cache coherence (also referred to as cache consistency) exist in the literature. The strongest
definitions treat the term virtually as a synonym for sequential consistency. Other definitions impose extremely
relaxed ordering guarantees. Specifically, one set of conditions commonly associated with a cache coherence
protocol are: (1) a write is eventually made visible to all processors, and (2) writes to the same location appear to be
seen in the same order by all processors (also referred to as serialization of writes to the same location) [13]. The
above conditions are clearly not sufficient for satisfying sequential consistency since the latter requires writes to
all locations (not just the same location) to be seen in the same order by all processors, and also explicitly requires
that operations of a single processor appear to execute in program order.

We do not use the term cache coherence to define any consistency model. Instead, we view a cache coherence
protocol simply as the mechanism that propagates a newly written value to the cached copies of the modified
location. The propagation of the value is typically achieved by either invalidating (or eliminating) the copy or
updating the copy to the newly written value. With this view of a cache coherence protocol, a memory consistency
model can be interpreted as the policy that places an early and late bound on when a new value can be propagated
to any given processor.

5.2.2 Detecting the Completion of Write Operations

As mentioned in the previous section, maintaining the program order from a write to a following operation
typically requires an acknowledgement response to signal the completion of the write. In a system without caches,
the acknowledgement response may be generated as soon as the write reaches its target memory module. However,
the above may not be sufficient in designs with caches. Consider the code in Figure 5(b), and a system similar
to the one depicted in the same figure but enhanced with a write through cache for each processor. Assume that
processor P2 initially has Data in its cache. Suppose P1 proceeds with its write to Head after its previous write
to Data reaches its target memory but before its value has been propagated to P2 (via an invalidation or update
message). It is now possible for P2 to read the new value of Head and still return the old value of Data from its
cache, a violation of sequential consistency. This problem can be avoided if P1 waits for P2’s cache copy of Data
to be updated or invalidated before proceeding with the write to Head.

Therefore, on a write to a line that is replicated in other processor caches, the system typically requires a
mechanism to acknowledge the receipt of invalidation or update messages by the target caches. Furthermore, the
acknowledgement messages need to be collected (either at the memory or at the processor that issues the write),
and the processor that issues the write must be notified of their completion. A processor can consider a write to be
complete only after the above notification. A common optimization is to acknowledge the invalidation or update
message as soon as it is received by a processing node and potentially before the actual cache copy is affected; such
a design can still satisfy sequential consistency as long as certain ordering constraints are observed in processing
the incoming messages to the cache [6].

5.2.3 Maintaining the Illusion of Atomicity for Writes

While sequential consistency requires memory operations to appear atomic or instantaneous, propagating changes
to multiple cache copies is inherently a non-atomic operation. We motivate and describe two conditions that can
together ensure the appearance of atomicity in the presence of data replication. The problems due to non-atomicity
are easier to illustrate with with update-based protocols; therefore, the following examples assume such a protocol.

To motivate the first condition, consider the program in Figure 6. Assume all processors execute their memory
operations in program order and one-at-a-time. It is possible to violate sequential consistency if the updates for
the writes of A by processors P1 and P2 reach processors P3 and P4 in a different order. Thus, processors P3
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Initially A = B = C = 0

P1 P2 P3 P4

A = 1 A = 2 while (B != 1) f;g while (B != 1) f;g
B = 1 C = 1 while (C != 1) f;g while (C != 1) f;g

register1 = A register2 = A

Figure 6: Example for serialization of writes.

and P4 can return different values for their reads of A (e.g., register1 and register2 may be assigned the values
1 and 2 respectively), making the writes of A appear non-atomic. The above violation of sequential consistency
is possible in systems that use a general interconnection network (e.g., Figure 5(b)), where messages travel along
different paths in the network and no guarantees are provided on the order of delivery. The violation can be
avoided by imposing the condition that writes to the same location be serialized; i.e., all processors see writes to
the same location in the same order. Such serialization can be achieved if all updates or invalidates for a given
location originate from a single point (e.g., the directory) and the ordering of these messages between a given
source and destination is preserved by the network. An alternative is to delay an update or invalidate from being
sent out until any updates or invalidates that have been issued on behalf of a previous write to the same location
are acknowledged.

To motivate the second condition, consider the program fragment in Figure 4(b), again with an update protocol.
Assume all variables are initially cached by all processors. Furthermore, assume all processors execute their
memory operations in program order and one-at-a-time (waiting for acknowledgements as described above), and
writes to the same location are serialized. It is still possible to violate sequential consistency on a system with a
general network if (1) processor P2 reads the new value of A before the update of A reaches processor P3, (2) P2’s
update of B reaches P3 before the update of A, and (3) P3 reads the new value of B and then proceeds to read the
value of A from its own cache (before it gets P1’s update of A). Thus, P2 and P3 appear to see the write of A at
different times, making the write appear non-atomic. An analogous situation can arise in an invalidation-based
scheme.

The above violation of sequential consistency occurs because P2 is allowed to return the value of the write to
A before P3 has seen the update generated by this write. One possible restriction that prevents such a violation
is to prohibit a read from returning a newly written value until all cached copies have acknowledged the receipt
of the invalidation or update messages generated by the write. This condition is straightforward to ensure with
invalidation-based protocols. Update-based protocols are more challenging because unlike invalidations, updates
directly supply new values to other processors. One solution is to employ a two phase update scheme. The first
phase involves sending updates to the processor caches and receiving acknowledgements for these updates. In
this phase, no processor is allowed to read the value of the updated location. In the second phase, a confirmation
message is sent to the updated processor caches to confirm the receipt of all acknowledgements. A processor can
use the updated value from its cache once it receives the confirmation message from the second phase. However,
the processor that issued the write can consider its write complete at the end of the first phase.

5.3 Compilers

The interaction of the program order aspect of sequential consistency with the compiler is analogous to that with
the hardware. Specifically, for all the program fragments discussed so far, compiler-generated reordering of shared
memory operations will lead to violations of sequential consistency similar to hardware-generated reorderings.
Therefore, in the absence of more sophisticated analysis, a key requirement for the compiler is to preserve program
order among shared memory operations. This requirement directly restricts any uniprocessor compiler optimization
that can result in reordering memory operations. These include simple optimizations such as code motion, register
allocation, and common sub-expression elimination, and more sophisticated optimizations such as loop blocking
or software pipelining.
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In addition to a reordering effect, optimizations such as register allocation also lead to the elimination of certain
shared memory operations that can in turn violate sequential consistency. Consider the code in Figure 5(b). If
the compiler register allocates the location Head on P2 (by doing a single read of Head into a register and then
reading the value within the register), the loop on P2 may never terminate in some executions (if the single read on
P2 returns the old value of Head). However, the loop is guaranteed to terminate in every sequentially consistent
execution of the code. The source of the problem is that allocating Head in a register on P2 prohibits P2 from ever
observing the new value written by P1.

In summary, the compiler for a shared memory parallel program can not directly apply many common optimiza-
tions used in a uniprocessor compiler if sequential consistency is to be maintained. The above comments apply
to compilers for explicitly parallel programs; compilers that parallelize sequential code naturally have enough
information about the resulting parallel program they generate to determine when optimizations can be safely
applied.

5.4 Summary for Sequential Consistency

From the above discussion, it is clear that sequential consistency constrains many common hardware and compiler
optimizations. Straightforward hardware implementations of sequential consistency typically need to satisfy the
following two requirements. First, a processor must ensure that its previous memory operation is complete
before proceeding with its next memory operation in program order. We call this requirement the program order
requirement. Determining the completion of a write typically requires an explicit acknowledgement message from
memory. Additionally, in a cache-based system, a write must generate invalidate or update messages for all cached
copies, and the write can be considered complete only when the generated invalidates and updates are acknowledged
by the target caches. The second requirement pertains only to cache-based systems and concerns write atomicity.
It requires that writes to the same location be serialized (i.e., writes to the same location be made visible in the
same order to all processors) and that the value of a write not be returned by a read until all invalidates or updates
generated by the write are acknowledged (i.e., until the write becomes visible to all processors). We call this the
write atomicity requirement. For compilers, an analog of the program order requirement applies to straightforward
implementations. Furthermore, eliminating memory operations through optimizations such as register allocation
can also violate sequential consistency.

A number of techniques have been proposed to enable the use of certain optimizations by the hardware and
compiler without violating sequential consistency; those having the potential to substantially boost performance
are discussed below.

We first discuss two hardware techniques applicable to sequentially consistent systems with hardware support
for cache coherence [10]. The first technique automatically prefetches ownership for any write operations that are
delayed due to the program order requirement (e.g., by issuing prefetch-exclusive requests for any writes delayed
in the write buffer), thus partially overlapping the service of the delayed writes with the operations preceding them
in program order. This technique is only applicable to cache-based systems that use an invalidation-based protocol.
The second technique speculatively services read operations that are delayed due to the program order requirement;
sequential consistency is guaranteed by simply rolling back and reissuing the read and subsequent operations in
the infrequent case that the read line gets invalidated or updated before the read could have been issued in a more
straightforward implementation. This latter technique is suitable for dynamically scheduled processors since much
of the roll back machinery is already present to deal with branch mispredictions. The above two techniques will be
supported by several next generation microprocessors (e.g., MIPS R10000, Intel P6), thus enabling more efficient
hardware implementations of sequential consistency.

Other latency hiding techniques, such as non-binding software prefetching or hardware support for multiple
contexts, have been shown to enhance the performance of sequentially consistent hardware. However, the above
techniques are also beneficial when used in conjunction with relaxed memory consistency.

Finally, Shasha and Snir developed a compiler algorithm to detect when memory operations can be reordered
without violating sequential consistency [18]. Such an analysis can be used to implement both hardware and
compiler optimizations by reordering only those operation pairs that have been analyzed to be safe for reordering
by the compiler. The algorithm by Shasha and Snir has exponential complexity [15]; more recently, a new algorithm
has been proposed for SPMD programs with polynomial complexity [15]. However, both algorithms require global
dependence analysis to determine if two operations from different processors can conflict (similar to alias analysis);
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this analysis is difficult and often leads to conservative information which can decrease the effectiveness of the
algorithm.

It remains to be seen if the above hardware and compiler techniques can approach the performance of more
relaxed consistency models. The remainder of this article focuses on relaxing the memory consistency model to
enable many of the optimizations that are constrained by sequential consistency.

6 Relaxed Memory Models

As an alternative to sequential consistency, several relaxed memory consistency models have been proposed in both
academic and commercial settings. The original descriptions for most of these models are based on widely varying
specification methodologies and levels of formalism. The goal of this section is to describe these models using
simple and uniform terminology. The original specifications of these models emphasized system optimizations
enabled by the models; we retain the system-centric emphasis in our descriptions of this section. We focus on
models proposed for hardware shared-memory systems; relaxed models proposed for software-supported shared-
memory systems are more complex to describe and beyond the scope of this paper. A more formal and unified
system-centric framework to describe both hardware and software based models, along with a formal description
of several models within the framework, appears in our previous work [8, 6].

We begin this section by describing the simple methodology we use to characterize the various models, and
then describe each model using this methodology.

6.1 Characterizing Different Memory Consistency Models

We categorize relaxed memory consistency models based on two key characteristics: (1) how they relax the
program order requirement, and (2) how they relax the write atomicity requirement.

With respect to program order relaxations, we distinguish models based on whether they relax the order from
a write to a following read, between two writes, and finally from a read to a following read or write. In all cases,
the relaxation only applies to operation pairs with different addresses. These relaxations parallel the optimizations
discussed in Section 5.1.

With respect to the write atomicity requirement, we distinguish models based on whether they allow a read
to return the value of another processor’s write before all cached copies of the accessed location receive the
invalidation or update messages generated by the write; i.e., before the write is made visible to all other processors.
This relaxation was described in Section 5.2 and only applies to cache-based systems.

Finally, we consider a relaxation related to both program order and write atomicity, where a processor is allowed
to read the value of its own previous write before the write is made visible to other processors. In a cache-based
system, this relaxation allows the read to return the value of the write before the write is serialized with respect to
other writes to the same location and before the invalidations/updates of the write reach any other processor. An
example of a common optimization that is allowed by this relaxation is forwarding the value of a write in a write
buffer to a following read from the same processor. For cache-based systems, another common example is where
a processor writes to a write-through cache, and then reads the value from the cache before the write is complete.
We consider this relaxation separately because it can be safely applied to many of the models without violating
the semantics of the model, even though several of the models do not explicitly specify this optimization in their
original definitions. For instance, this relaxation is allowed by sequential consistency as long as all other program
order and atomicity requirements are maintained [8], which is why we did not discuss it in the previous section.
Furthermore, this relaxation can be safely applied to all except one of the models discussed in this section.

Figure 7 summarizes the relaxations discussed above. Relaxed models also typically provide programmers
with mechanisms for overriding such relaxations. For example, explicit fence instructions may be provided to
override program order relaxations. We generically refer to such mechanisms as the safety net for a model, and will
discuss the types of safety nets provided by each model. Each model may provide more subtle ways of enforcing
specific ordering constraints; for simplicity, we will only discuss the more straightforward safety nets.

Figure 8 provides an overview of the models described in the remaining part of this section. The figure shows
whether a straightforward implementation of the model can efficiently exploit the program order or write atomicity
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Figure 7: Relaxations allowed by memory models. The first three (program order) relaxations apply only to
operation pairs accessing different locations.
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Figure 8: Simple categorization of relaxed models. A
p

indicates that the corresponding relaxation is allowed by
straightforward implementations of the corresponding model. It also indicates that the relaxation can be detected
by the programmer (by affecting the results of the program) except for the following cases. The “Read Own Write
Early” relaxation is not detectable with the SC, WO, Alpha, and PowerPC models. The “Read Others’ Write Early”
relaxation is possible and detectable with complex implementations of RCsc.

Relaxation Example Commercial Systems Providing the Relaxation

W! R Order AlphaServer 8200/8400, Cray T3D, Sequent Balance, SparcCenter1000/2000
W!W Order AlphaServer 8200/8400, Cray T3D
R! RW Order AlphaServer 8200/8400, Cray T3D
Read Others’ Write Early Cray T3D
Read Own Write Early AlphaServer 8200/8400, Cray T3D, SparcCenter1000/2000

Figure 9: Some commercial systems that relax sequential consistency.
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relaxations described above, and mentions the safety nets provided by each model. The figure also indicates when
the above relaxations are detectable by the programmer; i.e., when they can affect the results of the program.
Figure 9 gives examples of commercial systems that allow the above relaxations. For simplicity, we do not attempt
to describe the semantics of the models with respect to issues such as instruction fetches or multiple granularity
operations (e.g., byte and word operations) even though such semantics are defined by some of these models.

The following sections describe each model in more detail and discuss the implications of each model on
hardware and compiler implementations. Throughout this discussion, we implicitly assume that the following
constraints are satisfied. First, we assume all models require a write to eventually be made visible to all processors
and for writes to the same location to be serialized. These requirements are trivially met if shared data is not cached,
and are usually met by a hardware cache coherence protocol in the presence of shared data caching. Second, we
assume all models enforce uniprocessor data and control dependences. Finally, models that relax the program
order from reads to following write operations must also maintain a subtle form of multiprocessor data and control
dependences [8, 1]; this latter constraint is inherently upheld by all processor designs we are aware of and can also
be easily maintained by the compiler.

6.2 Relaxing the Write to Read Program Order

The first set of models we discuss relax the program order constraints in the case of a write followed by a read to a
different location. These models include the IBM 370 model, the SPARC V8 total store ordering model (TSO), and
the processor consistency model (PC) (this differs from the processor consistency model defined by Goodman).

The key program order optimization enabled by these models is to allow a read to be reordered with respect
to previous writes from the same processor. As a consequence of this reordering, programs such as the one in
Figure 5(a) can fail to provide sequentially consistent results. However, the violations of sequential consistency
illustrated in Figure 5(b) and Figure 5(c) cannot occur due to the enforcement of the remaining program order
constraints.

The three models differ in when they allow a read to return the value of a write. The IBM 370 model is
the strictest because it prohibits a read from returning the value of a write before the write is made visible to all
processors. Therefore, even if a processor issues a read to the same address as a previous pending write from
itself, the read must be delayed until the write is made visible to all processors. The TSO model partially relaxes
the above requirement by allowing a read to return the value of its own processor’s write even before the write is
serialized with respect to other writes to the same location. However, as with sequential consistency, a read is not
allowed to return the value of another processor’s write until it is made visible to all other processors. Finally, the
PC model relaxes both constraints, such that a read can return the value of any write before the write is serialized
or made visible to other processors. Figure 10 shows example programs that illustrate these differences among the
above three models.

We next consider the safety net features for the above three models. To enforce the program order constraint
from a write to a following read, the IBM 370 model provides special serialization instructions that may be placed
between the two operations. Some serialization instructions are special memory instructions that are used for
synchronization (e.g., compare&swap), while others are non-memory instructions such as a branch. Referring
back to the example program in Figure 5(a), placing a serialization instruction after the write on each processor
provides sequentially consistent results for the program even when it is executed on the IBM 370 model.

In contrast to IBM 370, the TSO and PC models do not provide explicit safety nets. Nevertheless, programmers
can use read-modify-write operations to provide the illusion that program order is maintained between a write and
a following read. For TSO, program order appears to be maintained if either the write or the read is already part of
a read-modify-write or is replaced by a read-modify-write. To replace a read with a read-modify-write, the write
in the read-modify-write must be a “dummy” write that writes back the read value. Similarly, replacing a write
with a read-modify-write requires writing back the desired value regardless of what the read returns. Therefore,
the above techniques are only applicable in designs that provide such flexibility for read-modify-write instructions.
For PC, program order between a write and a following read appears to be maintained if the read is replaced by
or is already part of a read-modify-write. In contrast to TSO, replacing the write with a read-modify-write is not
sufficient for imposing this order in PC. The difference arises because TSO places more stringent constraints on
the behavior of read-modify-writes; specifically, TSO requires that no other writes to any location appear to occur
between the read and the write of the read-modify-write, while PC requires this for writes to the same location only.
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Initially A = Flag1 = Flag2 = 0 Initially A = B = 0

P1 P2 P1 P2 P3

Flag1 = 1 Flag2 = 1 A = 1
A = 1 A = 2 if (A == 1)
register1 = A register3 = A B = 1
register2 = Flag2 register4 = Flag1 if (B == 1)

register1 = A

Result: register1 = 1, register3 = 2, Result: B = 1, register1 = 0
register2 = register4 = 0

(a) (b)

Figure 10: Differences between 370, TSO, and PC. The result for the program in part (a) is possible with TSO and
PC because both models allow the reads of the flags to occur before the writes of the flags on each processor. The
result is not possible with IBM 370 because the read of A on each processor is not issued until the write of A on
that processor is done. Consequently, the read of the flag on each processor is not issued until the write of the flag
on that processor is done. The program in part (b) is the same as in Figure 4(b). The result shown is possible with
PC because it allows P2 to return the value of P1’s write before the write is visible to P3. The result is not possible
with IBM 370 or TSO.

We next consider the safety net for enforcing the atomicity requirement for writes. IBM 370 does not need a
safety net since it does not relax atomicity. For TSO, a safety net for write atomicity is required only for a write that
is followed by a read to the same location in the same processor; the atomicity can be achieved by ensuring program
order from the write to the read using read-modify-writes as described above. For PC, a write is guaranteed to
appear atomic if every read that may return the value of the write is part of, or replaced with, a read-modify-write.

The reasoning for how read-modify-write operations ensure the required program order or atomicity in the
above models is beyond the scope of this paper [7]. There are some disadvantages to relying on a read-modify-
write as a safety net in models such as TSO and PC. First, a system may not implement a general read-modify-write
that can be used to appropriately replace any read or write. Second, replacing a read by a read-modify-write incurs
the extra cost of performing the write (e.g., invalidating other copies of the line). Of course, these safety nets
do not add any overhead if the specific read or write operations are already part of read-modify-write operations.
Furthermore, most programs do not frequently depend on the write to read program order or write atomicity for
correctness.

Relaxing the program order from a write followed by a read can improve performance substantially at the
hardware level by effectively hiding the latency of write operations [9]. For compiler optimizations, however, this
relaxation alone is not beneficial in practice. The reason is that reads and writes are usually finely interleaved in
a program; therefore, most reordering optimizations effectively result in reordering with respect to both reads and
writes. Thus, most compiler optimizations require the full flexibility of reordering any two operations in program
order; the ability to only reorder a write with respect to a following read is not sufficiently flexible.

6.3 Relaxing the Write to Read and Write to Write Program Orders

The second set of models further relax the program order requirement by eliminating ordering constraints between
writes to different locations. The SPARC V8 partial store ordering model (PSO) is the only example of such a
model that we describe here. The key additional hardware optimization enabled by PSO over the previous set of
models is that writes to different locations from the same processor can be pipelined or overlapped and are allowed
to reach memory or other cached copies out of program order. With respect to atomicity requirements, PSO is
identical to TSO by allowing a processor to read the value of its own write early, and prohibiting a processor from
reading the value of another processor’s write before the write is visible to all other processors. Referring back to
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the programs in Figures 5(a) and (b), PSO allows non-sequentially consistent results.

The safety net provided by PSO for imposing the program order from a write to a read, and for enforcing write
atomicity, is the same as TSO. PSO provides an explicit STBAR instruction for imposing program order between
two writes. One way to support a STBAR in an implementation with FIFO write buffers is to insert the STBAR
in the write buffer, and delay the retiring of writes that are buffered after a STBAR until writes that were buffered
before the STBAR have retired and completed. A counter can be used to determine when all writes before the
STBAR have completed—a write sent to the memory system increments the counter, a write acknowledgement
decrements the counter, and the counter value 0 indicates that all previous writes are complete. Referring back to
the program in Figure 5(b), inserting a STBAR between the two writes ensures sequentially consistent results with
PSO.

As with the previous set of models, the optimizations allowed by PSO are not sufficiently flexible to be useful
to a compiler.

6.4 Relaxing All Program Orders

The final set of models we consider relax program order between all operations to different locations. Thus, a read
or write operation may be reordered with respect to a following read or write to a different location. We discuss the
weak ordering (WO) model, two flavors of the release consistency model (RCsc/RCpc), and three models proposed
for commercial architectures: the Digital Alpha, SPARC V9 relaxed memory order (RMO), and IBM PowerPC
models. Except for Alpha, the above models also allow the reordering of two reads to the same location. Referring
back to Figure 5, the above models violate sequential consistency for all the code examples shown in the figure.

The key additional program order optimization allowed relative to the previous models is that memory operations
following a read operation may be overlapped or reordered with respect to the read operation. In hardware, this
flexibility provides the possibility of hiding the latency of read operations by implementing true non-blocking reads
in the context of either static (in-order) or dynamic (out-of-order) scheduling processors, supported by techniques
such as non-blocking (lockup-free) caches and speculative execution [11].

All of the models in this group allow a processor to read its own write early. However, RCpc and PowerPC
are the only models whose straightforward implementations allow a read to return the value of another processor’s
write early. It is possible for more complex implementations of WO, RCsc, Alpha, and RMO to achieve the above.
From the programmer’s perspective, however, all implementations of WO, Alpha, and RMO must preserve the
illusion of write atomicity.1 RCsc is a unique model in this respect; programmers cannot rely on atomicity since
complex implementations of RCsc can potentially violate atomicity in a way that can affect the result of a program.

The above models may be separated into two categories based on the type of safety net provided. The WO,
RCsc, and RCpc models distinguish memory operations based on their type, and provide stricter ordering constraints
for some types of operations. On the other hand, the Alpha, RMO, and PowerPC models provide explicit fence
instructions for imposing program orders between various memory operations. The following describes each of
these models in greater detail, focusing on their safety nets. Implications for compiler implementations for the
models in this group are discussed at the end of this section.

6.4.1 Weak Ordering (WO)

The weak ordering model classifies memory operations into two categories: data operations and synchronization
operations. To enforce program order between two operations, the programmer is required to identify at least one
of the operations as a synchronization operation. This model is based on the intuition that reordering memory
operations to data regions between synchronization operations does not typically affect the correctness of a program.

Operations distinguished as synchronization effectively provide a safety net for enforcing program order. We
briefly describe a simple way to support the appropriate functionality in hardware. Each processor can provide
a counter to keep track of its outstanding operations. This counter is incremented when the processor issues an
operation and is decremented when a previously issued operation completes. Each processor must ensure that a
synchronization operation is not issued until all previous operations are complete, which is signaled by a zero value

1For WO, given a read R followed by a write W in program order that are related by the multiprocessor data or control dependence
(mentioned in Section 6.1), we assume the write W is delayed until both the read R is complete and the write that is read by R is complete.
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Figure 11: Distinguishing operations for release consistency.

for the counter. Furthermore, no operations are issued until the previous synchronization operation completes.
Note that memory operations between two synchronization operations may still be reordered and overlapped with
respect to one another.

The weak ordering model ensures that writes always appear atomic to the programmer; therefore, no safety net
is required for write atomicity.

6.4.2 Release Consistency (RCsc/RCpc)

Compared to weak ordering, release consistency provides further distinctionsamong memory operations. Figure 11
pictorially depicts this classification of memory operations. Operations are first distinguished as ordinary or
special. These two categories loosely correspond to the data and synchronization categories in WO. Special
operations are further distinguished as sync or nsync operations. Syncs intuitively correspond to synchronization
operations, whereas nsyncs correspond to asynchronous data operations or special operations that are not used for
synchronization. Finally, sync operations are further distinguished as acquire or release operations. Intuitively,
an acquire is a read memory operation that is performed to gain access to a set of shared locations (e.g., a lock
operation or spinning for a flag to be set). A release is a write operation that is performed to grant permission for
accessing a set of shared locations (e.g., an unlock operation or setting of a flag).

There are two flavors of release consistency that differ based on the program orders they maintain among
special operations. The first flavor maintains sequential consistency among special operations (RCsc), while the
second flavor maintains processor consistency among such operations (RCpc). Below, we depict the program
order constraints for these two models for operations to different locations. In our notation, A! B implies that
if operation type A precedes operation type B in program order, then program order is enforced between the two
operations. For RCsc, the constraints are as follows:

� acquire ! all, all ! release, and special ! special.

For RCpc, the write to read program order among special operations is eliminated:

� acquire ! all, all ! release, and special ! special except for a special write followed by a special read.

Therefore, enforcing program order between a pair of operations can be achieved by distinguishing or labeling
appropriate operations based on the above information. For RCpc, imposing program order from a write to a
read operation requires using read-modify-write operations analogous to the PC model. Further, if the write being
ordered is ordinary, then the write in the read-modify-write needs to be a release; otherwise, the write in the read-
modify-write can be any special write. Similarly, to make a write appear atomic with RCpc, read-modify-write
operations can be used to replace the appropriate operations analogous to the PC model. As mentioned earlier,
writes may also appear non-atomic in more complex implementations of RCsc. Preserving the atomicity of a write
can be achieved by labeling sufficient operations as special; however, explaining how this can be done precisely
is difficult within the simple framework presented in this article. We should note that the RCsc model is also
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accompanied by a higher level abstraction (described in Section 7) that relieves the need for the programmer to
directly reason with the lower level specification for a large class of programs [13].

6.4.3 Alpha, RMO, and PowerPC

The Alpha, RMO, and PowerPC models all provide explicit fence instructions as their safety nets.

The Alpha model provides two different fence instructions, the memory barrier (MB) and the write memory
barrier (WMB). The MB instruction can be used to maintain program order from any memory operations before
the MB to any memory operations after the MB. The WMB instruction provides this guarantee only among write
operations. The Alpha model does not require a safety net for write atomicity.

The SPARC V9 RMO model provides more flavors of fence instructions. Effectively, a MEMBAR instruction
can be customized to order a combination of previous read and write operations with respect to future read and
write operations; a four bit encoding is used to specify any combination of read to read, read to write, write to read,
and write to write orderings. The fact that a MEMBAR can be used to order a write with respect to a following
read alleviates the need for using read-modify-writes to achieve this order, as is required in the SPARC V8 TSO or
PSO models. Similar to TSO and PSO, the RMO model does not require a safety net for write atomicity.

The PowerPC model provides a single fence instruction, called the SYNC instruction. For imposing program
order, the SYNC instruction behaves similar to the MB instruction of the Alpha model with one exception. The
exception is that even if a SYNC is placed between two reads to the same location, it is possible for the second
read to return the value of an older write than the first read; i.e., the reads appear to occur out of program order.
This can create subtle correctness problems in programs, and may require the use of read-modify-write operations
(analogous to their use for PC and RCpc) to enforce program order between two reads to the same location.
PowerPC also differs from Alpha and RMO in terms of atomicity in that it allows a write to be seen early by
another processor’s read; therefore, analogous to PC and RCpc, read-modify-write operations may need to be used
to make a write appear atomic.

6.4.4 Compiler Optimizations

Unlike the models in the previous sections, the models that relax all program orders provide sufficient flexibility
to allow common compiler optimizations on shared memory operations. In models such as WO, RCsc and RCpc,
the compiler has the flexibility to reorder memory operations between two consecutive synchronization or special
operations. Similarly, in the Alpha, RMO, and PowerPC models, the compiler has full flexibility to reorder
operations between consecutive fence instructions. Since most programs use these operations or instructions
infrequently, the compiler gets large regions of code where virtually all optimizations that are used for uniprocessor
programs can be safely applied.

7 An Alternate Abstraction for Relaxed Memory Models

The flexibility provided by the relaxed memory models described in the previous section enables a wide range of
performance optimizations that have been shown to improve performance substantially [9, 11, 6]. However, the
higher performance is accompanied by a higher level of complexity for programmers. Furthermore, the wide range
of models supported by different systems requires programmers to deal with various semantics that differ in subtle
ways and complicates the task of porting programs across these systems. The programming complexity arises due
to the system-centric specifications that are typically provided by relaxed memory models. Such specifications
directly expose the programmer to the reordering and atomicity optimizations that are allowed by a model, and
require the programmer to consider the behavior of the program in the presence of such optimizations in order to
reason about its correctness. This provides an incentive to devise a higher level abstraction for programmers that
provides a simpler view of the system, and yet allows system designers to exploit the same types of optimizations.

For the relaxed models we have described, the programmer can ensure correctness for a program by using
sufficient safety nets (e.g., fence instructions, more conservative operation types, or read-modify-write operations)
to impose the appropriate ordering and atomicity requirements on memory operations. The difficult problem is
identifying the ordering constraints that are necessary for correctness. For example, consider the program in
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Figure 1 executing on a model such as weak ordering (WO). In this example, it is sufficient to maintain only the
following orders for correctness: (1) on P1, maintain program order between the write to Head and operations
before the write to Head, and (2) on other processors, maintain the program order from the read of Head to
the following operations. The write and read of Head actually behave as synchronization operations, and by
identifying them as such, the appropriate program orders will be automatically maintained by a model like WO.
Recognizing this issue, many models such as WO are accompanied by informal conditions for what programmers
must do to ensure “correct” behavior. For example, weak ordering requires that programmers should identify all
synchronization operations. However, the informal nature of these conditions makes them ambiguous when they
are applied over a wide range of programs (e.g., which operations should really be identified as synchronization).
Therefore, in a lot of cases, the programmer must still resort to reasoning with low level reordering optimizations
to determine whether sufficient orders are enforced.

Instead of exposing performance-enhancing optimizations directly to the programmer as is done by a system-
centric specification, a programmer-centric specification requires the programmer to provide certain information
about the program. This information is then used by the system to determine whether a certain optimization can be
applied without violating the correctness of the program. To provide a formal programmer-centric specification, we
need to first define the notion of “correctness” for programs. An obvious choice for this is sequential consistency
since it is a natural extension of the uniprocessor notion of correctness and the most commonly assumed notion of
correctness for multiprocessors. Second, the information required from the programmer must be defined precisely.

In summary, with the programmer-centric approach, a memory consistency model is described in terms of
program-level information that must be provided by the programmer. Systems based on the model exploit the
information to perform optimizations without violating sequential consistency. Our previous work has explored
various programmer-centric approaches. For example, the data-race-free-0 (DRF0) approach explores the infor-
mation that is required to allow optimizations similar to those enabled by weak ordering [2]. The properly-labeled
(PL) approach was provided along with the definition of release consistency (RCsc) as a simpler way to reason about
the type of optimizations exploited by RCsc [13]. Programmer-centric approaches for exploiting more aggressive
optimizations are described in our other work [7, 3, 1, 6]; a unified framework for designing programmer-centric
models has also been developed and used to explore the design space of such models [1].

To illustrate the programmer-centric approach more concretely, the next section describes the type of program-
level information that may be provided by the programmer to enable optimizations similar to those exploited by
the weak ordering model. We then describe how such information can actually be conveyed by the programmer to
the system.

7.1 An Example Programmer-Centric Framework

Recall that weak ordering is based on the intuition that memory operations can be classified as data and synchro-
nization, and data operations can be executed more aggressively than synchronization operations. A key goal of the
programmer-centric approach is to formally define the operations that should be distinguished as synchronization.

An operation must be defined as a synchronization operation if it forms a race with another operation in
any sequentially consistent execution; other operations can be defined as data. Given a sequentially consistent
execution, an operation forms a race with another operation if the two operations access the same location, at least
one of the operations is a write, and there are no other intervening operations between the two operations under
consideration. Consider the example in Figure 12 (same as the example in Figure 5(b)). In every sequentially
consistent execution of this program, the write and read of Data will always be separated by the intervening
operations of the write and read of Head. Therefore, the operations on Data are data operations. However, the
operations on Head are not always separated by other operations; therefore, they are synchronization operations.
Note that the programmer only reasons about sequentially consistent executions of the program and does not deal
with any reordering optimizations in order to provide the above information.

From the system design viewpoint, operations distinguished as synchronization need to be executed conserva-
tively, while operations distinguished as data can be executed aggressively. In particular, the optimizations enabled
by the weak ordering model can be safely applied. Furthermore, the information also enables more aggressive
optimizations than exploited by weak ordering [2, 13, 1].

As shown in Figure 13, the programmer-centric framework requires the programmer to identify all operations
that may be involved in a race as synchronization operations. Other operations may be distinguished as either data
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Data = 2000 while (Head == 0) f;g
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Figure 12: Providing information about memory operations.
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Figure 13: Deciding how to distinguish a memory operation.

or synchronization. Therefore, an operation may be conservatively distinguished as a synchronization operation
if the programmer is not sure whether the particular operation is involved in a race or not. This “don’t-know”
option is important for the following reasons. A programmer can trivially ensure correctness by conservatively
distinguishing all operations as synchronization; of course, this forgoes any performance gains but potentially
allows a faster path to an initial working program. Another potential benefit of the don’t-know option is that it
allows the programmer to incrementally tune performance by providing accurate information for a subset of the
memory operations (in performance-critical areas of the program), and simply providing conservative information
for the remaining operations. Of course, correctness is not guaranteed if the programmer incorrectly distinguishes
a race operation as data.

Providing the appropriate information to the system requires a mechanism at the programming language level
to distinguish memory operations, and also a mechanism for passing this information in some form to the hardware
level. We describe such mechanisms in the next section.

7.2 Mechanisms for Distinguishing Memory Operations

This section describes several possible mechanisms for conveying the information required by the programmer-
centric framework described in the previous section.

7.2.1 Conveying Information at the Programming Language Level

We consider programming languages with explicit parallel constructs. The parallel programming support provided
by the language may range from high level parallelism constructs such as doall loops to low level use of memory
operations for achieving synchronization. Therefore, the mechanism for conveying information about memory
operations depends on the support for parallelism provided by the language.
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Many languages specify high level paradigms for parallel tasks and synchronization, and restrict programmers
to using these paradigms. For example, consider a language that only allows parallelism to be expressed through
doall loops. Correct use of doall loops implies that no two parallel iterations of the loop should access the same
location if at least one of the accesses is a write. Thus, the information about memory operations is implicitly
conveyed since none of the operations in the high level program are involved in a race.

At a slightly lower level, the language may provide a library of common synchronization routines, and the
programmer is restricted to achieve synchronization by calls to such routines. In this case, the programmer must
use sufficient such synchronization calls to eliminate any races between other operations in the program. Therefore,
similar to the case with doall loops, the information about all memory operations visible to the programmer (i.e.,
excluding operations used within the synchronization routines) is implicitly conveyed. Of course, the compiler or
writers of library routines must still ensure that the operation types (i.e., synchronization or data) for additional
operations introduced to implement constructs such as doall loops or other synchronization routines are conveyed
to the lower levels such as the hardware.

Finally, the programmer may be allowed to directly use memory operations visible at the program level for
synchronization purposes (e.g., using a memory location as a flag variable). In this case, the programmer must
explicitly convey information about operation types. One way to do this is to associate this information with the
static instructions at the program level. For example, the language may provide constructs that identify specific
static regions of code to be synchronization (or data); then all dynamic operations generated from that region of
code are implicitly identified as synchronization (or data). Another option is to associate the data or synchronization
attribute with a shared variable or address. For example, the language may provide additional type declarations
that allow the programmer to identify variables that are used for synchronization purposes.

The type and generality of the mechanisms provided by the programming language affects the ease of use for
conveying the required information. For example, in the method where type declarations are used to indicate the
operation type, a default where all operations are considered data (unless indicated otherwise) can be beneficial
since data operations are more frequent. On the other hand, making the synchronization type the default makes it
simpler to bring up an initial working program, and can potentially decrease errors by requiring programmers to
explicitly declare the more aggressive data operations.

7.2.2 Conveying Information to the Hardware

The information conveyed at the programming language level must ultimately be provided to the underlying
hardware. Therefore, the compiler is often responsible for appropriately translating the higher level information to
a form that is supported by the hardware.

Similar to the mechanisms used at the programming language level, information about memory operations may
be associated with either specific address ranges or with the memory instruction corresponding to the operation.
One way to associate the information with specific address ranges is to treat operations to specific pages as data or
synchronization operations. Associating the information with a specific memory instruction can be done in one of
two ways. The first option is to provide multiple flavors of memory instructions (e.g., by providing extra opcodes)
to distinguish memory operations. The second option is to use any unused high order bits of the virtual memory
address to achieve this (i.e., address shadowing). Finally, some memory instructions, such as compare-and-swap
or load-locked/store-conditional, may be treated as synchronization by default.

Most commercial systems do not provide the above functionality for directly communicating information about
memory operations to the hardware. Instead, this information must be transformed to explicit fence instructions
supported at the hardware level to impose sufficient ordering constraints. For example, to provide the semantics of
synchronization operations of weak ordering on hardware that supports Alpha-like memory barriers, the compiler
can precede and follow every synchronization operation with a memory barrier.

8 Discussion

There is strong evidence that relaxed memory consistency models provide better performance than is possible
with sequential consistency by enabling a number of hardware optimizations [9, 11, 6]. The increase in processor
speeds relative to memory and communication speeds will only increase the potential benefit from these models. In
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addition to providing performance gains at the hardware level, relaxed memory consistency models also play a key
role in enabling important compiler optimizations. The above reasons have led many commercial architectures,
such as Digital Alpha, Sun SPARC, and IBM PowerPC, to support relaxed memory models. Furthermore, nearly
all other architectures also support some form of explicit fence instructions that indicates a commitment to support
relaxed memory models in the future. Unfortunately, the existing literature on memory consistency models is
vast and complex, with most of it targeted towards researchers in this area rather than typical users or builders of
computer systems. This article used a uniform and intuitive terminology to cover several issues related to memory
consistency models representative of those used in industry today, with the goal of reaching the wider community
of computer professionals.

One disadvantage of relaxed memory consistency models is the increase in programming complexity. Much
of this complexity arises because many of the specifications presented in the literature expose the programmer to
low level performance optimizations that are enabled by the model. Our previous work has addressed this issue
by defining models using a higher level abstraction; this abstraction provides the illusion of sequential consistency
as long as the programmer provides correct program-level information about memory operations. Meanwhile,
language standardization efforts such as High Performance Fortran have led to high-level memory models that
are different from sequential consistency. For example, the forall statement of High Performance Fortran, which
specifies a computation for a set of array indices, has a copy-in/copy-out semantics, where the computation for
one index is not affected by values produced by the computation of other indices. Overall, the choice of the
best memory consistency model is far from resolved and would benefit from more active collaboration between
language and hardware designers.
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