’.......

CONSORTIUM

.'..o"'..

Model for Supporting High
Integrity and Fault Tolerance
Brian Dobbing, Aonix Europe Ltd
Chief Technical Consultant
November 1999

Background

ORI

= Real-Time Core Specification is Released
= High Integrity Profile
— A subset of APIs in the RT-Core
— Address requirements of
« Fault Tolerance
« High Integrity and Safety Critical systems
—Work in progress, led by Aonix
« Draft circulated for internal J-Consortium review
¢ CALL FOR PARTICIPATION e.g. from Telecoms

November 1999 High Integrity and Fault Tolerance

Characteristics

*%

November 1999

Partltlomng

Determinism

Mlmmal Size

Certlﬁablllty

High Integrity and Fault Tolerance

Partitioning - single processor

]

Other peripherals

ORI

Network | Non-Critical
| eg.JVM

Controlled
Communication

/O devices
Physical memory access

November 1999 High Integrity and Fault Tolerance

Partitioning - hot standby

ORI

Network Messages

Controlled
Communication

Controlled
Communication

I/O devices / Physical memory

November 1999 High Integrity and Fault Tolerance

Partitioning - distribution

. eeeecccsesccsssccsssccsssscssssccsssccssnnes
comsoaTas
Network Messages Messages
X
Controlled Controlled

Communication

Communication
A 4

Non-Critical
Component

I/O devices / Physical memory

® Support for Distributed Systems is being addressed by
“Real-Time and Embedded Distributed Middleware Profile”

November 1999 High Integrity and Fault Tolerance

Partitioning - interfaces

oA Parameters / Results
(No Addresses)

Remote Method Invocation
| Interface !

Physical Memory

November 1999 High Integrity and Fault Tolerance

Partition Construction

m Static Linking only

— Need to verify statically every byte loaded
= Native code execution only

— Temporal constraints prohibit interpreters
= “Control” of the processor

— HI partition will (normally) contain main()

— Low-level interaction with underlying board

* Intended to be user-configurable

November 1999 High Integrity and Fault Tolerance

Memory Management (1)

Non-Stackable Default
Objects ————» Allocation
Context

Stackable Objects
plus dynamic call
frames

No garbage collector!

November 1999 High Integrity and Fault Tolerance

Memory Management (2)

m Allocation context re-used for each run()
— Useful for Periodic, Sporadic, Interrupt tasks

m Special allocation context supported
— Programmatic reclamation for Ongoing tasks

= Allocation context must be non-fragmenting

November 1999 High Integrity and Fault Tolerance

Concurrency

ORI

m Periodic tasks (threads)
— Scheduled by the runtime system
m Sporadic tasks (threads)
— Additional to RT Core, run by signalling Events
m Interrupt “tasks” (handlers)
— Triggered by hardware / software interrupt
= Ongoing tasks (not run automatically)
— Often background tasks in an infinite loop

November 1999 High Integrity and Fault Tolerance

Task Interaction

= Remove asynchronous task-to-task actions
— Stop, Interrupt, Wakeup, Suspend / Resume
— Important for replica determinism

m PCP used for Synchronized methods
— Mutual exclusive access to Shared Resources
— Tight bound on the blocking time (no queues)
— Used in preference to mutexes, semaphores

m Atomic regions used for interrupt handlers
— Can signal Event object to run Sporadic task

November 1999 High Integrity and Fault Tolerance

Task Interaction Example

i
H/w interrupt
run

Interrupt Task
| Sporadic Task

Periodic Task

put=» PCP Object get

November 1999 High Integrity and Fault Tolerance

Scheduling

m Priorities as in the RT-Core

— Interrupt range + non-interrupt range
= Normal FIFO_Within_Priorities scheduling
m Task inherits ceiling priority when in PCP
m Each task has :

— Base priority (at creation time)

— Active priority (for scheduling)
« Higher of base and any inherited priority

November 1999 High Integrity and Fault Tolerance

Sequential Execution

= Need to be able to support :
— Access to physical memory addresses
« for example RT Core |0 class and Device I/O Registry
— Exception handling
» Needed for failure recovery (roll back state)
— Finally clauses
« Tidy up when failure occurs
= Must exclude any non-determinism
— Needed for replica consistency in fault tolerance

November 1999 High Integrity and Fault Tolerance

Fault Tolerance (1)

m Hardware-related considerations
— Keep standby replicas as identical as possible
« Eliminate constructs with race conditions
« Predictable execution even if clocks vary slightly
— Allow access to physical addresses
« e.g fast DMA to compare / update state in replica
— No addresses exported from HI partition
 Simplifies switching to replica on failure

November 1999 High Integrity and Fault Tolerance

Fault Tolerance (2)

= Software-related considerations
— Checkpoint objects at specific points
« Save state in durable (persistent) storage
« Allow access to physical addresses for this storage
— Detect and recover from data errors
« Exception catching
« Roll back to saved state
— Tidy up in normal and exception case
« Finally clauses

November 1999 High Integrity and Fault Tolerance

Summary (1)

= The HI Profile supports :
— Partitioning
» Controlled access to code and data
— Determinism in sequential and concurrency
— Small footprint runtime system
m Proposed features :
— Simplified memory management scheme
* Including access to physical memory addresses

— Simplified threads kernel
— Full exception handling and “finally” clauses

November 1999 High Integrity and Fault Tolerance

Summary (2)

CORSOETL

= The HI Profile will be :
— Compatible with the Real-Time Core definition

— Compatible with the Distributed Middleware
profile

m A full solution for the entire range of
software requirements

November 1999 High Integrity and Fault Tolerance

