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Copyright 1999, 2000 J Conso
Real-Time Core Extensions

This document represents a draft revision to the specification for Real-Time 

Core Extensions for the Java1 Platform, based on the collective work of the 
members of the J Consortium’s Real-Time Java Working Group. Included in 
this document is discussion of requirements, historical perspectives and 
rationale, and suggestions for implementation of the specification.

Send comments to rtcore@j-consortium.org.

1. Java is a registered trademark of Sun Microsystems, Inc. in the United States and other coun-
tries.
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1.0 Scope

This International Specification describes the form and meaning of programs written to 
make use of Real-Time Core Extensions, known throughout this document as simply 
“Core”, on single-processor computers. The document’s purpose is to promote the
ability of Core application software and to ensure compatibility between implement
tions of Core development tools and run-time environments.

2.0 Terminology Conventions

2.1 Normative Terms

Throughout this document, the following terms shall have the meanings defined he

Shall. This identifies a conformance requirement.

Shall not. This identifies a prohibited feature or behavior.

May. This identifies an optional feature or behavior.

May not. This means the same as “need not”.

Should. This identifies a recommended practice, but is not required.

Should not. This identifies a practice that is not recommended, but is not prohibited.
rtium, All Rights Reserved 1
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Can. This identifies features or behavior that are available to an application. Implemen-
tations shall support such features and behaviors as conformance requirements.

Implementation-defined. This identifies behavior for a correct program construct and 
correct data that depends on the characteristics of the implementation, and shall be doc-
umented for each implementation. Example: the content of a required diagnostic mes-
sage.

Unspecified behavior. This identifies behavior for a correct program construct and cor-
rect data, for which the specification explicitly imposes no requirements. Example: the 
order in which the arguments to a function are evaluated.

Undefined behavior. This identifies behavior upon the use of a non-portable or erroneous 
program construct, erroneous data, or indeterminately valued objects, for which this 
specification imposes no requirements.

2.2 Program Language and Technical Terminology

Static properties. With regard to computer programming languages, a static property is 
an attribute of a computer program that is determined at compile or link time rather than 
run time. Attributes that cannot be determined at compile time are called dynamic prop-
erties. Static linking describes the process of linking software components together prior 
to run time. Static memory management describes a mechanism in which the compiler 
determines that particular memory cells are required for execution of the program (or 
program component) and sets that memory aside at the moment the program begins to 
execute and doesn’t reclaim that memory until the program (or program componen
finishes its execution.

Dynamic properties. With regard to computer programming languages, a dynamic pr
erty is an attribute of a computer program that cannot be determined at compile tim
but must instead be determined at run time. Attributes that can be determined at co
time are called static properties. Dynamic linking describes the process of linking s
ware components together on the fly, while programs are running. Dynamic memo
management describes a mechanism in which the program issues requests for allo
of new memory while it is running, and in which particular previously allocated obje
are released by the application and reclaimed while the program continues to run.

Java. Throughout this document, the word “Java” is a trademark of Sun Microsyste
in the U.S. and other countries. In this document, “Java” is used to describe the Ja
programming language and programming platforms as these were originally descr
by Sun Microsystems in references 5 and 8, including the many variants that have 
into existence since the original specifications were published.

Baseline. A Core Execution Environment may, but need not, be combined with a tra
tional Java virtual machine, as illustrated in Figure 1 on page 13. When combined 
this manner, the traditional (non-real-time) Java virtual machine and the programm
language that is used to develop applications for execution within the traditional Ja
virtual machine are known as Baseline components. This specification imposes no
straints on which version of Java is implemented by the Baseline component exce
2 Copyright 1999, 2000 J Consortium, All Rights Reserved
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require that the Baseline component implement the Java services described in Section 
4.0.

Core. To emphasize the distinction between non-real-time Java technologies, and the 
special real-time variant of the Java programming language that is described in this doc-
ument, we use the word “Core” to describe software components designed to run 
Core Execution Environment, as it is described in this document.

Extended Baseline Virtual Machine. A Core Execution Environment may, but need not,
be combined with a Baseline virtual machine. The combination of a Core Executio
Environment with a Baseline virtual machine is known as an Extended Baseline Vi
Machine.

Core Components. A Core Component is a software component written as a Core 
Source File, designed to run within the Core Execution Environment.

Core Methods. A Core Method is a method of a Core Component which is only visib
to other Core Components. Contrast this with Core-Baseline methods.

Core-Baseline Methods. A Core-Baseline method is a method of a Core Component t
is only visible to Baseline components and from within other Core-Baseline metho
Contrast this with Core Methods.

Allocation Context. An Allocation Context is an abstraction that serves to logically 
group a number of allocated Core objects. When an Allocation Context is released
of the memory required to represent the Core objects that were allocated within th
Allocation Context immediately becomes eligible to be reclaimed and recycled by 
appropriate garbage collector.

Asynchronous Transfer of Control (ATC). The normal flow of control within a Core pro-
gram is sequential execution of statements. The normal sequential control flow is m
fied by branching statements, including while loops, for loops, switch statements, and if-
else statements. These forms of program-controlled control flow are known as synchro-
nous transfer of control. When control flow is modified by some event that is not und
the control of the currently executing thread, this is known as asynchronous transfer of 
control.

Green Threads. Both Baseline and Core programming languages provide built-in sup
port for multiple threads (tasks). In both cases, certain aspects of the implementat
multiple tasks are not constrained by the specification. In particular, the Baseline a
Core specifications do not require that programming language threads be mapped
to-one to operating system tasks. One way to implement the programming languag
run-time is to dedicate one operating system task to the run-time, and to implemen
tiple tasks and task dispatching using a small kernel that is part of the implementati
the programming language run-time. We use the term “green threads”, a phrase a
ently coined by Sun Microsystems, to describe such an implementation.

RTOS. RTOS is an acronym representing “Real-Time Operating System”. Though e
real-time operating systems has been designed to satisfy a particular audience’s s
needs, most real-time operating systems share the objectives of enabling the crea
Real-Time Core Extensions 3
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small, highly efficient, highly predictable applications. For real-time applications, pre-
dictability refers to the ability to predict when the application will perform certain 
actions. Highly predictable real-time systems allow prediction of activities within toler-
ances measured in tens of microseconds with very high degrees of confidence. For less 
predictable real-time systems, the tolerances are much higher (measured, for example, 
in tens of milliseconds) and the degree of confidence may be much lower.

Base Priority. The Base Priority of a Core task is the priority initially specified when the 
task is constructed and possibly modified by invocation of the task’s setPriority() method. 
See Section 3.7 (starting on page 21).

Active Priority. The Active Priority of a Core task is the priority at which the task is cu
rently being dispatched. Note that the Active Priority shall be higher than the Base
ority if the task has inherited priority from a higher priority task while it is accessing
particular shared data structure. The Active Priority shall also be higher than the B
Priority if the task is executing a synchronized method of a Core component that imple-
ments the PCP interface, and the object’s ceiling priority is higher than this task’s Ba
Priority. The Active Priority shall be lower than the Base Priority if the task has bee
suspended and has not otherwise inherited priority higher than the Never-Schedule
ority level. See Section 3.7 (starting on page 21).

Never-Scheduled Priority. The Never-Scheduled Priority is a special priority level that 
used to identify tasks that shall not be dispatched for execution unless execution is
required by a priority inversion avoidance mechanism. See Section 3.7 (starting on
21).

I/O Channel, Memory-Mapped Access, and I/O-Space Access. Throughout this docu-
ment, we use the phrase “memory-mapped access” to describe access to memory
mapped I/O channels, and the phrase “I/O-space access” to describe access to I/O
residing in I/O space. We use the term “I/O channel” to represent either or both.

2.3 Architectural Components

A number of additional terms are defined in Section 3.4 as part of the Architectura
Overview of the Core Implementation. Included among the terms described there 

• Core Source Files (See page 12)

• Stylized Core Source Files (See page 12)

• Core Class Files (See page 12)

• Baseline Compiler (See page 13)

• Core Verifier (See page 14)

• Core Native Compiler (See page 14)

• Native-Targeted Core Class Files (See page 14)

• Core Class Libraries (See page 12)

• Core Execution Environment (See page 14)

• Static Core Execution Environment (See page 14)

• Static Core Executable Load Image (See page 14)
4 Copyright 1999, 2000 J Consortium, All Rights Reserved
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• Core Static Linker (See page 15)

• Dynamic Core Execution Environment (See page 15)

• Core Class Loader (See page 15)

2.4 Notational Shorthand

Throughout this document, we use two shorthand notations to describe the signatures of 
particular Core API methods. These shorthands consist of the baseline keyword used to 
identify a method as Core-Baseline methods (see “Core-Baseline Methods” on pag
and the stackable keyword to identify method arguments that are designed to refer to
stack-allocated objects (see “Stack Allocation of Dynamic Objects” on page 27).

In particular, we use the baseline keyword in the list of attributes that comprises the si
nature of each Core-Baseline method, as in the following:

public baseline void foo(int i, float x) {

...

}

This notation is short-hand for the representative invocation of CoreRegistry.registerBase-
line(“foo(IF)V”), as described in “CoreRegistry.registerBaseline()” on page 77. If multi
methods for a given class are declared with the baseline attribute in their signatures, this
notation is equivalent to a single invocation of CoreRegistry.registerBaseline() in the 
class’s static initializer with the string argument created by catenating together eac
Core-Baseline method’s name and signature, each separated from each of its neig
by a semicolon.

Similarly, we use the stackable keyword as an attribute of a parameter which is declar
to honor all of the protocols required for reference variables that may refer to stack
cated objects. To use the stackable attribute in the declaration of a method signature is
short-hand for the equivalent invocation of CoreRegistry.registerStackable() (see “Core-
Registry.registerStackable()” on page 77). For example, the method signature:

public stackable org.rtjwg.CoreObject foo(int i, stackable org.rtjwg.CoreObject x);

is shorthand for the Core method whose implementation begins with a registerStackable() 
invocation which identifies this and x as references to stack-allocatable objects, as rep
sented by the following example implementation.

public java.lang.Object foo(int i, java.lang.Object x) {
CoreRegistry.registerStackable(“x;this”);
. . .
Real-Time Core Extensions 5
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3.0 The Specification

3.1 Conformity Assessment

Real-time core extensions comprise development tools, run-time environments, 
required libraries, and specific constraints on the way a Core application is represented. 
This section describes what it means to conform to the specification for Real-Time Core 
Extensions for the Java platform.

3.1.1 A Conforming Core Class File

1. Uses the same format as Java 1.1 class files, as described in reference 3.

2. Adheres to a more stringent set of programming constraints, as described in Section 
3.5 (starting on page 15).

3.1.2 A Conforming Static Core Application

1. Is represented as one or more Java Virtual Machine class files, according to the 
class file format that is described in reference 3.

2. Adheres to all of the special restrictions identified in section 3.5 of this document.

3. Does not contain any invocations of the CoreClass.loadClass() or CoreClass.unload-
Class() methods (see “CoreClass.loadClass()” on page 66 and “CoreClass.unlo
Class()” on page 66)

3.1.3 A Conforming Dynamic Core Application

1. Is represented as one or more Java Virtual Machine class files, according to th
class file format that is described in reference 3.

2. Adheres to all of the special restrictions identified in section 3.5 of this docume

3. Contains at least one invocation of the CoreClass.loadClass() or CoreClass.unload-
Class() methods (see “CoreClass.loadClass()” on page 66 and “CoreClass.unlo
Class()” on page 66)

3.1.4 A Conforming Core Verifier

1. Accepts as input a Core class file and verifies that the Core class file is of the p
format by enforcing all of the byte-code verification requirements described in 
erence 3 as supplemented by the additional rules described in “Core Class File
page 15 of this document).

2. The Core verifier may be packaged either as part of the Core Execution Enviro
ment or as a dedicated tool that verifies that class files contain code that confo
with the constraints of the Core specification.

3.1.5 A Conforming Static Core Development Environment

1. Includes Core class file implementations of all of the class libraries described i
Section 3.17 (starting on page 60) (the Core API) of this document. All of the c
file implementations shall conform to the descriptions and requirements provid
in Section 3.17 except that the CoreClass.loadClass() and CoreClass.unloadClass() 
methods need not be implemented.

2. Includes a conforming Core Verifier.
6 Copyright 1999, 2000 J Consortium, All Rights Reserved
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3. Includes a conforming Static Core Linker and whatever native components (also 
known as Static Core Execution Environment) are required to be linked together 
with the Core class file implementations of the Core API and with the Core class 
file representations of any conforming static Core application in order to produce a 
conforming static Core Executable Load Image. The native components repre-
sented by the Static Core Execution Environment shall include the C/Native API as 
described in Section 3.16 (starting on page 57), 

4. Does not necessarily implement support for stack allocation of local variables, but 
does implement the CoreRegistry.registerStackable() method.

5. May, but need not, include a Core Native Compiler.

6. May, but need not, include support for integration of native methods within Core 
applications. Native method support, if provided, shall be implementation-defined.

3.1.6 A Conforming Static Core Executable Load Image

1. Is an executable program comprised of a Core application bound to the subset of 
Core API libraries required for execution of that particular Core application and 
bound to whatever native components are required for execution of that Core appli-
cation.

3.1.7 A Conforming Dynamic Core Development Environment

1. Includes Core class file implementations of all of the class libraries described in 
Section 3.17 (starting on page 60) (the Core API) of this document. All of the class 
file implementations shall conform to the descriptions and requirements provided 
in Section 3.17 except that the CoreClass.loadClass() and CoreClass.unloadClass() 
methods need not be implemented.

2. Includes a conforming Core Verifier.

3. Includes a Dynamic Core Java Execution Environment which includes implemen-
tations of the Baseline API as described in Section 4.0 (starting on page 103), the C/
Native API as described in Section 3.16 (starting on page 57), and whatever addi-
tional native components are required to enable the Dynamic Core Java Execution 
Environment to dynamically load and execute any conforming dynamic Core appli-
cation.

4. Does not necessarily implement support for stack allocation of local variables, but 
does implement the CoreRegistry.registerStackable() method.

5. May, but need not, include a Core Native Compiler.

6. May, but need not, include support for integration of native methods within Core 
applications. Native method support, if provided, shall be implementation-defined.

3.1.8 A Conforming Static Core Linker

1. Must be able to process any collection of conforming Core class files, producing as 
output an executable image that implements the semantics of those core class files 
linked together.

2. May, but need not, provide the capability of linking native method implementations 
into the resulting Static Core Executable Load Image. It is implementation-defined 
whether native method programming is supported by an implementation of the 
Real-Time Core Extensions 7
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Core extensions. If native method programming is supported, it is implementation-
defined how to link native methods into the Static Core Executable Load Image.

3. May, but need not, include support for integration of native methods within Core 
applications. Native method support, if provided, shall be implementation-defined.

3.1.9 A Conforming Core Native Interface Compiler

1. Shall process any conforming Core class file and produce as output a C header file 
which identifies the internal organization, providing at minimum, the ability to 
access all Core-declared fields in the corresponding real-time Core objects. The 
form of the information provided in the C header file is implementation-defined.

3.2 Core Objects

Objects allocated within the Core Execution Environment shall exhibit special charac-
teristics that are (or may be) different than objects allocated within a Baseline virtual 
machine. In particular:

1. Core objects shall not be relocated. Once the location of a Core object has been 
determined, that object’s location in memory shall not change.

2. There are two ways for software developers to author Core class files. Either t
use a traditional Baseline Compiler and a special Core Verifier, or they use a s
cially designed Core Compiler which integrates the functionality of a traditiona
Baseline Compiler with the Core Verifier. This is illustrated in Figure 1 on page
Depending on which set of development tools they prefer to use, Core program
mers use different syntaxes to describe their intent.

a. If they use a traditional Baseline Compiler and a Core Verifier, they expres
core concepts using notations that we characterize in this document as Stylized 
Core source. This is described more completely in Section 3.6 (starting on
page 20).

b. If they use a Core Compiler, they express concepts using notations that w
characterize in this document as Syntactic Core source. This is described more
completely in Section C.5 (starting on page 138).

In either case, the contents of the Core class file is the same. The Core Comp
translates Syntactic Core source code into a Core class file that looks as if it h
been translated by a Baseline Compiler from the equivalent Stylized Core sou
code.

3. When a Core task does a new memory allocation, this never blocks or causes
bage collection to run. If memory is not available, new() immediately throws a pre-
viously allocated instance of CoreOutOfMemoryException. A memory allocation 
request may fail either because there is not sufficient free memory available, o
because whatever free memory is available has become fragmented.

4. Core tasks are only allowed to allocate instances of org.rtjwg.CoreObject and its sub-
classes.

5. Except for the special Core-Baseline methods described in paragraph 3 of Se
3.3, only Core tasks are allowed to execute the methods of Core objects. We c
these methods which are only executable by Core tasks “Core methods”. 

6. In the Core methods, programmers shall not perform string catenation except 
catenation of string literals (compile-time constants) for which the source-langu
8 Copyright 1999, 2000 J Consortium, All Rights Reserved
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compiler replaces the string-catenate expression with a single string literal. This 
restriction shall be enforced by the Core Verifier.

7. Every Core object is allocated within a particular Allocation Context. Each Core 
task has a default Allocation Context. Within particular dynamic scopes, Core 
objects are allocated from programmer specified Allocation Contexts.

8. A Core application may invoke the release() method of any Allocation Context to 
cause the Core Execution Environment to reclaim the memory used to represent all 
of the objects allocated within that Allocation Context. Assuming that the Core 
Execution Environment is not bound to a Baseline virtual machine, the Core Exe-
cution Environment shall simply reclaim the memory without performing any 
checks to verify that the memory objects to be reclaimed are no longer in use. How-
ever, if the Core Execution Environment is bound to a Baseline virtual machine as 
part of an Extended Baseline Virtual Machine, the semantics of the Allocation Con-
text’s release() method are different, as described in paragraph 11 of Section 3.3

3.3 Partitioning of Memory

System integrators have the option of combining the Core Execution Environment 
a Baseline virtual machine. The combination of these two components is known as
Extended Baseline Virtual Machine. An Extended Baseline Virtual Machine shall su
port two logical heaps. One heap holds Core objects. The other holds Baseline ob
The idea is that objects within the Baseline heap are managed by way of automati
bage collection. The memory for objects residing within the Core heap is managed
under explicit programmer control.

Key differentiating characteristics of the Core objects are listed below:

1. Core classes are identified by the way they are loaded. There is no syntax to d
guish Core classes. Instead, a special Baseline service allows Baseline compo
to cause particular classes to be loaded and executed within the Core Executi
Environment. This service is described in Section 4.0. Alternatively, system int
grators can identify certain Java class files as Core classes by requesting that
be linked into a Core Executable Image by identifying those classes as inputs t
Core Static Linker. All classes dynamically loaded into a Dynamic Core Execut
Environment or statically linked into a Static Core Executable Image are know
Core classes. All instances of these Core classes are known as Core objects. 
Core objects reside in the Core heap.

2. Core methods shall not invoke methods of Baseline objects. Further, Core-Bas
methods shall not invoke methods of Baseline objects. Baseline threads shall 
invoke Core methods. 

3. A special protocol is available to allow developers of Core components to iden
the set of methods that are visible to the Baseline world. We call these method
Core-Baseline methods. Core tasks shall not invoke Core-Baseline methods. F
ther, Core-Baseline methods shall not invoke Baseline methods. Core program
identify the Core-Baseline methods of a Core class by concatenating the meth
names and signatures of the Core-Baseline methods together, separated by s
lons, into a single Core string and passes this string to the static CoreRegistry.register-
Baseline() method, as described in “CoreRegistry.registerBaseline()” on page 77
Real-Time Core Extensions 9
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4. Note in Figure 1 on page 13 that there are several paths for deploying Core pro-
grams. Either the Core class file can be loaded dynamically into a Dynamic Core 
Execution Environment, or the Core class file can be compiled to native machine 
language by a Core Native Compiler and then dynamically loaded into a Dynamic 
Core Execution Environment, or the Core class can be statically linked by a Core 
Static Linker, either in byte code or native code form, with an appropriate collection 
of run-time services known as the Static Core Execution Environment.

5. A special registry shall allow Core Components to publish particular core objects 
so they may be seen by Baseline components. To make a Core object visible to the 
Baseline domain, the Core component invokes:

CoreRegistry.publish(CoreString, CoreObject);

passing as a first argument the CoreString representation of the symbolic name by 
which the Core object is to be known within the CoreRegistry dictionary, and pass-
ing a reference to the Core object as its second argument.

At some later time, the Core component may decide to remove the object from the 
CoreRegistry dictionary. It does so by invoking:

CoreRegistry.unpublish(CoreString);

passing as its sole argument a CoreString object which matches the name (same 
sequence of characters) by which the particular object was originally published.

Note that removing a particular object from the CoreRegistry dictionary does not 
necessarily cause that object’s memory to be reclaimed, even if the Core dom
has already released the object’s Allocation Context. This is because the Core
object may still be reachable from the Baseline domain, either directly or indire

A more detailed description of the CoreRegistry class is provided in Section 3.17.16

Given that a Core object has been installed into the CoreRegistry dictionary, a Base-
line component can obtain a reference to the object by invoking:

core_object_reference = CoreDomain.lookup(String);

passing as the argument to the lookup() method a java.lang.String() object that has the 
same sequence of characters as the symbolic name by which the object is iden
in the CoreRegistry dictionary.

A more detailed description of the CoreDomain class is provided in Section 4.2.

6. Since Core objects may become visible to the Baseline world (through the publish() 
service of the CoreRegistry class), each Core object needs to support two APIs. In
particular, the Core API derives from org.rtjwg.CoreObject and includes the Core 
methods of all classes on the inheritance hierarchy between org.rtjwg.CoreObject and 
the class. The Baseline API derives from java.lang.Object, and includes the Baseline
methods of java.lang.Object, plus the Core-Baseline methods on the inheritance h
archy from org.rtjwg.Object to the class. Note that within the Baseline world, 
org.rtjwg.Object extends java.lang.Object.

To reduce the memory required to implement certain Core objects, an optimizi
Core Execution Environment need not support the Baseline API for objects for
which it can demonstrate through program analysis that they are not visible to
Baseline domain.

7. Style guidelines prohibit Baseline threads from direct access to the instance a
class variables of Core objects. The Core Verifier shall enforce this restriction.
10 Copyright 1999, 2000 J Consortium, All Rights Reserved
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8. Style guidelines prohibit the Core-Baseline methods from modifying the pointer 
instance and pointer class variables of Core objects. The Core Verifier shall enforce 
this restriction.

9. No code within Core-Baseline methods is allowed to make any reference to Base-
line objects. Note that this restriction prohibits the passing of arguments to Core-
Baseline methods which are references to Baseline objects. This restriction shall be 
enforced by the Core Verifier.

10. Baseline threads are not allowed to allocate instances of org.rtjwg.CoreObject and its 
subclasses. Any attempt by a Baseline thread to allocate a new instance of 
org.rtjwg.CoreObject or one of its derivatives shall fail by throwing an UnsatisfiedLink-
Error exception.

11. When the Core Execution Environment is bound to a Baseline virtual machine as 
part of an Extended Baseline Virtual Machine, a Core application may invoke the 
release() method of any Allocation Context to release the Core Execution Environ-
ment’s claim to the memory used to represent all of the objects contained with
that Allocation Context. The Core Execution Environment shall reclaim the me
ory of these objects only after it has verified that the objects are not reachable 
the Baseline virtual machine. 

Reachability of Core objects is defined in the traditional garbage collection sen
If there exists some chain of Baseline-visible pointers starting with a live variab
residing within the Baseline domain which terminates with a pointer to Core ob
X, we say that object X is reachable. Therefore, the memory for object X cannot be 
reclaimed.

A reference field contained within a Baseline object is a Baseline-visible pointe
the Baseline virtual machine has a reference to Core object U, a reference field con-
tained within object U is Baseline-visible if object U has a Core-Baseline method 
which returns the value of this reference field. If it is possible for the Baseline v
tual machine to obtain a reference to Core object V (by, for example, invoking a 
Core-Baseline method on a Core object that is already referenced from the Bas
virtual machine), a reference contained within object V is Baseline-visible if object 
V has a Core-Baseline method which returns the value of this reference field.

3.3.1 Partitioning Protocol from Core programmer’s perspective

When developing applications that involve cooperation between Core components and 
Baseline components, it is necessary for the developers of each component to honor an 
appropriate sharing protocol. The developer of Core components sees the object parti-
tioning protocol as follows:

1. It is my responsibility to make sure I’m done with object X before I release the 
Allocation Context to which object X belongs. Once I’ve released the Allocation 
Context, it is an error for the Core tasks to access any of the objects belonging
that Allocation Context or to assign any of those the objects’ addresses to any
of a Core object. By deferring the release of an Allocation Context until after al
the objects allocated within that Allocation Context are no longer in use, the C
programmer prevents premature reclamation of the Core objects.

2. It is my responsibility to make sure I release the Allocation Context for object X 
when I am certain that I am done using object X and all other objects that were allo
cated within that Allocation Context. By taking responsibility to release each A
Real-Time Core Extensions 11
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cation Context as soon as it is known that the objects allocated within that 
Allocation Context are no longer in use, the Core programmer prevents memory 
leaks.

3. Once I’ve released the Allocation Context for object X, I have no need to worry 
about object X becoming visible to me again by any means. (In other words, I ca
be assured that references to object X will not “hide out” in the Baseline world and 
then at some later time find their way back into the domain of the Core compo
nents.)

4. I realize that object X may be useful to other components in the system, and I ha
no assurance of how long it will be before those components allow the memor
dedicated to object X to be reallocated to other purposes (unless I’ve entered int
some sort of “contract” with those other components that governs the sharing 
information between our two worlds).

3.3.2 Partitioning Protocol from the Baseline programmer’s perspective

When developing applications that involve cooperation between Core components and 
Baseline components, it is necessary for the developers of each component to honor an 
appropriate sharing protocol. The developer of Baseline components sees the object par-
titioning protocol as follows:

1. From my perspective, Core objects are garbage collected just the same as other 
objects.

2. I can only access or modify Core objects by way of Core-Baseline methods.

3. I am not allowed to modify the pointer (reference) fields of Core objects.

3.4 Architectural Overview of the Core Development Architecture

The Core specification comprises development tools, run-time environments, officially 
defined libraries, and application code. This section provides an overview of how the 
various components fit together. Figure 1 on page 13 illustrates the relationship between 
the various components.

Core Source Files. Core source files are authored by Core application developers and 
system integrators. There are two distinct conventions for representing Core Source 
Files, known as Syntactic Core Source Files and Stylized Core Source Files. Through-
out this document, we use the phrase “Core Source Files” to indicate that our comm
apply to both conventions.

Stylized Core Source Files. Stylized Core Source Files are Core Source Files written t
use Baseline syntax without any special Core syntaxes. Rather than use special s
taxes, the Core programmer adheres to specific style conventions and invokes par
Core API methods to describe special real-time behaviors.

Core Class Files. Core class files use the same format as Java 1.1 class files, as desc
in reference 3, except the code represented in Core class files must adhere to a m
stringent set of programming constraints, as described in Section 3.5 (starting on p
15).
12 Copyright 1999, 2000 J Consortium, All Rights Reserved
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Baseline Compiler. Core source files can be compiled using a Baseline Compiler as long 
as the author of the source code follows the particular style guidelines that are identified 
in Section 3.6.

Figure 1. Overview of Real-Time Core Development Architecture
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Core Verifier. The Core Verifier examines the contents of Core Class Files and ensures 
that the code contained therein has adhered to the stringent Core programming guide-
lines. Figure 1 on page 13 shows the Core verifier running as a distinct development 
pass. Alternatively, the Core verifier may be integrated into the Core Static Linker, the 
dynamic Core class loader, and/or the Core Compiler. 

Core Native Compiler. A Core Native Compiler processes the contents of a Core Class 
File in order to provide a dynamically loadable native translation of the contents of the 
Core Class File. This specification for Real-Time Core Extensions for the Java Platform 
does not specify the behavior of the Core Native Compiler. Nor does it specify the inter-
nal organization of Native-Targeted Core Class Files. The significance of including 
these components in the architecture overview is to emphasize that the Core specifica-
tion shall enable the creation of products that play the roles identified in this architec-
tural overview, without constraining how the products function.

Native-Targeted Core Class Files. A Native-Targeted Core Class File includes an Imple-
mentation Defined representation of a Core Class File’s translation to a particular c
puter’s native machine language.

Core Class Libraries. The Core Class Libraries comprise all of the class libraries 
described in this document, all of which descend from org.rtjwg.CoreObject. The Core 
Class Libraries are examples of Core Class Files.

Core Execution Environment. A Core Execution Environment is a run-time environmen
within which Core programs are executed. There are two kinds of Core Execution 
ronments: Dynamic and Static. Throughout this document, we use the phrase “Co
Execution Environment” when our comments apply equally to both dynamic and s
systems.

Static Core Execution Environment. The Static Core Execution Environment consists o
object-file executables to be linked by the Core Static Linker with the Core Class 
Libraries and application programs in the form of Core class files. The Static Core 
cution Environment takes responsibility for task dispatching, maintenance of priori
queues, implementation of priority inheritance and priority ceiling protocols, and in
face to interrupt handling hardware. Depending on a vendor’s implementation, the s
Core Execution Environment may also include a byte-code interpreter and an inter
to the target’s operating system. (However, if the vendor chooses to use the Core 
Linker to translate all byte codes to native code, then the Static Core Execution Env
ment need not include a byte code interpreter.) Included within the Static Core Exe
tion Environment is a porting/integration layer that glues the run-time environment
the host operating system. 

Static Core Executable Load Image. A Static Core Executable Load Image is a com-
pletely linked executable program which includes the following components:

1. That subset of the Core Class Files that the Core Static Linker determines to b
essary for execution of the selected Core Components, from which certain met
and variables may have been pruned because the Core Static Linker determin
through analysis of the application that those methods and variables are not u
to the application. 
14 Copyright 1999, 2000 J Consortium, All Rights Reserved
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2. That subset of the Core Class Libraries that the Core Static Linker determines to be 
necessary for execution of the selected Core Components, from which certain 
methods and variables may have been pruned because the Core Static Linker deter-
mined through analysis of the application that those methods and variables are not 
useful to the application. 

3. That subset of the Static Core Execution Environment that the Core Static Linker 
determines to be necessary for execution of the selected Core Components. 

Within the Static Core Executable Load Image, it is implementation-defined which, if 
any, of the Core Class Files and Core Class Libraries have been translated to native 
machine language.

Core Static Linker. The Core Static Linker takes responsibility for linking together the 
various components of the Core application into an executable load image. Optionally, 
the Core Static Linker may verify that all Core class files adhere to appropriate style 
guidelines. Another option is for the Core Static Linker to translate byte codes to native 
machine language.

Dynamic Core Execution Environment. The Dynamic Core Execution Environment pro-
vides all of the same services as the Static Core Execution Environment. Additionally, 
the Dynamic Core Execution Environment includes support for dynamic class loading. 
It is illustrated in Figure 1 on page 13 in combination with a Baseline virtual machine to 
emphasize that the Core dynamic class loader depends on support from certain compo-
nents that run only in the Baseline virtual machine environment. (Static Core applica-
tions may also be deployed in concert with Baseline components. Since the Baseline 
support is optional for static Core applications, the executable load image produced by 
the Core Static Linker is not shown to be bound to a Baseline virtual machine.)

Core Class Loader. Within the Dynamic Core Execution Environment, the Core Class 
Loader is responsible for dynamically loading Core Class Files and Native-Targeted 
Core Class Files into the Dynamic Core Execution Environment. Within the Core Static 
Linker, the Core Class Loader is responsible for finding Core Class Files and Native-
Targeted Core Class Files and processing their contents in order to link the various Core 
Components into a single Static Core Executable Load Image.

3.5 Core Class Files

The requirements that characterize valid Core Class Files are different from the require-
ments that are imposed upon Baseline class files. For purposes of this discussion, a Core 
object is an instance of a class that is loaded by the Core Class Loader. The key differ-
ences between Core Class Files and Baseline class files are as follows:

1. Every Core class must extend from org.rtjwg.CoreObject.

2. Every Core class must include a static initializer which contains, as its first line of 
executable code, an invocation of CoreRegistry.registerCoreClass(). This indicates to 
the class loader that this class is intended for execution in the Core Execution Envi-
ronment.

3. If the class contains any Core-Baseline methods, the next line of the class static ini-
tializer following the invocation of CoreRegistry.registerCoreClass() must be an invo-
Real-Time Core Extensions 15



The Specification

t con-
 

 of 

 

 

exe-
s 
y 

ppro-

l 
lity, 

e 
cation of CoreRegistry.registerBaseline(). The argument to this method invocation is a 
CoreString object identifying the names and signatures of each Core-Baseline 
method, as described in “CoreRegistry.registerBaseline()” on page 77.

4. For each Core method (excluding the Core-Baseline methods) of the class tha
tains reference variables for which the programmer intends that the referenced
objects be stack allocatable, the first line of the method must be an invocation
CoreRegistry.registerStackable(), with a CoreString argument which identifies the list 
of variables. Additional information on stack allocation of objects is provided in
Section 3.12.

5. For each reference to java.lang.Object from within a Core Class File, it is understood
that java.lang.Object is a placeholder which really represents org.rtjwg.CoreObject. The 
Core Class Loader shall replace the reference with a reference to org.rtjwg.CoreOb-
ject when the class is loaded.

6. For each reference to java.lang.Throwable, it is understood that java.lang.Throwable is 
a placeholder which really represents org.rtjwg.CoreThrowable (See Section 3.17.2). 
The Core Class Loader shall replace the reference with a reference to org.rtjwg.Core-
Throwable when the class is loaded.

7. For each reference to java.lang.Exception, it is understood that java.lang.Exception is a 
placeholder which really represents org.rtjwg.CoreException (See Section 3.17.4). 
The Core Class Loader shall replace the reference with a reference to org.rtjwg.Core-
Exception when the class is loaded.

8. For each reference to java.lang.Error, it is understood that java.lang.Error is a place-
holder which really represents org.rtjwg.CoreError (See Section 3.17.3). The Core 
Class Loader shall replace the reference with a reference to org.rtjwg.CoreError when 
the class is loaded.

9. For each occurrence of the anewarray and multianewarray byte-code instructions, it is 
understood that the type of the object pushed onto the Core run-time stack by 
cution of this byte-code instruction is CoreArray (See Section 3.17.7), which extend
from CoreObject. For each variable declared in the Core Class File to be of Arra
type, it is understood that the type represented by the variable is really CoreArray. 
The Core class loader shall replace every reference to an array type with an a
priate subclass of CoreArray. Within the Core Execution Environment, CoreArray 
objects behave the same as Baseline arrays behave within the Baseline virtua
machine environment (with respect to subscripting operations, testing for equa
inquiring as to length, etc.).

10. If a particular Core Class File defines the org.rtjwg.CoreObject class, that class defini-
tion shall provide implementations of the following method signatures:

public final CoreClass _getClass();
public final void _wait();
public final void _notify();
public final void _notifyAll();

It is understood that these methods represent getClass(), wait(), notify(), and notifyAll() 
respectively. The Core Class Loader shall overwrite the names of each of thes
method definitions when the class is loaded.

11. Within the class file’s constant pool, any constant of type CONSTANT_String is 
understood to be a placeholder for an equivalent CoreString object (See Section 
16 Copyright 1999, 2000 J Consortium, All Rights Reserved
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3.17.12). The Core Class Loader shall make an appropriate substitution when the 
class is loaded.

12. After performing the substitutions described in Paragraphs 5 through 11 above, the 
Core Verifier shall enforce type consistency of byte-code instructions as described 
in Reference 8 under the heading “Verification of Class Files”. Type consistenc
checking includes checking of method invocations to make sure that the invok
methods are available with appropriate signatures in the corresponding object
or classes.

13. For all methods of Core objects except for the Core-Baseline methods, these m
ods shall not invoke any method of an object that is not a Core object, and sha
invoke any Core-Baseline methods of Core objects.

14. For all Core-Baseline methods of Core objects, these methods shall not invoke
method of an object that is not a Core object, and shall not invoke any Core m
ods of Core objects. Core-Baseline methods of Core objects are allowed only 
invoke other Core-Baseline methods of other Core objects.

15. For all Core-Baseline methods of Core objects, the arguments to these metho
shall be either of primitive type or shall be of type org.rtjwg.CoreObject (or descen-
dants thereof). Reference arguments to Core-Baseline methods shall not refer
Baseline objects. The value returned from a Core-Baseline method may be a r
ence to a Core object.

16. Except for the Core-Baseline methods that have been defined for a particular 
class, the fields and methods of Core objects shall not be visible to the Baselin
domain.

17. The code contained within the Core-Baseline methods of Core objects shall no
write to any Core object’s instance or class reference variables.

18. The code contained within the methods of Core objects shall not include any s
catenation operations. Note that any catenation of string literals that was prese
the Core source code must have been replaced within the Core Class File by 
Baseline Compiler or Core Compiler with the string literal that represents the c
catentation of the individual string literals.

19. For each synchronized context that occurs within a Core class that is declared to 
implement the Atomic interface (See Section 3.17.11), the body of code containe
within the synchronized context must be execution-time analyzable (See Section
3.14).

20. The Core Class File shall only include byte-code representations of source co
statements of the form:

synchronized (object) statement

if object is this.

21. The code contained within finally statements of Core methods (this restriction doe
not apply to Core-Baseline methods) shall not terminate abruptly, and shall not
cute throw. Abrupt termination means the control jumps out of the finally statement 
because of a break, continue, or return statement.

22. For each local and argument variable identified as stackable (see Section 3.12), the 
variable usage shall conform to the special constraints described in Section 3.

23. For each class that extends org.rtjwg.ISR_Task, the implementation of the work() 
method shall be declared to be synchronized.
Real-Time Core Extensions 17
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3.5.1 The Core Verifier

The Core Verifier is a tool to assist with the development of Core application code. This 
is a required component of a conforming Core implementation. For Core programs 
deployed as part of a Static Core Execution Environment, the Core Verifier shall be 
applied to the Core class files prior to building of the static executable load image. For 
Core programs designed for deployment within a Dynamic Core Execution Environ-
ment, the supplier of a conforming Core class file shall apply the Core Verifier to the 
class file before deploying the application.

The Core Verifier is responsible for verifying that a particular Core Class File adheres to 
the various restrictions that characterize valid Core Class Files. The Core Verifier can be 
packaged either as a stand-alone tool, or bundled within the Core Class Loader or within 
the Core Static Linker. The user interface is Implementation Defined.

1. The Core Verifier shall perform all of the standard checking that is described as 
“Class File Verification” for the Java Virtual Machine (See Reference 8), subjec
the conceptual replacement substitutions that are described in Section 3.5.

2. The Core Verifier shall enforce all of the special constraints described in Sectio
3.5 of this specification.

3.5.2 The Core Class Loader

The Core Class Loader performs a number of special transformations to the class 
it is loaded. Both before and after making these transformations, the Core Class L
performs a number of special checks designed to improve the likelihood that the c
being loaded is properly formatted. The checks done by the Core Class Loader are
less comprehensive than the checks performed by the Core Verifier.

If invoked from within a Dynamic Core Execution Environment, CoreClass.loadClass() 
throws a previously allocated CoreClassFormatError exception if any of the checks 
described below fail. If invoked from within the Baseline virtual machine environme
CoreDomain.loadClass() throws a ClassFormatError exception if any of the checks 
described below fail. If the Core Class Loader is running as part of the Core Static
Linker and one of the checks described below fails, the Core Static Linker shall no
duce a Static Core Executable Load Image. The format and nature of any diagnos
reporting is implementation-defined.

The Core Class Loader shall perform the following transformations and checks as 
loading a new class, in the specified order:

1. Check to make sure that this class has a static initializer that contains as its firs
cutable code an invocation of CoreRegistry.registerCoreClass(). After verifying the 
presence of this invocation, remove the invocation from the loaded class.

2. For each reference to java.lang.Object within this class, replace it with a reference t
org.rtjwg.CoreObject.

3. For each reference to java.lang.Throwable within this class, replace it with a reference
to org.rtjwg.CoreThrowable.

4. For each reference to java.lang.Exception, replace it with a reference to org.rtjwg.Core-
Exception.
18 Copyright 1999, 2000 J Consortium, All Rights Reserved
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5. For each reference to java.lang.RuntimeException, replace it with a reference to 
org.rtjwg.CoreRuntimeException.

6. If the name of the class being loaded is org.rtjwg.CoreObject, check to make sure the 
class provides implementations of the following method signatures:

public final CoreClass _getClass();
public final void _wait();
public final void _notify();
public final void _notifyAll();

Overwrite the names of these methods with getClass, wait, notify, and notifyAll respec-
tively. 

7. For each CONSTANT_String object contained within the constant pool of this class, 
replace it with an appropriate instance of a CoreString constant (representing the 
same sequence of characters).

8. Check to see if the next executable code within the static initializer for this class is 
an invocation of CoreRegistry.registerBaseline(). If so, examine the CoreString argu-
ment of the registerBaseline() invocation and make sure that this class provides 
implementations of each of the named methods. Mark each of the named methods 
as a Core-Baseline method. Then remove the invocation of CoreRegistry.register-
Baseline() from the static initializer for this class.

9. For each method of this class except those methods that were marked in step 8 
above as Core-Baseline methods, check to see if the first executable code within the 
method’s implementation is an invocation of CoreRegistry.registerStackable(). If so, 
examine the CoreString argument of the registerStackable() invocation to determine 
which local variables are stackable. If this Core Execution Environment claims
support stack allocation of dynamic objects (by returning true from CoreRegis-
try.stackAllocation()), then the Core Class Loader shall perform whatever impleme
tation-defined transformations are necessary in order to ensure that all new me
allocations which assign their result to a stackable variable shall be allocated o
run-time stack. Otherwise, the Core Class Loader shall not perform any specia
cessing for the stackable variables. In either case, the Core Class Loader sha
remove the invocation of CoreRegistry.registerStackable() from the method’s imple-
mentation in the loaded class.

10. For each invocation of CoreRegistry.coerce() that is found within this class, the Core
Class Loader shall check that the argument derives from org.rtjwg.CoreObject. After 
performing this check, the Core Class Loader shall remove the invocation of Core-
Registry.coerce(), replacing this invocation with the method’s original argument an
a run-time type checking instruction if the surrounding context requires this run
time check.

11. If the class is to be loaded into an Extended Baseline Virtual Machine, for whic
is necessary for Baseline and Core components to coexist and cooperate, the
Class Loader shall build an appropriate Baseline API for each of the Core clas
that might become visible to the Baseline domain. The Baseline API describes
collection of Core-Baseline methods to which instances of this class respond. 
thermore, the Core Class Loader shall cause a Baseline Class representing th
Baseline API of this Core class to be loaded into the corresponding Baseline vi
machine environment. Whenever the Baseline domain gains access to an inst
of this Core class, the Baseline virtual machine sees this Core object as an ins
Real-Time Core Extensions 19
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of the Baseline class that represents this object’s Baseline API. In creating the
Baseline API for this class, the Core Class Loader performs the following addi
tional transformations:

a. If a particular Core-Baseline method’s argument makes reference to a Cor
array type, the signature of this argument within the Baseline API is CoreArray 
or an appropriate derivative (See Section 3.17.7).

b. If a particular Core-Baseline method throws CoreException, the signature of this 
method within the Baseline API indicates that the method throws CoreBaseline-
Exception (See Section 4.6).

c. If a particular Core-Baseline method throws CoreRuntimeException, the signa-
ture of this method within the Baseline API indicates that the method throw
CoreBaselineRuntimeException (See Section 4.5).

d. If a particular Core-Baseline method throws CoreThrowable or some derivative 
of CoreThrowable other than CoreException or CoreRuntimeException or their 
descendants, the signature of this method within the Baseline API shall ind
cate that this method throws CoreBaselineThrowable (See Section 4.4).

3.6 Special Notations for Stylized Core Source Code

Stylized Core source code is code written for execution in the Core Execution Env
ment, which is designed to be compiled by a Baseline Compiler. A special Core Ve
analyzes the class file to make sure that the class-file translation produced by the 
line Compiler adheres to the special constraints that characterize valid Core Class

Following is a list of special notations for the use of developers in creating Core so
ware components using Stylized Core programming conventions.

1. If a Core programmer declares a variable to be of type array (or makes any re
ence to an array type), it is understood that this means CoreArray. CoreArray extends 
from CoreObject.

2. If a Core programmer declares a class to extend from java.lang.Throwable, it is 
understood that the class really extends from CoreThrowable (in place of 
java.lang.Throwable).

3. If a Core programmer uses a string constant, it is understood that this is really
constant of type CoreString. CoreString extends from CoreObject.

4. If a Core programmer fails to indicate the type from which a class extends, it is
understood that the class extends from CoreObject. All references to java.lang.Object 
within a Core program are understood to be references to CoreObject.

5. Given that the Core programmer may be dealing with objects that extend from
CoreObject but which look to the Baseline Compiler like they extend from 
java.lang.Object, the Core programmer may coerce such objects to CoreObject by 
invoking the static coerce() method of org.rtjwg.CoreRegistry.

Typical usage is to further coerce the result returned from the coerce() method to the 
type that you really expect this object to be. Consider, as an example, the follo
code fragment:

try {
doSomething();
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} catch (java.lang.Exception x) {
MyCoreException cx;
cx = (MyCoreException) CoreRegistry.coerce(x);
cx.handleException();

}

The Core Class Loader gives special treatment to this particular method, in most 
cases, replacing dynamic type coercion and checking code with a static check. 

3.7 Core Priorities

Core priorities are numbered from 1 to 128, with 128 being the most urgent priority. All 
of the 128 core priorities are higher than the ten Baseline priorities. 

Each Core task shall be represented by the combination of a Base Priority and an Active 
Priority. The Base Priority is the priority initially specified when the task is constructed 
and possibly modified by invocation of the task’s setPriority() method. The Active Prior-
ity is the priority at which the task is currently being dispatched. Note that the Activ
Priority shall be higher than the Base Priority if the task has inherited priority from 
higher priority task while it is accessing a particular shared data structure. The Act
Priority shall also be higher than the Base Priority if the task is executing a synchronized 
method of a Core component that implements the PCP interface, and the object’s ceiling
priority is higher than this task’s Base Priority. The Active Priority shall be lower tha
the Base Priority if the task has been suspended and has not otherwise inherited p
higher than the Never-Scheduled Priority level. The Never-Scheduled Priority is a 
cial priority level that is used to identify tasks that shall not be dispatched for execu
unless execution is required by a priority inversion avoidance mechanism.

3.8 Synchronization Issues

This section describes specific requirements for the implementation of synchroniza
and blocking within the Core Execution Environment.

1. The Core Execution Environment shall run only on single-processor computer
future version of the Core specification may address the special issues that ar
vant to running the Core Execution Environment on multiprocessor computers

2. The implementation of synchronized locks within the Core Execution Environment
shall not allocate memory upon entry into or departure from a synchronized context. 
Similarly, no memory shall be allocated by execution of the lock() and unlock() meth-
ods of the Mutex class.

3. An attempt to obtain a synchronized lock using a source-level construct such as th
following:

synchronized (<object>) statement;

shall abort by throwing CoreIllegalMonitorStateException if <object> does not represent 
this.

4. Queues for wait/notify monitors, Mutex locks, SignalingSemaphore and CountingSema-
phore implementations, and for the implementation of synchronized statements in 
classes that do not implement the PCP interface shall conform to the following:
Real-Time Core Extensions 21
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a. Each queue shall be maintained in priority order, with multiple entries of the 
same priority maintained in sequential order according to insertion time 
(FIFO).

b. If a task’s priority drops due to loss of inherited priority, and consequently 
some other higher priority task becomes ready to run, this task shall be pla
onto the ready queue at the leading position of that portion of the queue th
represents tasks of this task’s new priority.

c. When a running task becomes preempted by a higher-priority task, the pre
empted task shall be placed onto the ready queue at the leading position o
portion of the queue that represents tasks of the preempted task’s priority.

d. When a running task’s time slice expires, the preempted task shall be plac
onto the ready queue at the trailing position of that portion of the queue th
represents tasks of the preempted task’s priority. 

e. When a blocked task becomes runnable, that previously blocked task sha
placed on the ready queue at the trailing position of that portion of the que
that represents tasks of this task’s priority.

f. A running task can explicitly change its own priority or the priority of anoth
task. If the currently running task’s priority is explicitly increased, the task 
shall continue to run. If the currently running task’s priority is explicitly 
decreased and it continues to be the highest priority task that is ready to ru
the task shall continue to run. Otherwise, if the priority of some task that is 
rently ready to run (but is not running) is explicitly raised such that it becom
the highest priority ready task, that task shall preempt the currently runnin
task. In all other cases in which a task’s priority is explicitly changed, the 
changed task shall be placed on the appropriate queue (the ready queue i
task is ready to run, or the appropriate block queue if the task is waiting fo
particular event) at the trailing position of that portion of the queue that rep
sents tasks of this task’s new priority.

g. When a running task yields by executing the CoreTask.yield() method, the task 
shall be placed on the ready queue at the trailing position of that portion of
queue that represents tasks of this task’s priority.

h. At no other time shall the position of a task within a task priority queue be 
affected.

Note that in the context of the Core Execution Environment, requirement (e) ab
says that if a task T is blocked on a org.rtjwg.CoreObject.wait() operation and becomes
runnable either because:

i. a task that was blocked (e.g. in org.rtjwg.CoreObject.wait(), org.rtjwg.Signaling-
Semaphore.P(), org.rtjwg.CountingSemaphore.P(), org.rtjwg.Mutex.lock(), or 
org.rtjwg.CoreTask.join()) is awakened by asynchronous event handling, o

ii. because the task was sleeping, and has slept the designated amount 
time, or

iii. because some other task awakens this task by invoking org.rtjwg.CoreOb-
ject.notify() or

iv. because some other task awakens this task by invoking org.rtjwg.CoreOb-
ject.notifyAll(),
22 Copyright 1999, 2000 J Consortium, All Rights Reserved
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the task T shall be placed at the end of that portion of the ready queue that repre-
sents tasks of this task’s priority. If several tasks having the same priority are a
ened by invocation of org.rtjwg.CoreObject.notifyAll() then all of these awakened task
shall be placed at the end of that portion of the ready queue that corresponds to
respective priorities. If multiple tasks of equal priority are awakened by the notify-
All() invocation, these tasks shall be queued in FIFO order.

5. There shall be no blocking and consequently no queue of waiting tasks in the 
implementation of synchronized contexts for classes that implement the PCP inter-
face. Synchronization of PCP objects shall be implemented using a priority ceilin
protocol as defined here:

a. On entry into a PCP-synchronized context, the Core Execution Environment 
checks to make sure that the priority of the current task is less than or equ
the ceiling priority associated with this PCP context. Otherwise, entry into the 
synchronized context is denied and the attempt to enter terminates by throwin
CorePCPError object.

b. Assuming that entry into the PCP-synchronized context is not prohibited by the 
check performed in step a, the priority of the task is immediately raised to 
level that is identified as the ceiling priority associated with this synchroniz
tion context.

c. As long as this task continues to execute within the PCP-synchronized context, 
this task shall be prohibited from performing any operation that might bloc
the task. If this task attempts to enter a synchronized context belonging to some 
other object except for PCP-synchronized contexts with higher ceiling priority
than the currently locked PCP-synchronized context, or if it invokes CoreOb-
ject.wait(), or if it invokes SignalingSemaphore.P() or CountingSemaphore.P(), or if 
it invokes Mutex.lock(), the Core Execution Environment shall abort the offen
ing operation by throwing a CorePCPError object. 

d. The Core Execution Environment shall assure that only one Core task at a 
executes within any of the special contexts identified as PCP-synchronized 
regions. A sufficient, but not necessary, implementation consists of elevati
the task’s priority to the ceiling level and then suspending time slicing whil
the currently executing task is running within a priority ceiling context. The
key required behaviors are that a task that is executing within a priority cei
context runs uninterrupted until either:

i. it is preempted by a higher priority task (a task with priority higher than
the PCP ceiling priority), or

ii. it completes execution of the body of code that comprises the PCP-synchro-
nized context.

e. Upon exit from the PCP-synchronized context, the Core Execution Environmen
shall:

i. Restore this task’s priority to its original value, queuing this task on the
ready queue and dispatching the new highest priority ready task if it is
longer the highest priority ready task.

ii. If there are no other Core tasks executing within PCP-synchronized con-
texts, the Core Execution Environment shall enable time slicing. The 
amount of time allotted to the first time slice shall be implementation-
defined.
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iii. If this CoreTask has received a stop() request, the Core Execution Environ-
ment shall begin processing the request by aborting the code that is cur-
rently executing and shall now give each suspended try statement an 
opportunity to execute its finally code.

3.9 Task Execution Model for Execution of Core-Baseline Methods

The Core programmer may identify certain methods of any Core class to be Core-Base-
line methods. A Core-Baseline method is one that shall be invoked only from the Base-
line domain. The type checking performed by the Core Verifier prevents a CoreTask 
from invoking a Core-Baseline method.

A Baseline thread which invokes a Core-Baseline method shall transfigure itself into the 
equivalent of a CoreTask for the duration of time that it is executing the Core-Baseline 
method. Upon return from the Core-Baseline method, the thread shall restore itself to 
have normal Baseline thread behavior. The key significance of this semantics is as fol-
lows:

1. All Core-Baseline methods shall execute with Base Priority equal to one, which is 
the lowest priority within the Core Execution Environment.

2. When a Core-Baseline method enters a synchronized context, all of which are gov-
erned either by the Core’s priority inheritance or priority ceiling protocols, the p
ority of the running thread is automatically adjusted as required to implement t
appropriate priority inversion avoidance protocol.

3. When a Core-Baseline method acquires a Mutex lock, its priority is automatically 
adjusted as required to implement priority inheritance protocols associated with
Mutex lock as long as the thread’s control remains within the Core-Baseline met

4. If a Core-Baseline method acquires a Mutex lock and then returns without releasing
the lock, other core tasks which attempt to access the same lock shall experie
priority inversion until such time as the Mutex lock is released. This results beca
the Core Execution Environment is unable to inherit priority to Baseline thread

5. If a Baseline thread uses the Core-Baseline Mutex._lock() method to acquire a mutual
exclusion lock, that particular lock is likely to exhibit priority inversion because t
priority inheritance mechanism is not able to inherit Core task priorities to Base
threads.

Note that it is generally inadvisable for Core programmers to write Core-Baseline m
ods that return without releasing all of the Mutex locks they might have acquired.

3.10 The Core Memory Model

A number of important issues have been raised regarding ambiguities, lack of con
ance, and undesirable consequences associated with the Java memory model as 
been defined in reference 2. These issues are discussed in 12, 13, and 14. It is imp
for the Real-Time Java Working Group to take a stance on these issues by definin
Core Memory Model. At this time, we have permission from the authors to use refe
ence 12 as a normative reference.
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3.11 Abort Mechanism and Asynchronous Transfer of Control in General

Invoking the stop() or abort() methods of org.rtjwg.CoreTask, or throwing CoreTask.abort-
WorkException() shall cause the corresponding task to be aborted. When a task is aborted, 
all finally statements associated with currently executing contexts of the task shall be 
executed in reverse order of entry (the finally statement for the last try statement entered 
shall execute before all of the others). Further, the synchronization locks associated with 
currently executing synchronized contexts shall be unlocked, also in reverse order of 
entry into the corresponding synchronized contexts.

In order to improve the likelihood that stop() requests will be serviced quickly, the Core 
specification imposes a number of restrictions on the contents of finally statements. The 
purpose of these restrictions is to ensure that if control reaches a finally statement as part 
of the cleanup associated with abortion of a CoreTask, control will next flow to the sur-
rounding finally statement following completion of the code contained within this finally 
statement. The restrictions described here constrain program control to stay within the 
finally statements associated with currently executing try contexts. After all finally state-
ments have been executed, abortion of the CoreTask is complete. Even though these 
restrictions prevent control from flowing outside the finally statements, these restrictions 
are not sufficient to guarantee that finally statements complete their execution in a timely 
manner. For example, a finally statement may contain an infinite loop, or it may attempt 
to enter a synchronized context associated with an object that some other task has already 
synchronized indefinitely, or its attempt to coordinate with other tasks might result in a 
deadlock situation. In the spirit of supporting friendly cooperation between Core tasks, 
it is the Core programmer’s responsibility, as a “trusted expert”, to structure finally state-
ments so that they run to completion in small bounded time. Otherwise, when som
other task requests to abort this task, it will not abort in a timely manner.

The special Core requirements are as follows:

1. Except for Core-Baseline methods, finally statements within Core methods shall no
contain break, continue, or return statements.

2. Except for Core-Baseline Methods, finally statements shall not include throw state-
ments.

3. The Core Verifier and the Core Compiler shall enforce the above restrictions.

4. If a CoreTask is executing finally statements as part of the cleanup associated with
responding to a stop() or abort() invocation, or as part of the handling for a thrown 
ScopedThrowable exception, and a CoreThrowable object is thrown from within the 
body of one of the finally statements (or from a method that was invoked from 
within the body of one of the finally statements), the Core Execution Environment
shall catch and mask the thrown CoreThrowable object, shall consider the finally 
statement that threw the CoreThrowable object to have completed its execution, an
shall resume cleanup activities by starting up execution of the next outer-neste
finally statement if there is one, or shall consider cleanup activities to have bee
completed if there are no outer-nested finally statements to execute.

5. If a CoreTask is executing within a synchronized region of code that corresponds to 
an object that implements the Atomic interface when the CoreTask’s stop() or abort() 
or signalAsync() method is invoked, handling of the asynchronous event handling
request is deferred until after the CoreTask completes execution of the body of code
that comprises the Atomic-synchronized context.
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3.11.1 Asynchronous Transfer of Control

The CoreTask.abort() and CoreTask.stop() methods shall be implemented using a general 
purpose asynchronous transfer of control mechanism. Throughout the remainder of this 
section, we assume that the stop() method invokes the abort() method. Therefore, all dis-
cussion describing constraints imposed on implementation of the abort() method shall 
apply equally to implementation of the stop() method.

Asynchronous transfer of control is triggered by the CoreTask.signalAsync() and Core-
Task.abort() methods (See Section 3.17.23 (starting on page 88)). When either of these 
methods is invoked, the following shall be performed for the target task:

1. If the task is constructed to ignore asynchronous events and this transfer-of-control 
request was triggered by invocation of the signalAsync() method (rather than by 
invocation of the CoreTask.abort() or CoreTask.stop() methods), ignore the request 
(throwing a CoreATCEventsIgnoredException in response to the signalAsync() invoca-
tion). Note that CoreTask.abort() and CoreTask.stop() always have the effect of abort-
ing the CoreTask.work() method, even if the task was constructed to ignore 
asynchronous events.

2. If the task is currently executing within a deferral region, the task is allowed to con-
tinue executing until control leaves the deferral region. There are two kinds of 
deferral regions:

a. The body of a synchronized statement contained within a class that implements 
the Atomic interface is a deferral region.

b. The body of a finally statement is a deferral region.

Once control has left the body of the deferral region, proceed to step 3.

3. If this control-transfer request was triggered by an abort() invocation, go to step 8.

4. Create a new activation frame on the task’s run-time stack for execution of its e
handling code. Establish the appropriate context on the run-time stack to arran
that if the event handling routine returns, the task’s control resumes with the n
instruction in sequence following the last instruction that was executed before 
asynchronous control transfer took place. 

5. The event handler for the task would have been set by a prior action of one of
following forms:

a. At the time the task was constructed, one of the constructor arguments pro
vides a reference to the initial event handler for the task.

b. Subsequently, the event handler may have been replaced by invoking the t
asyncHandler() method.

The Core Execution Environment shall invoke the handleATCEvent() method of the 
task’s current event handler, using the task’s run-time stack for the activation fr

6. If the invoked handleATCEvent() method returns, control resumes within the inter-
rupted method at the point where execution was originally preempted. 

7. Otherwise, if the invoked handleATCEvent() method throws an exception, this excep
tion is propagated up the call chain starting with the context that was originally
empted by the asynchronous event handler.

8. This control-transfer request was triggered by invocation of the task’s abort() invo-
cation. The Core Execution Environment shall invoke an appropriate implemen
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tion-defined method to trigger abortion of the task. This implementation-defined 
method shall be declared with reduced visibility so as to not be accessible to Core 
application code. The Core Execution Environment shall provide dedicated tempo-
rary memory for this method’s activation frame (rather than building the activat
frame on the task’s run-time stack) so as to avoid the risk of overflowing the ta
run-time stack.

9. The implementation-defined method that is invoked to handle the abort() request 
shall throw the special ScopedThrowable object that is represented by CoreTask.cur-
rentTask().abortWorkException().

3.12 Stack Allocation of Dynamic Objects

The Core system shall support stack allocation according to the following protocol

1. Within each Core method (excluding Core-Baseline methods), the programme
identifies which local reference variables are stackable. To say that a particula
erence variable is stackable is to say that any new operation that assigns its result 
directly to this local variable shall be satisfied by allocating the new object from
run-time stack. The notational conventions depend on the programmer’s choic
developer tools:

a. Stylized Core source programmers concatenate the names of the variable
a string constant, separated by semicolons, and pass this string constant t
final public static method CoreRegistry.registerStackable(String) as the first execut-
able code in the method’s implementation. The following example shows t
declaration of a method for an object which itself might reside on the stack
(because this is stackable), which takes as an argument a reference to a CoreOb-
ject which might reside on the stack, and which presumably allocates an a
of integers which would reside on the stack.

public java.lang.Object foo(int i, java.lang.Object x) {
int [] ia;

CoreRegistry.registerStackable(“x;ia;this”);

// Body of method's implementation goes here
}

Note that this example uses java.lang.Object as a placeholder representing 
org.rtjwg.CoreObject. This is the convention followed by Stylized Core source 
code developers.

b. Syntactic Core source programmers use the stackable keyword in the declara-
tions of each variable that is considered to reference a stack-allocatable object. 
For example, the program above might be represented by the alternative nota-
tion:

public stackable org.rtjwg.CoreObject foo(int i, stackable org.rtjwg.CoreObject x) {
stackable int [] ia;

// Body of method's implementation goes here
}
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Note the use of the stackable keyword as an attribute of the foo() method. This 
signifies that the this argument is also stackable.

Throughout this document, we use the latter shorthand notation to identify stack-
able arguments in our descriptions of the officially defined Core API services.

The objective is that the class loader shall have an easy way to determine which 
variables are stackable, without impacting run-time overhead. After examining the 
arguments to the CoreRegistry.registerStackable() method, the Core Class Loader shall 
discard the invocation of registerStackable().

2. If a particular method has parameters (including this) which are declared to be 
stackable, then any class inheriting from this class must declare the same parame-
ters (at least) to be stackable.

This restriction is required in order to support polymorphism. If a particular method 
is known to accept stackable arguments, then all subclass implementations of the 
same method must accept the same stackable arguments. Otherwise, supporting 
stack allocation requires that interprocedural analysis of stackable arguments be 
performed each time new classes are loaded into the Core Execution Environment.

3. Additional restrictions are of the form described below. Throughout this discussion, 
the word “variable” refers to both local variables and to incoming arguments.

a. Each Core Execution Environment shall identify through the CoreRegis-
ter.stackAllocation() API whether it supports stack allocation, returning true from 
this method if and only if all objects that this Core specification identifies a
stack allocatable shall be allocated on the run-time stack.

b. For each variable that is declared as stackable, a new object request that assigns
its result to this variable shall be satisfied from the run-time stack if the Co
Execution Environment claims to support stack allocation. If a stackable va
able is declared to refer to a multi-dimensional array, all dimensions of any
newly allocated array assigned to this variable shall be stack allocated.

c. In order to allow the Core Execution Environment to blindly stack allocate 
each new object that is assigned to a stackable variable (including argume
variables), the Core Verifier and Core Compiler shall enforce the following

i. There shall be no data path within the method that allows the value of 
stackable variable to be copied to a local variable that is not identified
stackable.

ii. There shall be no data path within the method that allows the stackab
variable’s value to be copied into a field of a Core object (as an instanc
static variable).

iii. There shall be no data path within the method that allows the value of
stackable variable to be returned from this method as a return value.

iv. There shall be no data path within the method that allows the stackab
variable’s value to be copied to an outgoing argument list for invocation
another method unless the invoked method declares the correspondin
mal argument to be of type stackable.

v. For each new operation that assigns its result to a stackable variable, th
constructor shall declare its this argument to be stackable.

vi. Any new operation that assigns its result to a stackable variable shall n
appear within a loop of the method.
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vii. If a given Core Execution Environment does not implement stack alloca-
tion, any allocated objects that would otherwise have been stack allocated 
are allocated instead within the currently active AllocationContext. The 
memory for these objects shall be reclaimed when the corresponding Allo-
cationContext is released. See Section 3.17.8 for additional discussion on 
the topic of allocation contexts.

Note that all of these restrictions are described and enforced in terms of Core 
Class Files rather than source code. There are certain source-level notations, 
such as creation of inner classes that make reference to local final objects cre-
ated in an outer class context, that appear to conform with the above-described 
restrictions even though the byte-code translation of these notations does not.

3.13 Initialization and Class Loading

The Core Execution Environment shall perform all class resolution and initialization at 
“load time”. For dynamically loaded classes, load time is defined as the time when
class is dynamically loaded. For statically loaded classes, it is implementation-defi
whether load time means the time when the Core Static Linker builds the memory 
image or the bootup time of the Core Execution Environment. This enables classes
initialized prior to burning ROM, or to initialize themselves out of ROM at power-up
time. Either approach offers superior performance to that of the Baseline language
is currently specified.

3.14 Execution-Time Analyzable Code

The execution model for the Java language assumes that Java byte codes are val
by a byte-code analyzer prior to execution. In the Baseline environment, the purpo
this byte-code analyzer is to ensure that the byte codes are type-consistent. Besid
making sure that byte codes will not introduce type mismatch errors, the Core Veri
has the additional responsibility of determining through analysis that particular bod
of Core code can be analyzed to determine their worst-case execution times (WCET).

The large majority of code comprising a Core program is not intended to be execu
time analyzable. However, there are certain contexts in which reliable compliance 
stringent time constraints requires that the maximum time for execution of particula
code segments be known prior to run time. 

The following describes the properties that characterize byte-code representations
Core program segments that are considered to be execution-time analyzable.

1. A straight-line sequence (without conditional or unconditional branching and w
out method invocations and without throw statements) of Java virtual machine 
instructions is execution-time analyzable as long as the sequence of instructio
does not include new, newarray, anewarray, multianewarray, aastore, checkcast, or 
instanceof byte-code instructions. 

2. The athrow instruction shall be execution-time analyzable. Note that the Core E
cution Environment does not capture the stack backtrace in the representation
thrown object. Note also that the time required to execute the athrow instructio
includes the time required to find the appropriate catch clause. Though this time is 
context specific, the total cost can be calculated for any given context by summ
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the appropriate contributions associated with searching each nested method activa-
tion frame as part of the cost associated with that method’s invocation.

3. The code represented by an invokestatic or invokespecial instruction is execution-time 
analyzable if the body of the static or final method to be invoked is execution-t
analyzable.

4. Given a program control flow consisting of a conditional branch and two altern
tive code flows that reunite at a common instruction, this complete control flow
execution-time analyzable if each of the alternative arms of the control flow is 
cution-time analyzable. In terms of the symbols diagrammed in Figure 2 on 
page 30, we say that the code path from point A to point D is execution-time analyz-
able if and only if the body of code (which need not be consecutive instruction
represented by B is execution-time analyzable and the body of code represented
C is also execution-time analyzable.

5. In Java byte code, both the lookupswitch and tableswitch instructions represent multi-
way conditional branches. A program control flow that starts with either of thes
byte-code instructions and ends at a common execution point reached by all p
originating from the starting point is execution-time analyzable if all of the path
between the starting point and ending point are execution-time analyzable. In t
of the symbols diagrammed in Figure 3 on page 31, we say that the code path
point A to point H is execution-time analyzable if and only if the bodies of code 
(which need not be consecutive instructions) represented by B, C, D, E, F, and G are 
each execution-time analyzable.

6. Within a class file’s method representation, try clauses are identified by the 
exception_table array data structure (See Reference 8). Each entry in this table s
ifies the range of virtual machine instructions that is handled by each catch clause 
associated with the try statement. If a finally statement is associated with a particula

Figure 2. Analyzable Conditional Control Flow
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try statement, the Baseline or Core Compiler inserts into the method’s class-file
resentation an additional exception handler which handles all of the virtual mac
instructions ranging from the body of the try statement to and including all bodies o
all programmer-declared exception handlers corresponding to that try statement. 
This special exception handler is invoked if one of the programmer-defined ex
tion handlers throws an exception during its execution.

To identify the sequence of code representing the body of a try statement, look at the 
range of instructions spanned by the exception handlers identified in the 
exception_table data structure. Some of the identified ranges represent the bodie
try statements. The others represent the combined bodies of a try statement and all of 
its programmer-defined exception handlers. Identify the finally statement entries by 
separating out the entries whose ranges are supersets of other ranges. All of t
remaining entries identify ranges that correspond to the bodies of try statements.

To identify the sequence of code representing each programmer-defined exce
handler associated with a particular try statement, look at each of the exception ha
dler entries for that try statement in the exception_table data structure. (Don’t include 
the special finally statement exception handler.) Each of these entries identifies t
first instruction of each exception handler. The body of code for the exception 
dler starts with this first instruction and ends with a goto byte-code instruction that 
jumps to the code following the try statement’s body. The destination address of t
goto instruction is the first point of convergence between the control-flow subgra
starting at the try statement first instruction and the control flow subgraph start
at the exception handler’s first instruction.

To identify the sequence of code representing the body of the finally statement asso-
ciated with a particular try statement, look at the finally statement entry (described 
above) within the exception_table data structure and extract from this entry the target 

Figure 3. Analyzable Multi-Way Conditional Control Flow
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address. (Note that some try statements don’t have finally statements.) This repre-
sents the address of the first virtual machine instruction in the special finally-state-
ment exception handler. The instruction at this address is a jsr instruction, which 
jumps to the subroutine representing the body of this finally statement. For each 
identified range, the body of the try statement comprises the code starting with th
instruction at the jsr target address and includes all code up to and including theret 
instruction that marks the end of the finally statement subroutine. In some cases, th
finally statement may have multiple ret instructions. The body of the finally state-
ment subroutine is execution-time analyzable if every path from the entry poin
any of the ret instructions that represents completion of this subroutine is execut
time analyzable.

A try statement, including its catch and finally clauses, is execution-time analyzable
if and only if (1) the body of the try statement itself is execution-time analyzable, 
(2) the body of each catch clause, if any, associated with this try statement is execu-
tion-time analyzable, and (3) the body of the finally clause, if any, associated with 
this try statement is execution-time analyzable.

7. As described in Reference 9, a natural loop is defined as follows:

a. A basic block is a sequence of consecutive byte-code instructions into whic
control enters at the first instruction and from which control leaves followin
execution of the last instruction, without any possibility of halting or branchi
except after the last instruction.

b. A flow graph is a collection of nodes representing basic blocks of a compu
program which are connected by directed edges representing possible con
flow between basic blocks. In particular, the flow graph has a directed edg
from node B1 to node B2 if:

i. There is a conditional or unconditional jump from the last instruction in
the basic block represented by node B1 to the first instruction in the basic 

block represented by B2, or if

ii. The basic block represented by node B2 immediately follows the basic 
block represented by node B1 in the program sequence and the last instru

tion in block B1 is not an unconditional jump instruction.

c. We say that node d of a flow graph dominates node n if every path from the ini-
tial node of the flow graph to node n passes through node d. Note that every 
node dominates itself. 

d. A back edge is a directed edge of a flow graph whose head dominates its ta
(Given a directed edge pointing from node B1 to node B2, we call B1 the tail of 
the directed edge and B2 the head of the directed edge.) Each back edge in t

flow graph corresponds to a loop.

e. Given a back edge nmd, the natural loop of that edge is the node d plus all 
nodes that can reach node n without passing through node d. We call node d the 
header of the loop.

Algorithms to identify dominator relationships and natural loops within an arbitra
flow graph are available in Reference 9. Given a natural loop, we define the fol
ing two additional terms for purposes of facilitating discussion regarding the an
sis of loop execution time:
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a. We characterize a departure edge of natural loop N to be a directed edge for 
which the head is a node not contained within the loop and the tail is a node 
contained within the loop.

b. For each departure edge, we call the node that represents the departure e
tail a departure node.

A natural loop is considered to be execution-time analyzable if and only if all of
following conditions are satisfied:

a. Every path within the flow graph from the loop header back to the loop hea
is execution-time analyzable.

b. There exists at least one departure node for the loop that exhibits the follow
properties:

i. The departure node dominates each node within the loop that has a b
edge to the loop’s header. Note that the header dominates itself, and t
node containing the back edge also dominates itself. Note further that
departure node must terminate with a conditional branch. Otherwise, th
would be no way for the departure node to be contained within the loo
and yet have an edge directed to a node that is outside the loop.

ii. The condition upon which the departure node decides whether to dep
from the loop is a simple integer magnitude comparison involving a loc
variable (call the variable j) and an integer constant value with no addi-
tional arithmetic.

iii. Within the loop, there is only one assignment to the variable j. This assign-
ment must be contained within a basic block whose node dominates a
other nodes within this loop that have back edges directed to this loop
header. Furthermore, this basic block shall not be contained within an
inner nested loop. An inner nested loop is a natural loop whose heade
contained within this loop and is distinct from this loop’s header. In sum
mary, the variable j shall be incremented or decremented exactly once o
each iteration of this loop. Furthermore, the value assigned to variablej 
must be obtained by adding or subtracting a non-zero integer constan
the previous value of the variable j.

iv. There is only one definition of the variable j which reaches the header of 
the loop (See reaching definitions in Reference 9) from outside of the loop
and the value assigned to j by this definition must be a simple integer con
stant.

3.14.1 Analyzability of Core Source Code

The characterization of execution-time analyzable code presented above is describ
terms of class-file byte-code representations. Most Core programmers prefer to thi
terms of Core source code conventions rather than in terms of their byte-code rep
tations. To facilitate development of reliable Core source code components, the Co
specifications requires that a Core Compiler shall translate all of the following con-
structs into execution-time analyzable byte-code program segments:

1. A straight-line body of Core Source Code shall be translated by the Core Com
into execution-time analyzable byte code provided that this body of code does
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include any new memory allocation requests, reference type coercions, instanceof 
operators, or assignments to an element of a reference array.

2. A throw statement shall be translated by the Core Compiler into execution-time ana-
lyzable byte code if the expression that defines the value to be thrown meets the 
constraints of paragraph 1 immediately above.

3. An invocation of a static or final method shall be translated by the Core Compiler 
into execution-time analyzable byte code provided that the implementation of the 
invoked static or final method is execution-time analyzable.

4. The Core Compiler shall translate if statements and if-else statements to execution-
time analyzable byte code if the conditional expression, the body of the if-clause, 
and the body of the else-clause, if present, are all execution-time analyzable.

5. The Core Compiler shall translate switch statements to execution-time analyzable 
byte code if the controlling expression and the bodies of code representing each 
case are each independently execution-time analyzable.

6. The Core Compiler shall translate for statements to execution-time analyzable byte 
code if the iteration variable is an integer that is initialized to a constant prior to the 
loop and incremented or decremented by a constant value exactly once on each iter-
ation of the loop as part of the for statement’s control clause, and the body of the for 
loop is itself execution-time analyzable. The Core Compiler shall allow break and 
continue statements in execution-time analyzable loops.

3.14.2 Predictability of the Core Execution Environment

In order to enable deployment of execution-time predictable Core real-time compo
nents, the Core specification imposes the following constraints on implementations
the Core virtual machine:

1. The time required to execute all virtual machine instructions is constant, excep
the following special instructions:

a. The time required to execute new, newarray, anewarray, and multianewarray 
instructions is implementation-defined and need not be constant or predict

b. The maximum time required to execute the aastore, checkcast, and instanceof 
instructions shall be proportional to the depth of the loaded class hierarchy

c. The maximum time required to execute an athrow instruction is proportional to 
the depth of the current thread’s run-time stack, measured in stack frames

d. The time required to execute an invokeinterface instruction is implementation-
defined and need not be constant or predictable.

2. The CPU time and dynamic memory impact of each of the official Core API lib
ies, including Core-Baseline methods, shall be as detailed in Table 1 on page
Within this table, saying that CPU requirements are implementation-defined me
that the supplier of a conforming Core Execution Environment shall either prov
documentation that details the CPU requirements for the particular implementa
running on a particular platform, or shall provide tools and appropriate docume
tion to allow users to measure the implementation-defined CPU requirements 
each method. Providing statistically significant measurement-based characteri
tions of CPU requirements shall be an acceptable replacement for analytical g
antees.
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TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact

CoreObject

constructors Bounded by an implemen-
tation-defined constant.

The new object shall be allocated 
within the current AllocationCon-
text. No other memory shall be 
allocated.

clone() Bounded by an implemen-
tation-defined function 
which is linear in the size 
of the object being cloned.

The new object shall be allocated 
within the current AllocationCon-
text. No other memory shall be 
allocated.

equals() Bounded by an implemen-
tation-defined constant.

No memory allocation.

getClass() Bounded by an implemen-
tation-defined constant.

No memory allocation.

hashCode() Bounded by an implemen-
tation-defined constant.

No memory allocation.

notify() Bounded by an implemen-
tation-defined constant.

No memory allocation.

notifyAll() Bounded by an implemen-
tation-defined constant. 
The work of notifying 
multiple waiting tasks 
shall be distributed 
amongst the wait() invoca-
tions of the waiting tasks.

No memory allocation.

toString() Bounded by an implemen-
tation-defined constant.

The returned CoreString object 
and the corresponding character 
buffer, if any, shall be allocated 
within the current AllocationCon-
text. How much memory is 
required to represent a CoreString 
object of the specific length shall 
be implementation-defined. No 
other memory shall be allocated.

wait() No CPU-time bound 
required on this method.

No memory allocation.

arrayAddress() Bounded by an implemen-
tation-defined constant.

No memory allocation.

sizeof() Bounded by an implemen-
tation-defined constant.

No memory allocation.
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CoreThrowable

constructors Bounded by an implemen-
tation-defined constant.

The new CoreThrowable object 
shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall 
not be copied. Instead, the con-
structed CoreThrowable object 
shall simply maintain a reference 
to the supplied message argu-
ment. No other memory shall be 
allocated.

getMessage() Bounded by an implemen-
tation-defined constant.

No memory allocation.

CoreRuntimeExceptiona

constructors Bounded by an implemen-
tation-defined constant.

The new CoreThrowable object 
shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall 
not be copied. Instead, the con-
structed CoreThrowable object 
shall simply maintain a reference 
to the supplied message argu-
ment. No other memory shall be 
allocated.

CoreExceptionb

constructors Bounded by an implemen-
tation-defined constant.

The new CoreException object 
shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall 
not be copied. Instead, the con-
structed CoreException object 
shall simply maintain a reference 
to the supplied message argu-
ment. No other memory shall be 
allocated.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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ScopedException

constructors Bounded by an implemen-
tation-defined constant.

The new ScopedException object 
shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall 
not be copied. Instead, the con-
structed ScopedException object 
shall simply maintain a reference 
to the supplied message argu-
ment. No other memory shall be 
allocated.

enable() Bounded by an implemen-
tation-defined constant.

No memory allocation.

disable() Bounded by an implemen-
tation-defined constant.

No memory allocation.

CoreClass

forName() No CPU-time bound 
required on this method.

No memory allocation.

getComponentType() Bounded by an implemen-
tation-defined constant.

No memory allocation.

isArray() Bounded by an implemen-
tation-defined constant.

No memory allocation.

isAssignableFrom() No CPU-time bound 
required on this method.

No memory allocation.

isInstance() No CPU-time bound 
required on this method.

No memory allocation.

isInterface() Bounded by an implemen-
tation-defined constant.

No memory allocation.

isPrimitive() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
Real-Time Core Extensions 37



The Specification

 

CoreClass

newInstance() No CPU-time bound 
required on this method.

The new object shall be allocated 
within the current AllocationCon-
text. No other memory shall be 
allocated, except for whatever 
memory is allocated by execution 
of the new object’s no-argument 
constructor.

toString() No CPU-time bound 
required on this method.

The returned CoreString object 
and the corresponding character 
buffer, if any, shall be allocated 
within the current AllocationCon-
text. How much memory is 
required to represent a CoreString 
object of the specific length shall 
be implementation-defined. No 
other memory shall be allocated.

verification() Bounded by an implemen-
tation-defined constant.

No memory allocation.

loadClass() No CPU-time bound 
required on this method.

No bound on the number of 
objects allocated by this method. 
May allocate multiple temporary 
objects within the current Alloca-
tionContext. None of these objects 
is used following return from this 
method. Additionally, a small 
implementation-defined quantity 
of more permanent objects shall 
be allocated within a special 
implementation-defined Alloca-
tionContext for the purpose of rep-
resenting the newly loaded class 
within the Core Execution Envi-
ronment. When (if) this class is 
subsequently unloaded, the unload-
Class() method shall release the 
special AllocationContext.

unloadClass() No CPU-time bound 
required on this method.

As a side effect of unloading this 
class, the special implementation-
defined AllocationContext that was 
created for the purpose of repre-
senting this class shall be released.
No memory shall be allocated.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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CoreArrayc

constructors Bounded by an implemen-
tation-defined function 
that is linear in the number 
of slots in the array.

The new array object is allocated 
within the current AllocationCon-
text. No other memory is allo-
cated.

length() Bounded by an implemen-
tation-defined constant.

No memory allocation.

atGet() Bounded by an implemen-
tation-defined constant.

No memory allocation.

atPut() Bounded by an implemen-
tation-defined constant.

No memory allocation.

AllocationContext

constructors No CPU-time bound 
required for this method.

The new AllocationContext object 
is allocated within the current Allo-
cationContext. No other memory 
is allocated.

available() Bounded by an implemen-
tation-defined constant.

No memory allocation.

allocated() Bounded by an implemen-
tation-defined constant.

No memory allocation.

release() No CPU-time bound 
required for this method.

No memory allocation.

SpecialAllocation

context() No constraint. This is an 
abstract method which 
must be implemented by 
the application developer.

No constraint. This is an abstract 
method which must be imple-
mented by the application devel-
oper.

run() No constraint. This is an 
abstract method which 
must be implemented by 
the application developer.

No constraint. This is an abstract 
method which must be imple-
mented by the application devel-
oper.

execute() The work performed by 
this method, excluding the 
work performed by 
this.run() which is invoked 
from within this method, 
shall be bounded by an 
implementation-defined 
constant.

No memory allocation shall be 
performed by this method. How-
ever, there is no bound on the 
amount of memory that might be 
allocated from within the run() 
method which is invoked by this 
method.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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CoreString

constructors Bounded by an implemen-
tation-defined function 
that depends on the length 
of the CoreString to be 
constructed.

The newly constructed CoreString 
object and the corresponding char-
acter buffer, if any, shall be allo-
cated within the current 
AllocationContext. How much 
memory is required to represent a 
CoreString object of the specific 
length shall be implementation-
defined. No other memory shall be 
allocated.

charAt() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_charAt() Bounded by an implemen-
tation-defined constant.

No memory allocation.

hashCode() Bounded by an implemen-
tation-defined function 
that depends on the length 
of this CoreString object.

No memory allocation.

_hashCode() Bounded by an implemen-
tation-defined function 
that depends on the length 
of this CoreString object.

No memory allocation.

equals() Bounded by an implemen-
tation-defined function 
that depends on the length 
of this CoreString object.

No memory allocation.

length() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_length() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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DynamicCoreString

constructors Bounded by an implemen-
tation-defined function 
that depends on the length 
of the DynamicCoreString 
to be constructed.

The newly constructed Dynamic-
CoreString object and the corre-
sponding character buffer, if any, 
shall be allocated within the cur-
rent AllocationContext. How much 
memory is required to represent a 
DynamicCoreString object of the 
specific length shall be implemen-
tation-defined. No other memory 
shall be allocated.

concat() Bounded by an implemen-
tation-defined function 
that depends on the sum of 
the lengths of the two 
strings that are being con-
catenated.

The returned DynamicCoreString 
object and the corresponding char-
acter buffer, if any, shall be allo-
cated within the current 
AllocationContext. How much 
memory is required to represent a 
DynamicCoreString object of the 
specific length shall be implemen-
tation-defined. No other memory 
shall be allocated.

getChars() Bounded by an implemen-
tation-defined function 
that depends on the length 
of this DynamicCoreString 
object.

No memory allocation.

length() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_length() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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DynamicCoreString

substring() Bounded by an implemen-
tation-defined function 
that depends on the length 
of the requested substring.

The returned DynamicCoreString 
object and the corresponding char-
acter buffer, if any, shall be allo-
cated within the current 
AllocationContext. If the current 
AllocationContext is different from 
the AllocationContext within 
which this DynamicCoreString 
resides, the substring() method 
shall make a new copy of the sub-
string characters which shall 
reside within an object belonging 
to the current AllocationContext. 
How much memory is required to 
represent a DynamicCoreString 
object of the specific length shall 
be implementation-defined. No 
other memory shall be allocated.

toCharArray() Bounded by an implemen-
tation-defined function 
that depends on the length 
of the requested character 
array.

The returned array of characters 
shall be allocated within the cur-
rent AllocationContext. No other 
memory shall be allocated.

toLowerCase() Bounded by an implemen-
tation-defined function 
that depends on the length 
of this DynamicCoreString 
object.

The returned DynamicCoreString 
object and the corresponding char-
acter buffer, if any, shall be allo-
cated within the current 
AllocationContext. The returned 
DynamicCoreString shall not 
make reference to any character 
buffer object residing in an Alloca-
tionContext that is not the current 
AllocationContext. How much 
memory is required to represent a 
DynamicCoreString object of the 
specific length shall be implemen-
tation-defined. No other memory 
shall be allocated.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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DynamicCoreString

toUpperCase() Bounded by an implemen-
tation-defined function 
that depends on the length 
of this DynamicCoreString 
object.

The returned DynamicCoreString 
object and the corresponding char-
acter buffer, if any, shall be allo-
cated within the current 
AllocationContext. The returned 
DynamicCoreString shall not 
make reference to any character 
buffer object residing in an Alloca-
tionContext that is not the current 
AllocationContext. How much 
memory is required to represent a 
DynamicCoreString object of the 
specific length shall be implemen-
tation-defined. No other memory 
shall be allocated.

ATCEventHandler

constructor Bounded by an implemen-
tation-defined constant.

The new ATCEventHandler object 
is allocated within the current Allo-
cationContext. No other memory 
is allocated.

handleATCEvent() Bounded by an implemen-
tation-defined constant.

No memory allocation.

ATCEvent

constructor Bounded by an implemen-
tation-defined constant.

The new ATCEvent object is allo-
cated within the current Allocation-
Context. No other memory is 
allocated.

defaultAction() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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Method Name CPU Requirements Memory Impact
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CoreRegistry

stackAllocation() Bounded by an implemen-
tation-defined constant.

No memory allocation.

registerStackable() The registerStackable() 
method shall be removed 
from the executable code 
by the Core Class Loader. 
Thus, the implementation 
of registerStackable() 
shall require no CPU time.

No memory allocation.

registerBaseline() The registerBaseline() 
method shall be removed 
from the executable code 
by the Core Class Loader. 
Thus, the implementation 
of registerBaseline() shall 
require no CPU time.

No memory allocation.

registerCoreClass() The registerCoreClass() 
method shall be removed 
from the executable code 
by the Core Class Loader. 
Thus, the implementation 
of registerCoreClass() 
shall require no CPU time.

No memory allocation.

coerce() Bounded by an implemen-
tation-defined constant.

No memory allocation.

profiles() No CPU-time bound 
required for this method.

The array returned from this 
method shall be allocated in the 
current AllocationContext. The 
CoreString objects referenced 
from the array shall not be allo-
cated by invocation of this 
method. Instead, these CoreString 
objects shall be pre-allocated from 
within an implementation-defined 
AllocationContext and reused for 
each invocation of the profiles() 
method.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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CoreRegistry

publish() No CPU-time bound 
required for this method.

A small implementation-defined 
number of objects shall be allo-
cated within a special implementa-
tion-defined AllocationContext for 
the purpose of representing the 
published information within the 
Core Execution Environment. 
When (if) this entry is subse-
quently unpublished, this special 
AllocationContext shall be 
released. No other memory shall 
be allocated.

unpublish() No CPU-time bound 
required for this method.

The implementation-defined Allo-
cationContext that was created by 
the corresponding invocation of 
the publish() method shall be 
released.

TABLE 1. Predictability Requirements for Core API Libraries
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Method Name CPU Requirements Memory Impact
Real-Time Core Extensions 45



The Specification
SignalingSemaphore

constructor Bounded by an implemen-
tation-defined constant.

The new SignalingSemaphore 
object is allocated within the cur-
rent AllocationContext. No other 
memory is allocated.

P() Bounded by an implemen-
tation-defined function 
that depends only on the 
number of other tasks that 
are concurrently perform-
ing P() or _P() operations 
on this semaphore.

No memory allocation.

_P() Bounded by an implemen-
tation-defined function 
that depends only on the 
number of other tasks that 
are concurrently perform-
ing P() or _P() operations 
on this semaphore.

No memory allocation.

V() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_V() Bounded by an implemen-
tation-defined constant.

No memory allocation.

Vall() Bounded by an implemen-
tation-defined constant. 
Note that the effort 
required to signal multi-
ple blocked waiters shall 
be distributed between the 
various tasks’ P() invoca-
tions.

No memory allocation.

_Vall() Bounded by an implemen-
tation-defined constant. 
Note that the effort 
required to signal multi-
ple blocked waiters shall 
be distributed between the 
various tasks’ P() invoca-
tions.

No memory allocation.

numWaiters() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_numWaiters() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
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CountingSemaphore

constructor Bounded by an implemen-
tation-defined constant.

The new CountingSemaphore 
object is allocated within the cur-
rent AllocationContext. No other 
memory is allocated.

P() Bounded by an implemen-
tation-defined function 
that depends only on the 
number of other tasks that 
are concurrently perform-
ing P() or _P() operations 
on this semaphore.

No memory allocation.

_P() Bounded by an implemen-
tation-defined function 
that depends only on the 
number of other tasks that 
are concurrently perform-
ing P() or _P() operations 
on this semaphore.

No memory allocation.

V() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_V() Bounded by an implemen-
tation-defined constant.

No memory allocation.

numWaiters() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_numWaiters() Bounded by an implemen-
tation-defined constant.

No memory allocation.

count() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_count() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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Mutex

constructor Bounded by an implemen-
tation-defined constant.

The new Mutex object is allocated 
within the current AllocationCon-
text. No other memory is allo-
cated.

lock() Bounded by an implemen-
tation-defined function 
that depends only on the 
number of other tasks that 
are performing lock() or 
_lock() operations on this 
Mutex object.

No memory allocation.

_lock() Bounded by an implemen-
tation-defined function 
that depends only on the 
number of other tasks that 
are performing lock() or 
_lock() operations on this 
Mutex object.

No memory allocation.

unlock() Bounded by an implemen-
tation-defined constant.

No memory allocation.

_unlock() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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Time

tickDuration() Bounded by an implemen-
tation-defined constant.

No memory allocation.

uptimePrecision() Bounded by an implemen-
tation-defined constant.

No memory allocation.

day() Bounded by an implemen-
tation-defined constant.

No memory allocation.

h() Bounded by an implemen-
tation-defined constant.

No memory allocation.

hertz() Bounded by an implemen-
tation-defined constant.

No memory allocation.

m() Bounded by an implemen-
tation-defined constant.

No memory allocation.

ms() Bounded by an implemen-
tation-defined constant.

No memory allocation.

ns() Bounded by an implemen-
tation-defined constant.

No memory allocation.

s() Bounded by an implemen-
tation-defined constant.

No memory allocation.

toString() Bounded by an implemen-
tation-defined constant.

The returned CoreString object 
and the corresponding character 
buffer, if any, shall be allocated 
within the current AllocationCon-
text. How much memory is 
required to represent a CoreString 
object of the specific length shall 
be implementation-defined. No 
other memory shall be allocated.

uptime() Bounded by an implemen-
tation-defined constant.

No memory allocation.

us() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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CoreTask

constructor No CPU-time bound 
required for this method.

The CoreTask object shall be allo-
cated in the current AllocationCon-
text. Certain additional 
implementation-defined objects 
shall be allocated, as required to 
implement the services associated 
with this CoreTask object. These 
additional objects shall be allo-
cated within the default Allocation-
Context for this CoreTask. When 
this CoreTask’s AllocationContext 
is released, the Core Execution 
Environment shall overwrite all 
automatically constructed refer-
ences to these implementation-
defined objects with null.

currentTask() Bounded by an implemen-
tation-defined constant.

No memory allocation.

defaultStackSize() Bounded by an implemen-
tation-defined constant.

No memory allocation.

maxBaselinePriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

maxCorePriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

maxSystemPriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

minBaselinePriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

minCorePriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

minSystemPriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

numInterruptPriorities() Bounded by an implemen-
tation-defined constant.

No memory allocation.

stackOverflowChecking() Bounded by an implemen-
tation-defined constant.

No memory allocation.

systemPriorityMap() Bounded by an implemen-
tation-defined constant.

The returned integer array shall be 
allocated from the current Alloca-
tionContext. No other memory 
shall be allocated.

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact
50 Copyright 1999, 2000 J Consortium, All Rights Reserved



The Specification
CoreTask

ticksPerSlice() Bounded by an implemen-
tation-defined constant.

No memory allocation.

abort() No CPU-time bound 
required for this method.

No memory allocation.

abortWorkException() Bounded by an implemen-
tation-defined constant.

No memory allocation.

asyncHandler() Bounded by an implemen-
tation-defined constant.

No memory allocation.

join() No CPU-time bound 
required for this method.

No memory allocation.

resume() No CPU-time bound 
required for this method.

No memory allocation.

setPriority() No CPU-time bound 
required for this method.

No memory allocation.

signalAsync() No CPU-time bound 
required for this method.

No memory allocation.

sleep() No CPU-time bound 
required for this method.

No memory allocation.

sleepUntil() No CPU-time bound 
required for this method.

No memory allocation.

stackDepth() Bounded by an implemen-
tation-defined constant.

No memory allocation.

stackSize() Bounded by an implemen-
tation-defined constant.

No memory allocation.

start() No CPU-time bound 
required for this method.

Bounded by an implementation-
defined constant. All of the new 
memory shall be allocated in the 
default AllocationContext of this 
CoreTask.

_start() No CPU-time bound 
required for this method.

Bounded by an implementation-
defined constant. All of the new 
memory shall be allocated in the 
default AllocationContext of this 
CoreTask.

stop() No CPU-time bound 
required for this method.

No memory allocation.

suspend() No CPU-time bound 
required for this method.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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CoreTask

systemPriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

work() Bounded by an implemen-
tation-defined constant.

No memory allocation.

yield() No CPU-time bound 
required for this method.

No memory allocation.

ISR_Task

constructor No CPU-time bound 
required for this construc-
tor.

The ISR_Task object itself shall be 
allocated in the current Allocation-
Context. Certain additional imple-
mentation-defined objects (e.g. the 
run-time stack) shall also be allo-
cated, as required to implement all 
of the services associated with this 
ISR_Task object. These additional 
objects shall be allocated within 
the default AllocationContext for 
this ISR_Task. When it is time to 
release this ISR_Task’s Allocation-
Context, the Core Execution Envi-
ronment shall overwrite all of the 
automatically constructed refer-
ences to these implementation-
defined objects with null pointers.

serviced() Bounded by an implemen-
tation-defined constant.

No memory allocation.

work() Bounded by an implemen-
tation-defined constant.

No memory allocation.

ceilingPriority() Bounded by an implemen-
tation-defined constant.

No memory allocation.

trigger() No CPU-time bound 
required for this method.

No memory allocation.

arm() Bounded by an implemen-
tation-defined constant.

No memory allocation.

disarm() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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SporadicTask

constructor No CPU-time bound 
required for this construc-
tor.

The SporadicTask object itself 
shall be allocated in the current 
AllocationContext. Certain addi-
tional implementation-defined 
objects (e.g. the run-time stack) 
shall also be allocated, as required 
to implement all of the services 
associated with this SporadicTask 
object. These additional objects 
shall be allocated within the 
default AllocationContext for this 
SporadicTask. When it is time to 
release this SporadicTask’s Alloca-
tionContext, the Core Execution 
Environment shall overwrite all of 
the automatically constructed ref-
erences to these implementation-
defined objects with null.

trigger() Bounded by an implemen-
tation-defined constant.

No memory allocation.

work() Bounded by an implemen-
tation-defined constant.

No memory allocation.

pendingCount() Bounded by an implemen-
tation-defined constant.

No memory allocation.

clearPending() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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IOPortd

createIOPort() No CPU-time bound 
required for this method.

The returned IOPort subclass shall 
be allocated in the current Alloca-
tionContext. No other memory shall 
be allocated.

readByte() Bounded by an implemen-
tation-defined constant.

No memory allocation.

writeByte() Bounded by an implemen-
tation-defined constant.

No memory allocation.

readShort() Bounded by an implemen-
tation-defined constant.

No memory allocation.

writeShort() Bounded by an implemen-
tation-defined constant.

No memory allocation.

readInt() Bounded by an implemen-
tation-defined constant.

No memory allocation.

writeInt() Bounded by an implemen-
tation-defined constant.

No memory allocation.

readLong() Bounded by an implemen-
tation-defined constant.

No memory allocation.

writeLong() Bounded by an implemen-
tation-defined constant.

No memory allocation.

TABLE 1. Predictability Requirements for Core API Libraries
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Unsigned

compare() Bounded by an implemen-
tation-defined constant.

No memory allocation.

ge() Bounded by an implemen-
tation-defined constant.

No memory allocation.

gt() Bounded by an implemen-
tation-defined constant.

No memory allocation.

le() Bounded by an implemen-
tation-defined constant.

No memory allocation.

lt() Bounded by an implemen-
tation-defined constant.

No memory allocation.

eq() Bounded by an implemen-
tation-defined constant.

No memory allocation.

neq() Bounded by an implemen-
tation-defined constant.

No memory allocation.

toByte() Bounded by an implemen-
tation-defined constant.

No memory allocation.

toShort() Bounded by an implemen-
tation-defined constant.

No memory allocation.

toInt() Bounded by an implemen-
tation-defined constant.

No memory allocation.

toLong() Bounded by an implemen-
tation-defined constant.

No memory allocation.

toString() Bounded by an implemen-
tation-defined constant.

The returned CoreString object 
and the corresponding character 
buffer, if any, shall be allocated 
within the current AllocationCon-
text. How much memory is 
required to represent a CoreString 
object of the specific length shall 
be implementation-defined. No 
other memory shall be allocated.

toHexString() Bounded by an implemen-
tation-defined constant.

The returned CoreString object 
and the corresponding character 
buffer, if any, shall be allocated 
within the current AllocationCon-
text. How much memory is 
required to represent a CoreString 
object of the specific length shall 
be implementation-defined. No 
other memory shall be allocated.

TABLE 1. Predictability Requirements for Core API Libraries
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3. The CPU time and dynamic memory impact of the C/Native API libraries described 
in Section 3.16 (starting on page 57) shall be as detailed in Table 2 on page 56.

a. The characterization of the constructor for CoreRuntimeException applies to CoreIllegalMoni-
torStateException, CoreOutOfMemoryException, CoreArrayIndexOutOfBoundsException, Core-
ClassFormatError.

b. The characterization of the constructor for CoreException applies also to the constructors 
for CoreOperationNotPermittedException, CoreSecurityException, CoreBadPriorityExcep-
tion, CoreEmbeddedConflictException, CoreATCEventsIgnoredException, CoreBadArgu-
mentException, CoreUnsignedCoercionException, CoreClassInUseException, 
CoreClassNotFoundException, CoreArithmeticOverflowException, and CoreObjectNotAd-
dressableException.

c. Within this table, all of the comments relevant to CoreArray apply equally to CoreBoolAr-
ray, CoreByteArray, CoreShortArray, CoreCharArray, CoreIntArray, CoreLongArray, Core-
FloatArray, CoreDoubleArray, and CoreRefArray.

d. Within this table, all comments pertaining to IOPort apply equally to each of its officially 
defined subclasses, including IOPort8I, IOPort8O, IOPort8IO, IOPort16I, IOPort16O, IOPort16IO, 
IOPort32I, IOPort32O, IOPort32IO, IOPort64I, IOPort64O, and IOPort64IO.

TABLE 2. Predictability Requirements for the C/Native API

C Function Name CPU Requirements Memory Impact

coreRegistryLookup() No CPU-time bound require-
ment for this function. 

No memory allocation.

maxCorePriority() Bounded by an implementa-
tion-defined constant.

No memory allocation.

minCorePriority() Bounded by an implementa-
tion-defined constant.

No memory allocation.

corePriorityMap() Bounded by an implementa-
tion-defined constant.

No memory allocation.

maxBaselinePriority() Bounded by an implementa-
tion-defined constant.

No memory allocation.

minBaselinePriority() Bounded by an implementa-
tion-defined constant.

No memory allocation.

coreInterruptLevels() Bounded by an implementa-
tion-defined constant.

No memory allocation.

semaphoreP() No CPU-time bound require-
ment for this function.

No memory allocation.

semaphoreV() Bounded by an implementa-
tion-defined constant.

No memory allocation.

semaphoreVall() Bounded by an implementa-
tion-defined constant.

No memory allocation.

enterSynchronized() No CPU-time bound require-
ment for this function.

No memory allocation.

exitSynchronized() Bounded by an implementa-
tion-defined constant.

No memory allocation.
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4. The CPU time and dynamic memory impact of the Baseline API libraries described 
in Section 4.0 (starting on page 103) are not constrained by this specification.

3.15 Core Class Loading API Overview

Note that the Core Execution Environment supports dynamic class loading only if it is 
combined with a Baseline Virtual Machine as part of an Extended Baseline Virtual 
Machine. The system integrator’s API for customizing the core class loader shall co
of the following class declaration:

public class CoreClassLoader extends java.lang.Object {
byte[ ] findClassBytes(java.lang.String name) throws ClassNotFoundException;

}

Note that CoreClassLoader is a Baseline component. The responsibility of the findClass-
Bytes() method is to find the byte-code representation of the class named by its stri
argument and return this representation as an array of bytes. The default implemen
of findClassBytes() searches the local file system for the requested class, using the Core-
ClassPath environment variable to guide its search order. To implement a different 
search or load strategy, the system integrator implements a class that extends CoreClass-
Loader and overrides findClassBytes() to provide whatever alternative behavior is desire
Whenever the core class loader needs to load a class, it locates the bytes that rep
the class to be loaded by invoking the system integrator’s findClassBytes() method. 

See Section 4.0 for additional discussion on configuration of the core class loader.

3.16 C/Native API

3.16.1 Obtaining Access to Core Objects

coreRegistryLookup(). The coreRegistryLookup() function shall look up the core object 
that is stored in the core registry and identified by the specified name. The name argu-
ment to this function is a null-terminated array of bytes, according to the standard s
conventions for the C programming language (See Reference 10). Since C charac
are only 8 bits wide, and Java characters are 16 bits wide, the C string argument t
function is not able to describe all names that might be present in the CoreRegistry dictio-
nary. When converting this string argument to a Java string for purposes of compa
with existing entries in the CoreRegistry dictionary, the coreRegistryLookup() function fills 
the eight high-order bits of each Java character with zeros. coreRegistryLookup() returns 
null if no such object is found in the registry. The internal organization of core objec
shall be available through static tools, the capabilities of which are not constrained
this specification because they are implementation-defined. An example of such a
is javah, by Sun Microsystems. The C prototype is shown below:

CoreObject *coreRegistryLookup(char name[]);

3.16.2 Understanding Core Resource Needs and Contention

maxCorePriority(). The maxCorePriority() function shall return the maximum system-leve
priority used by the real-time core tasks. The C prototype is shown below:
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int maxCorePriority();

minCorePriority(). The minCorePriority() function shall return the minimum system-level 
priority used by the Core tasks. Note that maxCorePriority() - minCorePriority() might not 
equal 127, in case, for example, the core dispatcher uses green threads.The C prototype 
is shown below:

int minCorePriority();

corePriorityMap(). The corePriorityMap() method shall fill in the elements of the 128-entry 
integer array whose address is passed as its argument with values representing the sys-
tem priorities to which each of the Core priority levels correspond. The first entry in this 
array is the system priority level at which Core priority-1 tasks execute. The second 
entry in this array is the system priority level at which Core priority-2 tasks execute, and 
so on. The C prototype is shown below:

void corePriorityMap(int map[ ]);

maxBaselinePriority(). The maxBaselinePriority() function shall return the maximum sys-
tem-level priority used by the Baseline threads.The C prototype is shown below:

int maxBaselinePriority();

minBaselinePriority(). The minBaselinePriority() function shall return the minimum sys-
tem-level priority used by the Baseline threads. Note that maxBaselinePriority() - minBase-
linePriority() might not equal 9, in case, for example, the Baseline dispatcher uses an 
internal task dispatcher (green threads) rather than the dispatcher of the underlying real-
time operating system. The C prototype is shown below:

int minBaselinePriority();

coreInterruptLevels(). The coreInterruptLevels() function shall return the number of inter-
rupt priority levels that might be masked by Core tasks. The interrupt priority levels are 
assumed to begin with the lowest interrupt priority level. It may be the case that higher 
priority interrupts cannot be handled by Core tasks, as limited by the system configura-
tion. Suppose, for example, that a particular target supports 16 interrupt priority levels, 
of which the highest 8 interrupt priority levels must be implemented in C (not the real-
time core). In this case, coreInterruptLevels() shall return 8. The C prototype is shown 
below:

int coreInterruptLevels();

3.16.3 Synchronizing and Coordinating with the Baseline Domain

Note that the core API provides more semaphore operations than are provided to the C/
Native programmer. It is intentional that the interface between the core and native 
worlds is small and simple.

semaphoreP(). The semaphoreP() function shall perform a semaphore P() operation on 
the Core object whose reference is passed as its argument. That Core object should be 
either a CountingSemaphore or a SignalingSemaphore. The semantics of this function 
depends on the type of its argument. If semaphore represents a SignalingSemaphore, then 
semaphoreP() represents a SignalingSemaphore.P() operation. If semaphore represents a 
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CountingSemaphore, then semaphoreP() represents a CountingSemaphore.P() operation. If 
semaphore is neither, semaphoreP() shall return an error code (-1). Otherwise, sema-
phoreP() shall indicate normal termination by returning a status code of 0. The C proto-
type is shown below:

int semaphoreP(CoreObject *semaphore);

semaphoreV(). The semaphoreV() function performs a semaphore V() operation on the 
Core object whose reference is passed as its argument. That Core object should be either 
a CountingSemaphore or a SignalingSemaphore. The semantics of this function depends on 
the type of its argument. If semaphore represents a SignalingSemaphore, then sema-
phoreV() represents a SignalingSemaphore.V() operation. If semaphore represents a Count-
ingSemaphore, then semaphoreV() represents a CountingSemaphore.V() operation. If 
semaphore is neither, semaphoreV() shall return an error code (-1). Otherwise, sema-
phoreV() shall indicate normal termination by returning a status code of 0. The C proto-
type is shown below:

int semaphoreV(CoreObject *semaphore);

semaphoreVall(). The semaphoreVall() function performs a semaphore Vall() operation on 
the core object passed as its argument. If the semaphore argument represents a Signaling-
Semaphore, semaphoreVall() shall perform a SignalingSemaphore.Vall() operation. If the 
semaphore argument does not represent a SignalingSemaphore, semaphoreVall() shall 
return an error code (-1). Otherwise, semaphoreVall() shall indicate normal termination 
by returning a status code of 0. 

The implementation of semaphoreVall() shall be constant-time, allowing its use from 
within a time-constrained interrupt handler or other Atomic-Synchronized context. The 
work of waking up the various waiting tasks shall be distributed between the various P() 
operations that are waiting to be signaled.

The C prototype is shown below:

int semaphoreVall(CoreObject *semaphore);

enterSynchronized(). The enterSynchronized() function shall perform the equivalent of 
entering a synchronized context associated with its any_object argument. If any_object 
does not implement the PCP interface, this function shall block the current task until all 
other threads and tasks have released their locks on this object. If any_object implements 
the PCP interface, this function shall adjust the active priority of the current task accord-
ing to implementation-defined conventions consistent with this Core Execution Envi-
ronment. If any_object implements the Atomic interface, the C programmer should take 
care to ensure that the code that is executed following return from enterSynchronized() 
and preceding execution of the corresponding exitSynchronized() function is execution-
time analyzable. This recommendation is not enforced. Failure to adhere to this recom-
mendation may compromise the real-time integrity of the Core Execution Environment.

If the native execution environment supports the ability to abort or to otherwise inter-
rupt the execution of native tasks, the implementation of enterSynchronized() shall be 
robust to this possibility. In other words, if a task becomes blocked during execution of 
enterSynchronized(), and that task is aborted before access to the requested region has 
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been granted, the Core Execution Environment’s internal data structures shall be l
a coherent and consistent state.

Note that nesting of PCP-synchronized contexts is only allowed if the ceiling priorities
associated with inner-nested contexts are strictly greater than the ceiling priorities o
outer-nested contexts. enterSynchronized() shall return an error code (-1) if the requeste
service cannot be provided because of illegal nesting of PCP-synchronized contexts. 
Otherwise, enterSynchronized() shall return a success code, represented by 0.

The C prototype is shown below:

int enterSynchronized(CoreObject *any_object);

exitSynchronized(). The exitSynchronized() function shall perform the equivalent of exit-
ing a synchronized context associated with its any_object argument. Note that synchroni
zation contexts may nest, and particular contexts may be entered multiple times. If
particular context has been entered multiple times, it must be exited the same num
times before this task releases exclusive access to the context. The Core Executio
Environment shall maintain an internal counter recording how many times each sy
chronized context is entered, incrementing this counter for each execution of the c
text’s enterSynchronized() function and decrementing this counter for each execution 
the context’s exitSynchronized() function.

If this execution of exitSynchronized() decrements the synchronized context entry coun
to zero, exitSynchronized() shall release exclusive access to this context. If any_objec
implements the PCP interface, releasing exclusive access consists of lowering the ac
priority of the current task. Otherwise, releasing exclusive access consists of relea
the lock associated with the context’s controlling object.

enterSynchronized() shall return an error code (-1) if the requested service cannot be 
formed because the current task does not own exclusive access to the the context
sented by any_object. Otherwise, exitSynchronized() shall return a success code, 
represented by 0.

The C prototype is shown below:

int exitSynchronized(CoreObject *any_object);

3.17 The Core API

This section describes the APIs that are used by developers of Core components. U
specifically identified as Core-Baseline methods, all methods are presumed to be C
methods. Core methods are visible only to other Core components.

3.17.1 The CoreObject Class

CoreObject is the root of the core object hierarchy. CoreObject serves a purpose similar to
java.lang.Object in the Baseline domain. 

Note that the Baseline compiler sees org.rtjwg.CoreObject as extending from 
java.lang.Object. However, it is the responsibility of the Core programmer to avoid 
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invoking any of the methods inherited from java.lang.Object that are not specifically 
identified in the Core specification as being supported by org.rtjwg.CoreObject. The Core 
Verifier shall reject as invalid any Core class file that makes reference to non-supported 
methods.

Though the typical Core programmer does not have to worry about such details, it is 
important to note that special tricks must be applied in order to author the implementa-
tion of CoreObject. In particular, certain methods of java.lang.Object are defined to be final, 
meaning that subclasses are not allowed to override their implementations. The imple-
mentation of CoreObject must override the getClass(), wait(), notify(), and notifyAll() meth-
ods, all of which are defined in java.lang.Object to be final. To work around this 
restriction, the Core programmer who implements CoreObject names methods 
_getClass(), _wait(), _notify(), and _notifyAll() methods, respectively. The Core class loader 
shall overwrite the implementations of getClass(), wait(), notify() and notifyAll() with the 
specially named replacements.

CoreObject Constructor. There shall be one constructor for the CoreObject class. The 
Core signature follows:

public CoreObject();

The following methods are supported for the CoreObject class.

CoreObject.clone(). The clone() method shall make a copy of this object, copied one level 
deep, and shall return a reference to the new copy. The Core signature is shown below:

final public protected stackable Object clone();

CoreObject.equals(). The equals() method shall return true if and only if object o is the 
same object as this object. (Note that subclasses can redefine the “meaning” of equals().) 
The Core signature is shown below:

public boolean stackable equals(stackable Object o);

CoreObject.getClass(). The getClass() method shall return a reference to the CoreClass 
object that represents this object’s class information. The Core signature is shown
below:

final public CoreClass stackable getClass();

CoreObject.hashCode(). The hashCode() method shall return an integer that represents
the hash code associated with this object. The Core signature is shown below:

public int stackable hashCode();

CoreObject.notify(). The notify() method shall wake up the CoreTask task that has the high-
est priority among tasks waiting on this object’s condition and has been waiting the
longest amount of time if multiple tasks of the same highest priority are associated
this same monitor. If no objects are waiting on this condition, the notify() method shall 
have no effect on the state of this object’s monitor. If the object for which the notify() 
method is invoked implements the PCP interface or if the currently executing task doe
not own exclusive access to the corresponding object’s monitor, this method throw
Real-Time Core Extensions 61



The Specification

ich 

 

t 
 

e 
e 

ess 

e 

d 

n the 
nvi-
fol-

-
or 
previously allocated CoreIllegalMonitorStateException exception. (Since CoreIllegalMoni-
torStateException is a subclass of CoreRuntimeException, this exception does not appear in 
the method’s signature.) The Core signature is shown below:

final public void stackable notify();

CoreObject.notifyAll(). The notifyAll() method wakes up all CoreTask objects that are wait-
ing for the condition associated with this monitor to be signaled. If the object for wh
the notifyAll() method is invoked implements the PCP interface or if the currently execut-
ing task does not own exclusive access to the corresponding object’s monitor, this
method throws a previously allocated CoreIllegalMonitorStateException exception. (Since 
CoreIllegalMonitorStateException is a subclass of CoreRuntimeException, this exception does 
not appear in the method’s signature.) The Core signature is shown below:

final public void stackable notifyAll();

CoreObject.toString(). The toString() method shall return a reference to a CoreString 
object, allocated in the currently active allocation context, that provides an abstrac
implementation-defined textual representation of this object. The Core signature is
shown below:

public CoreString stackable toString();

CoreObject.wait(). The wait() method shall cause the currently executing core task to b
put to sleep until this task is the highest priority task on the monitor queue and som
other Core task invokes this object’s notify() method or until some other Core task 
invokes the notifyAll() method. If the object for which the wait() method is invoked imple-
ments the PCP interface or if the currently executing task already owns exclusive acc
to some PCP object’s monitor, this method shall throw a previously allocated CoreIllegal-
MonitorStateException exception. (Since CoreIllegalMonitorStateException is a subclass of 
CoreRuntimeException, this exception does not appear in the method’s signature.) Th
Core signature is shown below:

final public void wait();

CoreObject.arrayAddress(). The arrayAddress() method shall return the address of this 
primitive array if this object is a Core array of primitive type. Otherwise, this metho
shall throw a previously allocated instance of CoreObjectNotAddressableException. Note 
that this method shall return the address of the first element of the array rather tha
start address of the object that contains the array elements. The Core Execution E
ronment shall represent arrays of primitive elements using whatever convention is 
lowed by the dominant C compilers supporting the given architecture. The Core 
signature is shown below:

final public long stackable arrayAddress() throws CoreObjectNotAddressableException;

CoreObject.sizeof(). The sizeof() method shall return the number of bytes used to repre
sent this object, including any alignment padding and bookkeeping fields inserted f
the benefit of garbage collection. The Core signature is shown below:

final public int stackable sizeof();
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3.17.2 The CoreThrowable Class

The org.rtjwg.CoreThrowable class is the Core Execution Environment’s analog of 
java.lang.Throwable. Every reference to java.lang.Throwable shall be replaced with a refer-
ence to CoreThrowable by the Core Class Loader. Within the Core Execution Environ-
ment, all exceptions thrown and caught must extend from org.rtjwg.CoreThrowable.

Unlike its java.lang.Throwable analog, the CoreThrowable class shall not maintain a repre
sentation of the run-time stack backtrace.

CoreThrowable Constructors. There shall be two constructors for the CoreThrowable 
class. The first takes no arguments and shall create a CoreThrowable object with no par-
ticular message. The second shall take a single CoreString argument, which represents 
the message to be associated with this CoreThrowable object, and shall create a Core-
Throwable object which maintains a reference to its message argument. The Core signa-
tures are as follows:

public CoreThrowable();
public CoreThrowable(CoreString message);

CoreThrowable.getMessage(). The getMessage() method returns a reference to the Core-
String object that was passed as an argument to the CoreThrowable constructor, or returns 
null if this CoreThrowable object was constructed with no message.

3.17.3 The CoreRuntimeException Class

The org.rtjwg.CoreRuntimeException class, which extends org.rtjwg.CoreThrowable, is the 
Core analog of java.lang.RuntimeException. Every reference to java.lang.RuntimeException 
shall be replaced with a reference to CoreRuntimeException by the Core Class Loader. 
Within the Core Execution Environment, CoreRuntimeException represents exceptional 
events that are not expected to occur. A method that throws a CoreRuntimeException 
object shall not be required by the Core Compiler (or by the Java Compiler) to dec
in its signature that it throws CoreRuntimeException. A context that invokes a method tha
might throw a CoreRuntimeException object shall not be required to catch the CoreRunt-
imeException object or to declare that the context might throw the CoreRuntimeException 
object. In the common vernacular, the CoreRuntimeException class represents 
“unchecked” exceptions.

CoreRuntimeException Constructors. There are two constructors for the CoreRuntimeEx-
ception class. The first shall take no arguments and shall create a CoreRuntimeException 
object with no particular message. The second shall take a single CoreString argument, 
which represents the message to be associated with this CoreRuntimeException object and 
shall create a CoreRuntimeException object that maintains a reference to its message ar
ment. The Core signatures are as follows:

public CoreRuntimeException();
public CoreRuntimeException(CoreString message);

3.17.4 The CoreException Class

The org.rtjwg.CoreException class, which extends org.rtjwg.CoreThrowable, is the Core ana-
log of java.lang.Exception. Every reference to java.lang.Exception shall be replaced with a 
reference to CoreException by the Core Class Loader. Within the Core Execution Envi
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ronment, CoreException represents exceptional events that are not expected to occur. A 
method that throws a CoreException object shall be required by the Core Compiler (and 
by the Baseline Compiler) to declare in its signature that it throws CoreException. A con-
text that invokes a method that might throw a CoreException object shall be required 
either to catch the CoreException object or to declare that the context might throw the 
CoreException object. In the common vernacular, the CoreException class represents a 
“checked” exception.

CoreException Constructors. There shall be two constructors for the CoreException class. 
The first shall takes no arguments and shall create a CoreException object with no partic-
ular message. The second shall take a single CoreString argument, which represents the
message to be associated with this CoreException object, and shall create a CoreException 
object that maintains a reference to its message argument. The Core signatures a
follows:

public CoreException();
public CoreException(CoreString message);

3.17.5 The ScopedException Class

The org.rtjwg.ScopedException class extends org.rtjwg.CoreThrowable. A ScopedException 
object is special in that when thrown, it is only catchable by catch clauses belong to the 
method within which the ScopedThrowable object was most recently enabled. When th
object is constructed, it is automatically enabled in the context that invoked the con
structor. 

ScopedException Constructors. There are two constructors for the ScopedException 
class. The first shall take no arguments and shall create a ScopedException object with no 
particular message. The second shall take a single CoreString argument, which represents
the message to be associated with this ScopedException object and shall create a Scope-
dException object that maintains a reference to its message argument. The Core sig
tures are as follows:

public ScopedException();
public ScopedException(CoreString message);

ScopedException.enable(). The enable() method establishes the context of the calling 
method as the only method that can catch this exception. If a ScopedException is enabled 
multiple times, the most recent enable() invocation is the one that establishes the catch
ing context. The Core signature follows:

public final void enable();

ScopedException.disable(). The disable() method disables this ScopedException. If an 
ATCEventHandler attempts to throw a disabled ScopedException, the effect is to simply 
return from the ATCEventHandler, causing the asynchronously signaled CoreTask to 
resume execution as if it had never been signaled. If a disabled ScopedException is 
thrown from a normal CoreTask execution context (rather than from within an 
ATCEventHandler), the exception shall not be caught and shall cause the CoreTask’s work() 
method to abort execution. The Core signature follows:

public final void disable();
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3.17.6 The CoreClass Class

The CoreClass class extends CoreObject. Its role is similar to java.lang.Class.

CoreClass.forName(). The forName() method shall return the CoreClass object associated 
with the class or interface known by the string name supplied as its argument if the 
named class was previously loaded. The forName() method shall not cause the class to be 
loaded. If the class is not currently loaded, this method shall throw a previously allo-
cated instance of CoreClassNotFoundException. The Core signature is shown below:

public static CoreClass forName(CoreString className) 
throws CoreClassNotFoundException;

CoreClass.getComponentType(). The getComponentType() method shall return the Core-
Class object that represents the component type of this object, which is presumed to be 
an array. If this object is not an array, getComponentType() shall return null. The Core sig-
nature is shown below:

final public CoreClass getComponentType();

CoreClass.isArray(). The isArray() method shall return true if and only if this CoreClass 
object represents an array class. The Core signature is shown below:

final public boolean isArray();

CoreClass.isAssignableFrom(). The isAssignableFrom() method shall return true if and 
only if the class or interface represented by this CoreClass object is either the same as, or 
is a superclass or superinterface of, the class or interface represented by the supplied 
CoreClass parameter. The Core signature is shown below:

final public boolean isAssignableFrom(CoreClass cls);

CoreClass.isInstance(). The isInstance() method shall return true if and only if its obj argu-
ment represents an instance of the class or interface represented by this CoreClass. If this 
CoreClass represents an array type, isInstance() shall return true if and only if obj is or can 
be coerced to be of the array’s type. If this CoreClass represents a primitive type, isIn-
stance() shall return false. The Core signature is shown below:

final public boolean isInstance(CoreObject obj);

CoreClass.isInterface(). The isInterface() method shall return true if and only if this Core-
Class object represents an interface type. The Core signature is shown below:

final public boolean isInterface();

CoreClass.isPrimitive(). The isPrimitive() method shall return true if and only if this Core-
Class object represents a primitive type. The Core signature is shown below:

final public boolean isPrimitive();

CoreClass.newInstance(). The newInstance() method shall create a new instance of the 
class represented by this CoreClass object. The Core signature is shown below:

final public CoreObject newInstance();
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CoreClass.toString(). The toString() method shall return an implementation-defined Core-
String textual representation of this CoreClass object. The CoreString object returned from 
the toString() method shall be allocated in the current allocation context. The Core signa-
ture is shown below:

final public CoreString toString();

CoreClass.verification(). The verification() method shall return true if and only if this par-
ticular Core Execution Environment performs verification of loaded class files. If this 
method returns true, the verification performed by the Core class loader shall conform to 
the specification of the Core Verifier (See Section 3.5.1). The Core signature is shown 
below:

final public static boolean verification();

CoreClass.loadClass(). The loadClass() method shall load and fully resolve the class 
named by its CoreString argument, throwing a previously allocated instance of CoreClass-
NotFoundException if this class, or any of the classes it makes reference to cannot be 
found. This method is omitted from the Static Core Execution Environment and the 
Core Static Linker issues an appropriate error message if any of the Core application 
code that it is linking attempts to invoke this method. The loadClass() method shall throw 
a previously allocated instance of CoreClassFormatError if this particular Core Execution 
Environment claims to perform verification of newly loaded classes (See “Core-
Class.verification()” on page 66) and the requested class, or any of the classes it m
reference to, fails byte-code verification as performed by the Core Verifier. The Co
signature is shown below:

final public static CoreClass loadClass(CoreString class_name)
throws CoreClassNotFoundException, CoreClassFormatError;

CoreClass.unloadClass(). The unloadClass() method shall remove this class from the se
of loaded classes and shall reclaim the memory used to represent this class, throw
previously allocated instance of CoreClassInUseException if there exist instances of this 
class, or if other loaded classes make reference to this class. This method is omitt
from the Static Core Execution Environment and the Core Static Linker issues an a
priate error message if any of the Core application code that it is linking attempts t
invoke this method. The Core signature is shown below:

final public unloadClass() throws CoreClassInUseException;

3.17.7 The CoreArray Class

The CoreArray class, which represents arrays within the Core Execution Environmen
extends CoreObject. All uses of special array syntax within Core source code shall be
treated within the Core Execution Environment as special CoreArray (or derivative) 
objects. This means that the Core Execution Environment allows the subscript oper
to be performed on an object of type CoreArray. Further, it means that a new operation 
that allocates an array within the Core Execution Environment produces a CoreArray 
object. All of CoreBoolArray, CoreByteArray, CoreShortArray, CoreCharArray, CoreIntArray, 
CoreLongArray, CoreFloatArray, CoreDoubleArray, and CoreRefArray extend CoreArray.
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If the Baseline environment obtains a reference to a core array object, the Baseline envi-

TABLE 3. Core Array Representation Within Baseline Domain

Core Type Baseline Type Core-Baseline Methods

Array of 
boolean

CoreBoolArray baseline public final int length();
baseline public final boolean atGet(int index)

throws CoreArrayIndexOutOfBoundsException;
baseline public final void atPut(int index, boolean b) 

throws CoreArrayIndexOutOfBoundsException;

Array of byte CoreByteArray baseline public final int length();
baseline public final byte atGet(int index)

throws CoreArrayIndexOutOfBoundsException;
baseline public final void atPut(int index, byte b) 

throws CoreArrayIndexOutOfBoundsException;

Array of short CoreShortArray baseline public final int length();
baseline public final short atGet(int index)

throws CoreArrayIndexOutOfBoundsException;
baseline public final void atPut(int index, short s) 

throws CoreArrayIndexOutOfBoundsException;

Array of char CoreCharArray baseline public final int length();
baseline public final char atGet(int index) 

throws CoreArrayIndexOutOfBoundsException
baseline public final void atPut(int index, char c) 

throws CoreArrayIndexOutOfBoundsException;

Array of int CoreIntArray baseline public final int length();
baseline public final int atGet(int index); 

throws CoreArrayIndexOutOfBoundsException
baseline public final void atPut(int index, int i) 

throws CoreArrayIndexOutOfBoundsException;

Array of long CoreLongArray baseline public final int length();
baseline public final long atGet(int index) 

throws CoreArrayIndexOutOfBoundsException;
baseline public final void atPut(int index, long x) 

throws CoreArrayIndexOutOfBoundsException;

Array of float CoreFloatArray baseline public final int length();
baseline public final float atGet(int index) 

throws CoreArrayIndexOutOfBoundsException;
baseline public final void atPut(int index, float f) 

throws CoreArrayIndexOutOfBoundsException;
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ronment sees this Core array as one of the nine types identified in the second column of 
Table 3 on page 67. From within the Baseline domain, this Core object does not look 
like a Baseline array. In other words, the Baseline domain is not allowed to access the 
data contained within this object using Baseline subscripting operations. Instead, the 
Baseline domain is required to access the data contained within the Core array by invok-
ing the Core-Baseline methods described in the third column of this table. The signifi-
cance of these methods is described below.

length(). This method shall return the number of elements in the corresponding Core 
array object.

atGet(). This method shall return the array element at the specified index position from 
within the corresponding core array object, or shall throw a previously allocated 
instance of CoreArraySubscriptOutOfBoundsException if the requested index position is out 
of range for the given array.

atPut(). This method shall overwrite the array element at the specified index position 
within the corresponding Core array object with the value supplied as the method’s
ond argument, or shall throw a previously allocated instance of CoreArraySubscriptOutOf-
BoundsException if the requested index position is out of range for the given array. N
that CoreRefArray does not implement the atPut() method. This is intentional. The reason
for this omission is that the Baseline domain is not allowed to overwrite reference fi
of Core objects.

3.17.8 The AllocationContext Class

The AllocationContext class extends CoreObject. Every Core object is allocated within a 
particular allocation context, represented abstractly by the AllocationContext class. Asso-
ciated with every Core task is a dedicated AllocationContext object which serves as the 
tasks’ default allocation context. This means that by default, every new object is al
cated within the allocation context that represents the task’s default allocation cont

There are no public interfaces to allow Core components to directly manipulate the
cation context of a core task. When a Core task completes its execution, the alloca
context is automatically released, making all of the objects allocated by that Core t
eligible for garbage collection. The precise moment at which a Core task is consid
to have completed its execution depends on what type of task it is:

Array of double CoreDoubleArray baseline public final int length();
baseline public final double atGet(int index) 

throws CoreArrayIndexOutOfBoundsException;
baseline public final void atPut(int index, double d) 

throws CoreArrayIndexOutOfBoundsException;

Array of any 
core reference 

type

CoreRefArray baseline public final int length();
baseline public final CoreObject atGet(int index) 

throws CoreArrayIndexOutOfBoundsException;

TABLE 3. Core Array Representation Within Baseline Domain

Core Type Baseline Type Core-Baseline Methods
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1. If this is an ISR_Task or SporadicTask, the task is not considered to have “completed
execution until after its stop() method has been invoked and that method has exe
cuted to completion. This is the only way for one of these kinds of tasks to com
plete execution.

2. Otherwise, this must be a CoreTask. There are several ways for a CoreTask (which is 
not one of the above three subclasses) to complete execution:

a. It may return from its work() method.

b. It may throw an uncaught exception, including the special exception return
from its abortWorkException() method.

c. The task’s stop() method may be invoked, in which case the task is consider
to have completed execution upon return from the stop() method invocation.

AllocationContext Constructors. There are three constructors for AllocationContext. 

1. The first shall take no arguments and shall create an AllocationContext object that is 
configured with no particular bound on how much memory might be allocated fr
within that context. The location of the allocation region within memory shall be
determined by the Core Execution Environment in an implementation-defined 
manner. The Core signature for this constructor follows:

public AllocationContext();

2. The second constructor shall take an argument identifying the maximum total n
ber of bytes authorized to be allocated within the corresponding allocation reg
and shall create an AllocationContext object that is configured to allocate no more 
than the specified number of bytes. When this form of constructor is used, the
cation region is required to be contiguous memory, and the Core Execution En
ronment shall use a constant-time allocation algorithm which simply increment
decrements a region-specific allocation pointer by the size of each allocation 
request. The location of the allocation region within memory shall be determin
by the Core Execution Environment in an implementation-defined manner. Thi
constructor shall throw a previously allocated instance of CoreOutOfMemoryExcep-
tion if there is not a large enough region of contiguous memory to satisfy the 
request. The Core signature for this constructor follows:

public AllocationContext(long maximum_bytes) 
throws CoreOutOfMemoryException;

3. The third constructor shall take an argument identifying the maximum total num
of bytes authorized to be allocated within the corresponding allocation region a
second CoreString argument identifying the name of the special memory block
within which the allocation region is to be allocated. This constructor shall crea
an AllocationContext object that is configured to allocate no more than the specifie
number of bytes from within the specified memory block. When this form of co
structor is used, the allocation region is required to be contiguous memory, and
Core Execution Environment shall use a constant-time allocation algorithm wh
simply increments or decrements a region-specific allocation pointer by the siz
each allocation request. The idea is that in particular configurations, special na
might be given to memory blocks representing fast static memory, dual-ported
memory, or non-volatile battery powered RAM. The naming conventions for in
vidual memory blocks shall be implementation-defined. This constructor shall 
throw a previously allocated instance of CoreOutOfMemoryException if there is not a 
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large enough region of contiguous memory within the requested memory block to 
satisfy the request. The Core signature for this constructor follows:

public AllocationContext(long maximum_bytes, CoreString block_name) 
throws CoreOutOfMemoryException;

AllocationContext.available(). If this AllocationContext was constructed with an argument 
specifying the maximum number of bytes to be allocated, the available() method shall 
return the number of bytes that are currently available to be allocated within this Alloca-
tionContext. If no limit was specified when the AllocationContext was constructed, the 
available() method shall return the special code of -1. The Core signature is shown 
below:

final public long available();

AllocationContext.allocated(). The allocated() method shall return the total number of 
bytes, including alignment padding and bookkeeping header information associated 
with allocated objects, that have been allocated within this AllocationContext. The Core 
signature is shown below:

final public long allocated();

AllocationContext.release(). Core components invoke an AllocationContext’s release() 
method to indicate that all of the objects allocated within that context, including theAllo-
cationContext object itself, are now eligible for garbage collection. The memory dedi-
cated to these objects shall not be reclaimed until after the Core Execution Environ
verifies that the respective objects are no longer visible to the Baseline domain. Th
Core signature for the release() method is shown below:

final public void release();

3.17.9 The SpecialAllocation Class

The SpecialAllocation class extends CoreObject. By default, all new objects shall be allo-
cated within the default allocation context of the currently executing CoreTask. To allo-
cate objects within some other allocation context, Core programmers extend the ab
SpecialAllocation class by implementing the run() and context() methods. Core tasks invoke
the SpecialAllocation.execute() method to establish a new allocation context. Since Special-
Allocation is an abstract class, there are no constructors.

SpecialAllocation.context(). Implementations of the abstract context() method shall return 
a reference to the AllocationContext object that represents the special allocation contex
established to keep track of all objects allocated during execution of this SpecialAllocation 
object’s execute() method, excluding any objects that might be allocated during exec
tion of other SpecialAllocation object’s inner-nested execute() methods. To use special 
allocation contexts, Core programmers must implement the context() method to return a 
reference to the appropriate AllocationContext object. The Core signature is:

public abstract AllocationContext context();

SpecialAllocation.run(). This is an abstract method, which is invoked during execution
the execute() method. To use special allocation contexts, Core programmers must im
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ment the run() method, providing the body of code that is to execute within the new allo-
cation context. The Core signature is shown below:

public abstract void run();

SpecialAllocation.execute(). The execute() method is invoked to enter into the special 
allocation context. The effect of calling execute() shall be to (1) establish the new alloca-
tion context to be the AllocationContext whose reference is returned from the context() 
method, (2) invoke this object’s run() method, and (3) restore the original allocation co
text upon return (or thrown exception) from the run() method. The Core signature fol-
lows:

final public void execute();

3.17.10 The PCP Interface

The PCP interface represents the intent to use the priority ceiling protocol for synchr
zation. If a core object implements this interface, the Core Execution Environment 
use the modified priority ceiling protocol defined here for all synchronization associa
with that object. In particular:

1. If some task running at a priority higher than a particular PCP object’s ceiling prior-
ity attempts to synchronize on that object, the synchronization attempt shall fa
throwing a previously allocated instance of CoreIllegalMonitorStateException.

2. For any class that implements the PCP interface, it is improper to invoke the wait(), 
notify(), or notifyAll() methods of that class’s instances. Any attempt to invoke thes
methods shall fail by throwing a previously allocated instance of CoreIllegalMoni-
torStateException.

3. Obtaining a synchronization lock (whether it is a PCP object or a priority inherit-
ance object) for a Core object shall not require allocation of memory.

4. When a task is executing with possession of a PCP object’s synchronization lock, 
the Core task shall run at the corresponding PCP object’s ceiling priority.

5. No queues shall be used in the implementation of a priority ceiling lock. 

6. PCP synchronization shall not cause the currently running task to block. 

7. No time slicing of tasks at equal or lower priority shall be allowed while the run
ning task holds a priority ceiling lock.

8. Blocking I/O and synchronizing operations shall not be permitted while the curr
task holds a PCP synchronization lock. Any core service invoked from within a 
PCP-synchronized context that might block shall not perform the requested operat
and shall instead throw a previously allocated instance of CoreIllegalMonitorStateEx-
ception exception. Examples of methods that shall automatically throw CoreIllegal-
MonitorStateException if invoked from within a PCP-locked context include 
CoreTask.sleep(), CoreTask.sleepUntil(), CoreTask.join(), Mutex.lock(), SignalingSema-
phore.P(), CountingSemaphore.P(), CoreObject.wait(), and entry into a synchronized con-
text that is not identified as PCP.

9. Static and dynamic nesting of priority ceiling locks shall be permitted. Howeve
entry into an inner-nested PCP-locked context shall only be allowed if the priority 
ceiling associated with the inner context is greater than the active priority of th
currently executing task. Otherwise, entry into the inner-nested PCP-locked context 
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shall be denied by throwing a previously allocated instance of CoreIllegalMoni-
torStateException.

10. For PCP objects, third-party synchronization shall be prohibited. In other words, the 
code fragment:

synchronized (o) {
doSomething();

}

represents an inappropriate request within the Core Execution Environment unless 
object o happens to equal this. If object o does not equal this, attempted execution of 
the above statement results in throwing of a previously allocated instance of CoreIl-
legalMonitorStateException.

11. The Core Execution Environment shall give special handling to the construction of 
objects that implement the PCP interface. Whenever a PCP object is constructed, 
the Core Execution Environment shall invoke the object’s ceilingPriority() method to 
determine the intended ceiling priority for the object. If ceilingPriority() returns an 
interrupt-level priority but the corresponding object does not implement Atomic (See 
Section 3.17.11), the constructor shall fail by throwing a previously allocated 
instance of CoreIllegalMonitorStateException.

The methods supported by the PCP class follow:

PCP.ceilingPriority(). The ceilingPriority() method is the only method defined in the PCP 
interface. It shall return the priority which is the intended ceiling priority for this Cor
object. The Core Execution Environment shall invoke this method only once for ea
instantiated object that implements the PCP interface. If the return value is -1, this indi-
cates that the corresponding object is never used for locking and therefore does n
require memory to be allocated to represent a locking mechanism. If a particular PCP 
object identifies itself as not implementing a lock, and subsequently some Core co
nent attempts to synchronize on that object, the synchronization attempt shall fail b
throwing a previously allocated instance of CoreIllegalMonitorStateException. The Core 
signature is shown below:

abstract int stackable ceilingPriority();

3.17.11 The Atomic Interface

The Atomic interface is used to distinguish PCP objects that adhere to special restriction
and provide special semantics. The Atomic interface shall extend the PCP interface. 
There shall be no public variables or methods defined for this interface. Rather, us
this interface is simply an indication to the Core class loader that certain objects de
special treatment. The special treatment given to Atomic objects shall be as follows:

1. Only objects that implement the Atomic interface shall be allowed to set their prior
ity ceiling to an interrupt-level priority. This has the effect of assuring that syste
interrupts shall not be disabled for arbitrarily long periods of time.

2. Each of the bodies of code that comprise the synchronized statements associated 
with an Atomic object shall be execution-time analyzable. The definition of exec
tion-time analyzable code is provided in Section 3.14.
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3. If a task is executing synchronized code of an Atomic object (“Atomic synchronized 
code”) when a request to abort the task is delivered to the Core Execution Env
ment, the Core Execution Environment shall defer abortion of the task until aft
the synchronized code completes its execution.

3.17.12 The CoreString Class

The CoreString class shall extend org.rtjwg.CoreObject. The CoreString class shall be used 
to represent string literal constants within Core components.

CoreString Constructors. There shall be two constructors for CoreString. The first shall 
accept as its argument an array of characters and shall produce a CoreString object repre-
senting that sequence of characters. The second shall accept as its arguments an 
characters (value), an integer offset within the array (offset), and an integer length field 
(length). It shall produce a CoreString object containing length characters copied from the
value array starting with the character at position offset. This second constructor shall 
throw a previously allocated instance of CoreArrayIndexOutOfBoundsException if offset is 
negative or if the sum of the offset and length parameters exceeds the length of the value 
character array. The Core signatures for the two constructors are shown below:

public CoreString(char[] value);
public CoreString(char[] value, int offset, int length) throws 

CoreArrayIndexOutOfBoundsException;

CoreString.charAt(). The charAt() method shall return the character found at the specifi
position (index) within this CoreString object. An index value of zero shall correspond to
the first character in the string. If the requested position is negative, or if it exceeds
length of the string, the charAt() method shall throw a previously allocated instance of
CoreArrayIndexOutOfBoundsException. The Core-Baseline _charAt() method shall behave 
the same as the core charAt() method, except that it is intended to be invoked from a 
Baseline thread. The Core signatures are shown below:

final public char charAt(int index) throws CoreArrayIndexOutOfBoundsException;
final public baseline char _charAt(int index) throws CoreArrayIndexOutOfBoundsException;

CoreString.hashCode(). The hashcode() method shall return an integer value that corre
sponds to the sequence of characters represented by this CoreString object. If two Core-
String objects represent the same sequence of characters, their respective hash co
shall be the same. The Core-Baseline _hashCode() method shall behave the same as th
hashCode() method, except it is intended to be invoked from a Baseline thread. The C
signatures are shown below:

final public int hashCode();
final public baseline int _hashCode();

CoreString.equals(). The equals() method shall return true if and only if its CoreString 
argument represents the exact same sequence of characters as this string. Its Core signa-
ture is shown below:

final public boolean equals(CoreString s);
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CoreString.length(). The length() method shall return the number of characters in this Cor-
eString object. The Core-Baseline _length() method shall behave the same as the length() 
method, except it is intended to be invoked from a Baseline thread. The Core signatures 
are shown below:

final public int length();
final public baseline int _length();

3.17.13 The DynamicCoreString Class

The DynamicCoreString class shall extend CoreString. This class has considerably more 
functionality than CoreString.

DynamicCoreString Constructors. There are five constructors, with signatures as shown 
below, for DynamicCoreString. The first takes no arguments and shall construct a Dynam-
icCoreString object of length zero. The second takes as its argument an array of bytes and 
shall construct a DynamicCoreString object with as many characters as the length of the 
byte array, with each byte converted into the appropriate Unicode character in sequence 
within the resulting DynamicCoreString object. The meaning of the bytes stored in the 
byte array shall be interpreted according to ASCII conventions. The third constructor is 
like the second, except the character sequence for the DynamicCoreString is taken from 
the byte array starting with the byte at index position offset and ending with the byte at 
index position (offset + length - 1). This constructor shall throw a previously allocated 
instance of CoreArrayIndexOutOfBoundsException if its offset or length arguments are nega-
tive or if (offset + length) is greater than the length of the array. The fourth and fifth con-
structors are like the second and third constructors respectively, except the input arrays 
shall hold Unicode characters instead of ASCII bytes.

The Core signatures for the five constructors are shown below:

public DynamicCoreString();
public DynamicCoreString(byte[] bytes);
public DynamicCoreString(byte[] bytes, int offset, int length)

throws CoreArrayIndexOutOfBoundsException;
public DynamicCoreString(char[] chars);
public DynamicCoreString(char[] value, int offset, int length)

throws CoreArrayIndexOutOfBoundsException;

DynamicCoreString.concat(). The concat() method shall create and return a new Dynamic-
CoreString object that represents the concatenation of this string with the string supplied 
as its str argument. The Core signature is shown below:

final public DynamicCoreString concat(CoreString str);

DynamicCoreString.getChars(). The getChars() method shall copy the sequence of char-
acters found within this string starting at index position source_begin and ending at index 
position source_end into the character array named destination starting at index position 
destination_begin. This method shall throw a previously allocated instance of CoreArrayIn-
dexOutOfBoundsException if source_begin is less than 0, if source_end is greater than the 
length of this string, if source_end is less than source_begin, if destination_begin is less 
than zero, or if the destination array is not long enough to represent all of the characters 
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to be copied into the array starting from index position destination_begin. The Core sig-
nature is shown below:

final public void getChars(int source_begin, int source_end, 
char[] destination, int destination_begin)

throws CoreArrayIndexOutOfBoundsException;

DynamicCoreString.substring(). The substring() method shall create a new DynamicCore-
String representing the sequence of characters from this DynamicCoreString starting at 
index position begin_index and ending at index position end_index. This method shall 
throw a previously allocated instance of CoreArrayIndexOutOfBoundsException if 
begin_index is less than zero, end_index is less than begin_index, or end_index is greater 
than the length of this DynamicCoreString. The Core signature is shown below:

final public DynamicCoreString substring(int begin_index, int end_index)
throws CoreArrayIndexOutOfBoundsException;

DynamicCoreString.toCharArray(). The toCharArray() method shall create a new character 
array of the same length as this DynamicCoreString object and initialize the elements of 
the character array by copying the characters from this DynamicCoreString object in 
sequential order. The Core signature is shown below:

final public char[] toCharArray();

DynamicCoreString.toLowerCase(). The toLowerCase() method shall create a new Dynam-
icCoreString object of the same length as this DynamicCoreString and shall initialize the 
characters of the new DynamicCoreString by copying the characters of this DynamicCore-
String object in sequential order, replacing each upper case character with the corre-
sponding lower case character during the copying process. The definition of which 
character encodings are considered to be upper case and which are lower case, and the 
mapping between the two is defined by Unicode conventions. The Core signature is 
shown below:

final public DynamicCoreString toLowerCase();

DynamicCoreString.toUpperCase(). The toUpperCase() method shall create a new Dynam-
icCoreString object of the same length as this DynamicCoreString and initialize the charac-
ters of the new DynamicCoreString by copying the characters of this DynamicCoreString 
object in sequential order, replacing each lower case character with the corresponding 
upper case character during the copying process. The definition of which character 
encodings are considered to be upper case and which are lower case, and the mapping 
between the two is defined by Unicode conventions. The Core signature is shown 
below:

final public DynamicCoreString toUpperCase();

3.17.14 The ATCEventHandler class

The ATCEventHandler class shall extend org.rtjwg.CoreObject. This class represents the 
main entry point for asynchronous transfer of control event handlers. Each CoreTask for 
which asynchronous event handling is enabled shall have an associated ATCEventHandler 
object. When an asynchronous event is signaled to that task, the Core Execution Envi-
ronment shall invoke the corresponding ATCEventHandler’s handleATCEvent() method.
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ATCEventHandler Constructor. The constructor for ATCEventHandler shall take no argu-
ments. The Core signature follows:

public ATCEventHandler();

ATCEventHandler.handleATCEvent(). The handleATCEvent() method shall invoke the 
defaultAction() method of its ATCEvent argument e and then return. The handleATCEvent() 
method is declared to throw a CoreThrowable object because in many cases, the desired 
result of asynchronous event handling is to abort a particular section of code by throw-
ing an exception from within the asynchronous event handler. The Core signature fol-
lows:

public void handleATCEvent(ATCEvent e) throws CoreThrowable;

Note that application developers may override this method to implement different 
semantics for the asynchronous event handlers associated with particular Core tasks.

3.17.15 The ATCEvent class

The ATCEvent class shall extend org.rtjwg.CoreObject. This class represents an asynchro-
nous event. To signal an asynchronous event to a Core task t, construct an ATCEvent 
object e and pass this ATCEvent e as the sole argument to t’s signalAsync() method.

ATCEvent Constructor. The constructor for ATCEvent shall take no arguments. The Core
signature follows:

public ATCEvent();

ATCEvent.defaultAction(). The defaultAction() method shall perform no side effects and 
shall simply return. The defaultAction() method is declared to throw a CoreThrowable 
object because in many cases, the desired result of asynchronous event handling 
abort a particular section of code by throwing an exception from within the asynchr
nous event handler. The Core signature is shown below:

public void defaultAction() throws CoreThrowable();

Note that application developers may override this method to implement different 
semantics for particular asynchronous event objects.

3.17.16 The CoreRegistry class

The CoreRegistry class shall extend org.rtjwg.CoreObject. The role of this class is to pro-
vide a repository for configuration information and for information that is shared 
between the core domain and the native and Baseline domains. There are no publ
structors, since all methods are static and there are no instance variables.

CoreRegistry.stackAllocation(). The stackAllocation() method shall return true if and only if 
this Core Execution Environment supports stack allocation of objects. Otherwise, i
shall return false. All Core Execution Environments that claim to support stack alloca
tion shall behave the same with regards to which objects are stack allocated. The 
signature for this method follows:

public static boolean stackAllocation();
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CoreRegistry.registerStackable(). For each Core class, the registerStackable() method shall 
be invoked as the first executable code within any method that desires to identify any of 
its local variables (including incoming arguments and this) as potentially stack allocat-
able. The string argument to registerStackable() is a list of the names of the arguments 
and local variables whose referents shall be allocated on the stack if the Core Execution 
Environment supports stack allocation of locals and arguments. The variable names are 
separated by semicolons. In the case that a constructor has stackable arguments or local 
variables, and the constructor invokes its super-class constructor, the invocation of regis-
terStackable() shall come immediately following the invocation of the super-class con-
structor. In order to identify local variables and arguments by original source code name 
in the class file representation, the Core class file for any class that contains invocations 
of the CoreRegistry.registerStackable() method shall contain the symbolic information that 
is produced by common Baseline compilers when the debug flags are enabled. The Core 
signature is shown below:

public static void registerStackable(stackable CoreString s);

CoreRegistry.registerBaseline(). The registerBaseline() method shall be invoked as the 
second line of executable code within the static initializer associated with a CoreClass if 
the CoreClass has any methods to identify as Core-Baseline methods (meaning the meth-
ods can be invoked from the Baseline domain). The first executable line of the static ini-
tializer shall be the invocation of registerCoreClass(). The Core signature follows:

public static void registerBaseline(CoreString methods);

The methods argument identifies the Core-Baseline methods by listing the name and sig-
nature of each method, separating each method’s description from the others with
semicolon. For notational convenience, method signatures can be wildcarded usin
asterisk character (*). For example, the method represented by the signature “foo(IF)V” 
can be abbreviated as “foo*”. Note that “*” represents only the signature. It does not 
stand in place of any text from the method’s name. 

CoreRegistry.registerCoreClass(). The registerCoreClass() method shall be invoked as the
first executable code in the static initializer for a class that intends to be loaded as a
Class File. The presence or absence of this method’s invocation within the static in
izer of the class is the key indicator of whether this class is intended for the Baselin
domain or for the Core domain. The Core signature is as follows:

public static void registerCoreClass();

CoreRegistry.coerce(). Given that the Core programmer might be dealing with objects
that extend from CoreObject but which look to the Baseline compiler like they extend 
from java.lang.Object, the Core programmer can coerce such objects to CoreObject by 
invoking the static coerce() method of org.rtjwg.CoreRegistry. The Core signature follows:

public static CoreObject coerce(java.lang.Object o);

Typical usage is to further coerce the result returned from the coerce() method to the type 
that the Core programmer really expects this object to be. Consider, as an exampl
following code fragment:
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try {
doSomething();

} catch (java.lang.Exception x) {
MyCoreException cx;
cx = (MyCoreException) CoreRegistry.coerce(x);
cx.handleException();

}

The Core class loader gives special treatment to this particular method, in most cases, 
removing dynamic type coercion and checking code in favor of a static check. 

CoreRegistry.profiles(). The profiles() method shall return an array of CoreString represent-
ing the collection of all real-time profiles that are present within this Core Execution 
Environment. Profile naming conventions serve to differentiate key features of the pro-
files, as follows:

1. A profile whose name begins with the substring “org.j-consortium” is considered to 
be an official J Consortium profile. The specification for the profile shall have been 
formalized by the J Consortium. The J Consortium maintains the official definition 
of the profile and may provide mechanisms to assess conformance of implementa-
tions.

2. All other profiles are considered to be proprietary, defined by particular individuals 
or industry organizations. The specification and conformance assessment for these 
profiles is handled external to the J Consortium.

3. Any profile whose name ends with the special character “-” shall disable certain 
capabilities that would normally be present in the Core Execution Environmen
Any profile whose name does not end with the special character “-” shall not d
able any capabilities that would normally be present in the Core Execution Env
ronment. To ensure that a particular Core Execution Environment supports all 
the features of the Core specification, a Core component could verify through 
examination of the names of the system’s profiles that none of the installed pro
removes any core functionality.

The Core signature for the profiles() method follows:

public static CoreString [ ] profiles();

CoreRegistry.publish(). The publish() method shall publish core_object for access by Base-
line and/or native components. The publish() method shall allocate and initialize memory
for a private copy of the name CoreString argument and for additional implementation-
defined objects for use in representing this entry within the CoreRegistry’s private data 
tables. This private copy of the name argument shall be allocated within a dedicated 
implementation-defined AllocationContext. The Core signature is shown below:

public static void publish(CoreString name, CoreObject core_object);

CoreRegistry.unpublish(). The unpublish() method shall remove the previously publishe
core object that is identified by its name argument from the CoreRegistry tables and shall 
release the AllocationContext that was previously dedicated to representing this entry 
within the CoreRegistry database. After the entry has been unpublished, subsequent
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attempts by the Baseline and/or native domains to lookup the CoreObject known by this 
name shall fail. The Core signature is shown below:

public static void unpublish(CoreString name);

3.17.17 The SignalingSemaphore Class

The SignalingSemaphore class extends org.rtjwg.CoreObject. The key difference between 
CountingSemaphore and SignalingSemaphore is that SignalingSemaphore shall not buffer V() 
operations. The default (only) constructor shall take no arguments. 

SignalingSemaphore.P(). The P() method shall implement a semaphore P operation. Care 
shall be taken in the implementation of P() to avoid race conditions between multiple 
threads invoking P(), V(), and/or Vall() methods on the same semaphore. The Core-Base-
line _P() method serves the same purpose for the Baseline environment. The Core signa-
tures are shown below:

final public void stackable P();
final public baseline void _P();

SignalingSemaphore.V(). The V() method shall implement a semaphore V operation, 
releasing the highest priority longest waiting Core task or Baseline thread that is 
blocked on this semaphore. If no tasks or threads are currently blocked on this sema-
phore, the V() method has no effect. Care shall be taken in the implementation of V() to 
avoid race conditions between multiple threads invoking P(), V(), and/or Vall() methods 
on the same semaphore. The Core-Baseline _V() method serves the same purpose. 

The Core signature is shown below:

final public void stackable V();
final public baseline void _V();

SignalingSemaphore.Vall(). The Vall() method shall awaken all Core tasks and Baseline 
threads that are blocked on this semaphore. If no tasks or threads are currently blocked 
on this semaphore, the Vall() method has no effect. Care shall be taken in the implemen-
tation of Vall() to avoid race conditions between multiple threads invoking P(), V(), and/or 
Vall() methods on the same semaphore. The Core-Baseline _Vall() method shall serve the 
same purpose. 

The implementation of Vall() shall be constant-time, allowing its use from within a time-
constrained interrupt handler. The work of waking up the various waiting tasks shall be 
distributed between the various P() operations that are waiting to be signaled.

The Core signatures are shown below:

final public void stackable Vall();
final public baseline void _Vall();

SignalingSemaphore.numWaiters(). The numWaiters() method shall report how many 
tasks or threads are waiting or blocked on this semaphore. The Core-Baseline 
_numWaiters() method serves the same purpose. 
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The Core signature is shown below:

final public int stackable numWaiters();
final public baseline int _numWaiters();

3.17.18 The CountingSemaphore Class

The CountingSemaphore class shall extend org.rtjwg.CoreObject. The key difference 
between CountingSemaphore and SignalingSemaphore is that CountingSemaphore buffers V 
operations. The default (only) constructor shall take no arguments. 

CountingSemaphore.P(). The P() method is a semaphore P operation. If the value of the 
semaphore’s count field is greater than zero, the P operation shall decrement the c
If the value of the semaphore’s count field equals zero, the currently executing task
thread shall block until some other task or thread performs a V operation on this sa
counting semaphore. Care shall be taken in the implementation of P() to avoid race con-
ditions between multiple threads invoking P() and/or V() methods on the same sema-
phore. The Core-Baseline _P() method serves the same purpose. The Core signatures
shown below:

final public void stackable P();
final public baseline void _P();

CountingSemaphore.V(). The V() method represents a semaphore V operation. If a co
task or Baseline thread is currently waiting to lock this semaphore, this method sha
awaken the highest priority, longest waiting task that is blocked on this semaphore
erwise, this operation shall increment the value of the count field associated with t
semaphore. Care shall be taken in the implementation of V() to avoid race conditions 
between multiple threads invoking P() and V() methods on the same semaphore. The 
Core-Baseline _V() operation serves the same purpose. The Core signatures are sh
below:

final public void stackable V();
final public baseline void _V();

CountingSemaphore.numWaiters(). The numWaiters() method shall report how many 
tasks or threads are blocked waiting on this semaphore. The Core-Baseline 
_numWaiters() method shall serve the same purpose. The Core signatures are show
below:

final public int stackable numWaiters();
final public baseline int _numWaiters();

CountingSemaphore.count(). The count() method shall report the current value of this 
semaphore’s internal count field. The Core-Baseline _count() method shall serve the 
same purpose. The Core signature is shown below:

final public int stackable count();
final public baseline int _count();
80 Copyright 1999, 2000 J Consortium, All Rights Reserved



The Specification
3.17.19 The Mutex Class

The Mutex class is used like a semaphore to enforce mutual exclusion. The key distinc-
tion between semaphores and a Mutex object is that the Mutex class shall implement pri-
ority inheritance. The task or thread that locks a Mutex object shall continue to own 
mutual exclusion until that same task or thread unlocks the Mutex object. If some higher 
priority task or thread attempts to lock the same Mutex object while it is already locked 
by a lower priority task or thread, the priority inheritance mechanism shall automati-
cally elevate the priority of the original lock holder to the level of the higher priority 
task or thread that is requesting access to the lock. The implementation of priority inher-
itance shall be transitive, meaning that active priority of the task holding the lock is 
always at least as high as the highest priority of any task that is waiting for entry into the 
locked resource. If a CoreTask aborts or stops while it is holding a Mutex lock, the Core 
Execution Environment shall automatically release the lock.

Mutex Constructors. The default and only constructor for Mutex takes no arguments.

Mutex.lock(). The lock() method shall obtain the lock associated with this Mutex object, 
blocking the current task until other tasks release their lock if necessary. The Core-Base-
line _lock() method serves the same purpose. The Core signatures are shown below:

final public void stackable lock();
final public baseline void _lock();

Mutex.unlock(). The unlock() method shall release a previously obtained lock. If the lock 
is not currently held by the current task or thread, this method throws a previously allo-
cated instance of CoreIllegalMonitorStateException. The Core-Baseline _unlock() method 
serves the same purpose. The Core signatures are shown below:

final public void stackable unlock() throws CoreIllegalMonitorStateException;
final public baseline void _unlock() throws CoreIllegalMonitorStateException;

3.17.20 The Configuration Class

The Core Execution Environment can be configured in multiple distinct forms. The sys-
tem integrator shall set configuration preferences by modifying the implementation of 
the Configuration class.

The Configuration class extends org.rtjwg.CoreObject. To configure the Core Execution 
Environment, the system integrator edits the constants defined in this class. When defin-
ing these variables, the system integrator must take care to ensure that the requested 
configuration is consistent with the capabilities of the underlying hardware. 

It is implementation-defined which combinations of configuration parameters are sup-
ported by each Core Execution Environment. The constant numbers programmed into 
the Configuration class are suggestions to the Core Execution Environment. Programmers 
should never assume that the suggested parameter values have been honored. In all 
cases, APIs are provided to allow Core components to query the Core Execution Envi-
ronment to discover how it is actually configured.
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Configuration.tick_duration. tick_duration is the requested number of nanoseconds 
between timer ticks. The Core Execution Environment shall round up all timeouts and 
time slice requests to the nearest timer tick. The Core declaration for this variable is:

public static final int tick_duration;

Configuration.ticks_per_slice. ticks_per_slice represents the desired number of timer ticks 
in each time slice. If tick_duration equals 1,000 and ticks_per_slice equals 10, the system 
integrator is asking for 10 microseconds per time slice. Special significance is given to a 
value of zero. If ticks_per_slice() is set to zero, this represents a desire to disable all time 
slicing for this configuration of the Core Execution Environment. The Core declaration 
for this variable is:

public final static int ticks_per_slice;

Configuration.uptime_precision. uptime_precision represents the desired resolution of the 
result returned from the upTime() method. If uptime_precision has value 100, this means 
that the result returned from uptime() shall be accurate to within plus or minus 100 nano-
seconds. The Core declaration for uptime_precision is shown below:

public static final int uptime_precision;

Configuration.default_stack_size. default_stack_size represents the default size, measured 
in 32-bit words, of CoreTask. If default_stack_size has value 1,024, this means that unless 
specified to the contrary, each CoreTask is started up with a stack size of 1,024 words. 
The Core declaration for default_stack_size is shown below:

public static final int default_stack_size;

Configuration.stack_overflow_checking. stack_overflow_checking represents whether or 
not this Core Execution Environment is configured to perform stack overflow checking. 
If this variable’s value is true, stack overflow checking shall be enabled. Otherwise, 
stack overflow checking should, but need not, be disabled. A conforming impleme
tion of the Core Execution Environment must support the option of performing stac
overflow checking. A conforming implementation of the Core specification need no
honor the request to disable stack overflow checking. The Core declaration for 
stack_overflow_checking is shown below:

public static final boolean stack_overflow_checking;

Configuration.min_core_priority. min_core_priority represents the intended system-level 
priority that corresponds to the Core task priority level 0. The Core declaration for 
variable is shown below:

public static final int min_core_priority;

Configuration.system_priority_map. system_priority_map represents the desired mapping
from Core priorities to underlying operating system priorities. This array has 128 
entries. The first entry in this array is the system priority level at which Core priority
tasks should execute. The second entry in this array is the system priority level at w
Core priority-2 tasks should execute, and so on. Note that a conforming implement
of the Core Execution Environment need not honor a configuration request to defin
system priority map. The Core declaration for this variable is shown below:
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public static final int [] system_priority_map;

Configuration.little_endian. If little_endian is true, this represents a request to treat all 
IOPort classes as little-endian channels. To say that the channel is little endian means 
that the byte whose address is the same as the address of a multi-byte value stored at the 
same location represents the least-significant byte of that larger value. If little_endian is 
false, this represents a request to treat all IOPort classes as big-endian channels. To say 
that the channel is big endian means that the byte whose address is the same as the 
address of a multi-byte value stored at the same location represents the most-significant 
byte of that larger value. The Core declaration for this variable is shown below:

public static final boolean little_endian;

3.17.21 The Time Class

Mainly as an aid to enhance source code readability, the Time class provides unit con-
versions between common units of time measurement. The standard representation of 
time is a 64-bit long integer, representing nanoseconds.

The Time class extends CoreObject. This class is not designed to be instantiated. Rather, 
Time provides a variety of services in the form of static methods. 

Time.tickDuration(). This method shall return the number of nanoseconds between con-
secutive ticks of the Core Execution Environment’s timer. Note that the value retur
from this method might not equal Configuration.tick_duration in cases that the system inte
grator’s request could not be satisfied. The Core signature follows:

public static int tickDuration();

Time.uptimePrecision(). The uptimePrecision() method shall return the precision of the 
uptime() method, measured in nanoseconds. For example, if uptimePrecision() returns 100, 
this means that the result returned from uptime() is accurate to within plus or minus 100
nanoseconds. Note that the value returned from this method might not equal Configura-
tion.uptime_precision in cases that the system integrator’s request could not be satisfi
The Core signature follows:

public static int uptimePrecision();

Time.day(). The day() method shall return the number of nanoseconds in day days, 
throwing a previously allocated instance of CoreArithmeticOverflowException if the num-
ber of nanoseconds is too large to be represented in a 64-bit integer. The Core sig
is shown below:

public static long day(int day) throws CoreArithmeticOverflowException;

Time.h(). The h() method shall return the total number of nanoseconds in h hours, throw-
ing a previously allocated instance of CoreArithmeticOverflowException if the number of 
nanoseconds is too large to be represented in a 64-bit integer. The Core signature
shown below:

public static long h(int h) throws CoreArithmeticOverflowException;
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Time.hertz(). The hertz() method shall return the number of nanoseconds in a period cor-
responding to freq Hertz, throwing a previously allocated instance of CoreArithmeticOv-
erflowException if the number of nanoseconds is too large to be represented in a 64-bit 
integer. The period is rounded down. The Core signature is shown below:

public static long hertz(int freq) throws CoreArithmeticOverflowException;

Time.m(). The m() method shall return the number of nanoseconds in m minutes, throw-
ing a previously allocated instance of CoreArithmeticOverflowException if the number of 
nanoseconds is too large to be represented in a 64-bit integer. The Core signature is 
shown below:

public static long m(int m) throws CoreArithmeticOverflowException;

Time.ms(). The ms() method shall return the number of nanoseconds in ms milliseconds, 
throwing a previously allocated instance of CoreArithmeticOverflowException if the num-
ber of nanoseconds is too large to be represented in a 64-bit integer. There are two ver-
sions of this method. The Core signatures are shown below:

public static long ms(int ms) throws CoreArithmeticOverflowException;
public static long ms(long ms) throws CoreArithmeticOverflowException;

Time.ns(). The ns() method shall return its ns argument. This method serves no real pur-
pose other than facilitating the creation of self-documenting code. The Core signature is 
shown below:

public static long ns(long ns);
public static long ns(int ns);

Time.s(). The s() method shall return the number of nanoseconds in s seconds, throwing 
a previously allocated instance of CoreArithmeticOverflowException if the number of nano-
seconds is too large to be represented in a 64-bit integer. The Core signature is shown 
below:

public static long s(long s) throws CoreArithmeticOverflowException;
public static long s(int s) throws CoreArithmeticOverflowException;

Time.toString(). The toString() method shall return a string representation of its ns argu-
ment according to the template: “ddddd hh:mm:ss.decimal” where d represents days, 
h represents the total number of whole hours, m represents the total number of whole 
minutes, s represents the total number of whole seconds, and decimal represents the 
fractional number of seconds. All numbers are represented in English decimal notation. 
To facilitate report formatting, the various fields are fixed width. In particular:

d: 5 characters (right justified)
h: 2 characters (right justified, 0 filled)
m: 2 characters (right justified, 0 filled)
s: 2 characters (right justified, 0 filled)

decimal: 9 characters (left justified, 0 filled, rounded in the last digit to an even number if 
the tenth digit equals 5 and all remaining digits equal 0)

A side effect of invoking toString() is to create a new CoreString object in the current allo-
cation context. The memory for this CoreString object shall become eligible for recycling 
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when the corresponding allocation context is released. The Core signature is shown 
below:

public static CoreString toString(long ns);

Time.uptime(). The uptime() method shall return the number of nanoseconds since the 
system was last restarted. The Core signature is shown below:

public static long uptime();

Time.us(). The us() method shall return the number of nanoseconds represented by its us 
argument, which is expressed in terms of microseconds, throwing a previously allocated 
instance of CoreArithmeticOverflowException if the number of nanoseconds is too large to 
be represented in a 64-bit integer. The Core signature is shown below:

public static long us(long us) throws CoreArithmeticOverflowException;
public static long us(int us) throws CoreArithmeticOverflowException;

3.17.22 The Unsigned class

One shortcoming in the Java language is its lack of built-in support for unsigned inte-
gers. This section describes the API for the Unsigned class, a Core library that provides 
support for traditional unsigned arithmetic. This class is not intended to be instantiated. 
Instead, the services are provided in the form of static methods.

Unsigned.compare(). There are four variants of the compare() method, targeted to the 
four different integer sizes that might be used to represent unsigned integers. In all 
cases, the compare() method shall return -1 if its first argument is smaller than the sec-
ond, 0 if the two arguments are equal, and 1 if its first argument is larger than the sec-
ond. All comparisons treat their arguments as if they are encoded according to unsigned 
integer conventions.

The Core signatures for the four variants of compare() follow:

static int compare(byte b1, byte b2);
static int compare(short s1, short s2);
static int compare(int i1, int i2);
static int compare(long l1, long l2);

Unsigned.ge(). The ge() method shall return true if its first argument is greater than or 
equal to its second argument, and false otherwise. The magnitude comparison assumes 
both arguments are encoded according to unsigned integer conventions. There are four 
variants of ge(), with signatures as shown below, to address each of the four different 
integer sizes that might be used to represent unsigned integer quantities.

static boolean ge(byte b1, byte b2);
static boolean ge(short s1, short s2);
static boolean ge(int i1, int i2);
static boolean ge(long l1, long l2);

Unsigned.gt(). The gt() method shall return true if its first argument is greater than its sec-
ond argument, and false otherwise. The magnitude comparison assumes both arguments 
are encoded according to unsigned integer conventions. There are four variants of gt(), 
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with signatures as shown below, to address each of the four different integer sizes that 
might be used to represent unsigned integer quantities.

static boolean gt(byte b1, byte b2);
static boolean gt(short s1, short s2);
static boolean gt(int i1, int i2);
static boolean gt(long l1, long l2);

Unsigned.le(). The le() method shall return true if its first argument is less than or equal to 
its second argument, and false otherwise. The magnitude comparison assumes both 
arguments are encoded according to unsigned integer conventions. There are four vari-
ants of le(), with signatures as shown below, to address each of the four different integer 
sizes that might be used to represent unsigned integer quantities.

static boolean le(byte b1, byte b2);
static boolean le(short s1, short s2);
static boolean le(int i1, int i2);
static boolean le(long l1, long l2);

Unsigned.lt(). The lt() method shall return true if its first argument is less than its second 
argument, and false otherwise. The magnitude comparison assumes both arguments are 
encoded according to unsigned integer conventions. There are four variants of lt(), with 
signatures as shown below, to address each of the four different integer sizes that might 
be used to represent unsigned integer quantities.

static boolean lt(byte b1, byte b2);
static boolean lt(short s1, short s2);
static boolean lt(int i1, int i2);
static boolean lt(long l1, long l2);

Unsigned.eq(). The eq() method shall return true if its first argument is equal to its second 
argument, and false otherwise. The magnitude comparison assumes both arguments are 
encoded according to unsigned integer conventions. There are four variants of eq(), with 
signatures as shown below, to address each of the four different integer sizes that might 
be used to represent unsigned integer quantities.

static boolean eq(byte b1, byte b2);
static boolean eq(short s1, short s2);
static boolean eq(int i1, int i2);
static boolean eq(long l1, long l2);

Unsigned.neq(). The neq() method shall return true if its first argument is not equal to its 
second argument, and false otherwise. The magnitude comparison assumes both argu-
ments are encoded according to unsigned integer conventions. There are four variants of 
neq(), with signatures as shown below, to address each of the four different integer sizes 
that might be used to represent unsigned integer quantities.

static boolean neq(byte b1, byte b2);
static boolean neq(short s1, short s2);
static boolean neq(int i1, int i2);
static boolean neq(long l1, long l2);
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Unsigned.toByte(). The toByte() method shall coerce its unsigned integer argument to an 
unsigned 8-bit quantity, throwing a previously allocated instance of CoreUnsignedCoer-

cionException if the number to be coerced is greater than 255 (28 - 1). There are four vari-
ants of toByte(), with signatures as shown below, to address each of the four different 
integer sizes that might be used to represent unsigned integer quantities.

static byte toByte(byte b);
static byte toByte(short s) throws CoreUnsignedCoercionException;
static byte toByte(int i) throws CoreUnsignedCoercionException;
static byte toByte(long l) throws CoreUnsignedCoercionException;

Unsigned.toShort(). The toShort() method shall coerce its unsigned integer argument to a 
16-bit quantity, throwing a previously allocated instance of CoreUnsignedCoercionExcep-

tion if the number to be coerced is greater than 65,535 (216 - 1). There are four variants 
of toShort(), with signatures as shown below, to address each of the four different integer 
sizes that might be used to represent unsigned integer quantities.

static short toShort(byte b);
static short toShort(short s);
static short toShort(int i) throws CoreUnsignedCoercionException;
static short toShort(long l) throws CoreUnsignedCoercionException;

Unsigned.toInt(). The toInt() method shall coerce its unsigned integer argument to a 32-bit 
quantity, throwing a previously allocated instance of CoreUnsignedCoercionException if 

the number to be coerced is greater than 4,294,967,295 (232 - 1). There are four variants 
of toInt(), with signatures as shown below, to address each of the four different integer 
sizes that might be used to represent unsigned integer quantities.

static int toInt(byte b);
static int toInt(short s);
static int toInt(int i);
static int toInt(long l) throws CoreUnsignedCoercionException;

Unsigned.toLong(). The toLong() method shall coerce its unsigned integer argument to a 
64-bit quantity. Note that there is no possibility of overflow when coercing to 64-bit 
unsigned quantities. There are four variants of toLong(), with signatures as shown below, 
to address each of the four different integer sizes that might be used to represent 
unsigned integer quantities.

static long toLong(byte b);
static long toLong(short s);
static long toLong(int i);
static long toLong(long l);

Unsigned.toString(). The toString() method shall take an unsigned integer as its argument 
and return a CoreString object representing the value of its supplied argument in 
unsigned decimal representation. There are four variants of toString(), with signatures as 
shown below, to address each of the four different integer sizes that might be used to 
represent unsigned integer quantities. The CoreString object returned from toString() is 
allocated within the current task’s allocation context.
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static CoreString toString(byte b);
static CoreString toString(short s);
static CoreString toString(int i);
static CoreString toString(long l);

Unsigned.toHexString(). The toHexString() method shall take an unsigned integer as its 
argument and return a CoreString object representing the value of its supplied argument 
in hexadecimal representation. The length of the resulting CoreString object shall depend 
on the type (not the value) of the argument, padding with zero as appropriate. Alpha-
betic characters in the resulting string shall be lower case. There are four variants of 
toHexString(), with signatures as shown below, to address each of the four different inte-
ger sizes that might be used to represent unsigned integer quantities. The CoreString 
object returned from toHexString() is allocated within the current task’s allocation con-
text.

static final CoreString toHexString(byte b); // Returns 1-character string
static final CoreString toHexString(short s); // Returns 2-character string
static final CoreString toHexString(int i); // Returns 4-character string
static final CoreString toHexString(long l); // Returns 8-character string

3.17.23 The CoreTask Class

The CoreTask class shall extend CoreObject. This class represents the analog of 
java.lang.Thread within the Core domain. 

To create a Core task, the Core programmer extends CoreTask, providing an implemen-
tation of the work() method. To start the task’s execution as an independently execut
thread, the application invokes the CoreTask object’s start() or _start() methods.

Upon invoking the start() or _start() methods of a newly constructed CoreTask object, the 
Core Execution Environment shall initiate execution of the task. For a CoreTask object, 
this causes the work() method to be invoked. Once the work() method terminates, the 
CoreTask has completed its execution. As long as the CoreTask.work() method continues 
to execute, additional increments of CPU time are dedicated toward execution of t
method according to the fixed priority round-robin scheduling system that is part of
Core Execution Environment. 

There are two subclasses of CoreTask, named ISR_Task and SporadicTask, which represent 
special forms of real-time tasks. For SporadicTask and ISR_Task, invocation of the start() 
or _start() methods makes the task eligible to be triggered for execution by the corre
sponding asynchronous event.

CoreTask Constructor. When a CoreTask is created, it is necessary to identify several 
characteristics of the task, as listed below:

1. Whether or not asynchronous event handling other than abort() and stop() is enabled 
for this core task.

2. The size of this task’s run-time stack.

3. The size and type of the default allocation context for this CoreTask.

4. The task’s Base Priority.
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The signature of the CoreTask constructor is shown here:

public CoreTask(ATCEventHandler handler, long stack_size,
long allocation_size, CoreString allocation_block_name, int priority)

throws CoreBadPriorityException, CoreEmbeddedConflictException;

If handler is null, this CoreTask shall ignore asynchronous event signaling other than 
abort() and stop() requests. Otherwise, the initial event handler for this task is represented 
by handler. The stack_size argument specifies the number of 32-bit words on the task
run-time stack. If stack_size equals zero, the task’s stack will be the default stack size
The allocation_size argument specifies the number of bytes in the task’s default Allocation-
Context. If allocation_size equals zero, the default AllocationContext for this task is variable, 
growing at run time based on demand and availability of memory. The 
allocation_block_name argument specifies the name of the block of memory within whi
the AllocationContext’s memory shall be located. If this argument equals null, the Core 
Execution Environment shall place the AllocationContext’s memory region in the host 
computer system’s main memory. If allocation_block_name specifies an allocation region
that does not exist within this Core Execution Environment, or if the Core Executio
Environment chooses (for implementation-defined reasons) to not permit this task 
use the named memory region as its default allocation region, the constructor shal
throw a previously allocated instance of CoreEmbeddedConflictException. The priority 
argument specifies the Base Priority of the CoreTask object. The constructor throws a 
previously allocated instance of CoreBadPriorityException if the priority argument is out-
side the range of valid Core task priorities.

Static Methods. 

CoreTask.currentTask(). The currentTask() method shall return a reference to the task th
is currently executing in the Core Execution Environment. The Core signature is sh
below:

public static CoreTask currentTask();

CoreTask.defaultStackSize(). The defaultStackSize() method shall return the default stack
size, specified in terms of 32-bit words. Note that the value returned from this meth
might not equal Configuration.default_stack_size in cases that the system did not honor th
system integrator’s request. The Core signature is shown below:

static long defaultStackSize();

CoreTask.maxBaselinePriority(). The maxBaselinePriority() method shall return the system
level priority that corresponds to the top Baseline thread priority. For example, if 
java.lang.Thread priority number 10 corresponds to the host operating system’s priori
number 12, this method shall return 12. The Core signature is shown below:

public static int maxBaselinePriority();

CoreTask.maxCorePriority(). The maxCorePriority() method shall return the system-level 
priority that corresponds to the top Core priority. For example, if core priority numb
128 corresponds to system priority level 140, this method shall return 140. The Co
signature is shown below:
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public static int maxCorePriority();

CoreTask.maxSystemPriority(). The maxSystemPriority() method shall return the maxi-
mum priority number for identifying the system-level priorities supported by the host 
operating system. For example, if the host operating system supports priorities num-
bered from 0 to 255, this method returns 255. The Core signature is shown below:

public static int maxSystemPriority();

CoreTask.minBaselinePriority(). The minBaselinePriority() method shall return the system-
level priority that corresponds to the bottom Baseline thread priority. For example, if 
java.lang.Thread priority number 1 corresponds to the host operating system’s priority
number 3, this method shall return 3. The Core signature is shown below:

public static int minBaselinePriority();

CoreTask.minCorePriority(). The minCorePriority() method shall return the system-level 
priority that corresponds to the bottom Core priority. For example, if core priority nu
ber 0 corresponds to system priority level 13, this method shall return 13. The Core
nature is shown below:

public static int minCorePriority();

CoreTask.minSystemPriority(). The minSystemPriority() method shall return the minimum 
priority number for identifying the system-level priorities supported by the host ope
ing system. For example, if the host operating system supports priorities numbered
0 to 255, this method shall return 0. The Core signature is shown below:

public static int minSystemPriority();

CoreTask.numInterruptPriorities(). The numInterruptPriorities() method shall return the 
number of priorities that are dedicated to interrupt handling. The interrupt-level prio
ties are always the highest priorities in the system. If numInterruptPriorities() returns 12, 
for example, Core priorities 117 through 128 are known to represent interrupt-leve
orities.

public static final int numInterruptPriorities();

CoreTask.stackOverflowChecking(). The stackOverflowChecking() method shall return true 
if and only if the Core Execution Environment is configured to perform stack overfl
checking. Note that conforming Core Execution Environments might run with stack
overflow checking enabled even if Configuration.stack_overflow_checking is false. The 
Core signature is shown below:

public static boolean stackOverflowChecking();

CoreTask.systemPriorityMap(). The systemPriorityMap() method shall return an integer 
array with 128 entries in it, representing the system priorities to which each of the C
priority levels correspond. The first entry in this array is the system priority level at 
which Core priority-1 tasks execute. The second entry in this array is the system pr
level at which Core priority-2 tasks execute, and so on. The returned array is a priv
copy of this information, allocated in the currently active AllocationContext. The Core 
signature is shown below:
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public static int [ ] systemPriorityMap();

CoreTask.ticksPerSlice(). The ticksPerSlice() method shall return the number of timer 
ticks that the system is dedicating to each time slice of a CoreTask. If ticksPerSlice() 
returns zero, this indicates that this Core Execution Environment is configured to per-
form no time slicing. Note that the result of this method might not equal Configura-
tion.ticks_per_slice in case the Core Execution Environment does not honor the system 
integrator’s request. The Core signature is shown below:

static public int ticksPerSlice();

Instance Methods. 

CoreTask.abort(). The abort() method shall cause this Core task to abort execution of the
most recent invocation of its work() method. The implementation of abort() shall support 
the same semantics as the implementation of asynchronous transfer of control. Th
means that abort() requests are deferred during execution of code that defers asynch
nous event handling. Even Core tasks that are constructed with asynchronous eve
dling disabled shall abort themselves in response to invocation of the task’s abort() 
method.

public final void abort();

CoreTask.abortWorkException(). The abortWorkException() method shall return a refer-
ence to a previously allocated ScopedThrowable object that is provided for the purpose o
aborting the work() method associated with this CoreTask object. The scope for this 
exception shall belong to that part of the Core Execution Environment that invokesthis 
task’s work() method. The Core signature for this method is shown below:

public final ScopedThrowable abortWorkException()

To abort the currently executing task’s work() method, the Core programmer might exe
cute the following:

throw CoreTask.currentTask().abortWorkException();

CoreTask.asyncHandler(). The asyncHandler() method shall atomically set the asynchro-
nous event handler for this CoreTask, returning a reference to the previously establishe
asynchronous event handler. If this task was constructed without an asynchronous
handler, asynchronous event handling is permanently disabled for this task. In that
asyncHandler() throws a previously allocated instance of CoreATCEventsIgnoredException 
instead of changing the asynchronous event handler. The Core signature is shown
below:

public final ATCEventHandler asyncHandler(ATCEventHandler new_handler)
throws CoreATCEventsIgnoredException;

CoreTask.join(). The join() method causes the current task to block until this task termi-
nates execution. For ISR_Task and SporadicTask, termination means that the task’s stop() 
method has been invoked and completely processed. For CoreTask, termination means 
either that the task’s stop() method has been invoked and completely processed, or th
the task has returned from its work() invocation. The Core signature is shown below:
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public final void join();

CoreTask.resume(). If this task is currently in a suspended state (because of a prior invo-
cation of the suspend() method), the resume() method shall cause this task’s Base Priority 
to be restored to the value it held at the moment the task’s suspend() method was 
invoked, or to the new value specified by the most recent invocation of the task’s setPri-
ority() method during the time this task was suspended. If this task is not currently i
suspended state, the resume() method shall have no effect. The Core signature is show
below:

public final void resume();

CoreTask.setPriority(). The setPriority() method shall set the Base Priority for the given 
task, performing a security check to see if the current thread is allowed to modify t
priority of this CoreTask. This method shall throw a previously allocated instance of 
CoreSecurityException if the current thread is not allowed to modify the priority of the 
specified task and throws a previously allocated instance of CoreBadPriorityException if 
the requested priority is not in the range of acceptable core priorities. If this task is
rently executing within a priority ceiling context for which the ceiling priority is lowe
than the value of this method invocation’s new_priority argument, the effect of the setPri-
ority() method shall be deferred until after this task leaves the priority ceiling contex
The Core signature is shown below:

public final void setPriority(int new_priority) throws 
CoreBadPriorityException, CoreSecurityException, CoreIllegalMonitorStateException;

CoreTask.signalAsync(). The signalAsync() method shall cause this task to invoke its cur-
rent event handler, passing ATCEvent e as an argument. If the event handler returns, co
trol resumes within this task at the instruction that follows the point at which the 
asynchronous event handling began. If the event handler throws an exception, it is
the exception was thrown by whatever code was executing within this CoreTask when 
control was interrupted by asynchronous event handling. If this task was configured to 
ignore asynchronous events, signalAsync() throws a previously allocated instance of 
CoreATCEventsIgnoredException. The Core signature is shown below:

public final void signalAsync(ATCEvent e) throws CoreATCEventsIgnoredException;

If this task is executing code contained within a finally statement, or is executing code 
contained within a synchronized block of any object that implements Atomic at the 
moment signalAsync() is invoked, handling of the asynchronous event is deferred unt
control leaves that context.

We say an ATCEvent object is pending on a particular thread if that object has been 
passed as an argument to a completed invocation of that thread’s signalAsync() method 
but the thread has not yet begun to execute its ATCEventHandler.handleATCEvent() 
method. In the case that this thread has received a previous invocation of signalAsync() 
and is still waiting to process that previous request because the thread is still exec
within a deferral region (a finally statement or synchronized statement associated with an
Atomic object), the ATCEvent argument of signalAsync() will be placed on a queue of 
pending asynchronous transfer of control events associated with this thread unless
same event is already pending for this or some other thread. If this event is alread
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pending on some thread, the new signalAsync() invocation is simply ignored. (To assure 
that no asynchronously signaled events go ignored, application programmers should 
structure their software so that each event corresponds to a different thread, and that the 
event is not signaled a second time to that thread until after the thread has processed the 
first signaling of the event.) Pending events are processed in FIFO order as soon as this 
thread leaves its deferral region. This results in nesting of the asynchronous transfer of 
control event handlers, with the handler for the most recently signaled event nested 
within the others.

If this task is currently blocked (on entry to a Mutex.lock(), or entry to a synchronized con-
text, or a semaphore P() operation), or is suspended in a CoreTask.sleep(), Core-
Task.sleepUntil(), CoreTask.join(), or CoreObject.wait() invocation, the suspending operation 
is interrupted by the signalAsync() invocation. If the event handler returns, the blocking 
operation is restarted. This means that this CoreTask loses its place in any FIFO queue 
associated with the blocking operation.

CoreTask.sleep(). The sleep() method shall cause the current task to sleep a minimum of 
sleep_time nanoseconds. The Core signature is shown below:

public static sleep(long sleep_time);

CoreTask.sleepUntil(). The sleepUntil() method shall cause the current task to sleep until 
the specified time arrives, where time is measured according to Time.uptime(). The Core 
signature is shown below:

public static sleepUntil(long alarm_time);

CoreTask.stackDepth(). The stackDepth() method returns the number of words currently 
in use on this task’s run-time stack. The Core signature is shown below:

public final int stackDepth();

CoreTask.stackSize(). The stackSize() method returns the total number of words allocate
to this task’s run-time stack. The Core signature is shown below:

public final int stackSize();

CoreTask.start(). The start() method shall start the Core task, making it ready for exec
tion. Note that certain subclasses of CoreTask (e.g. SporadicTask) do not begin to run 
immediately following invocation of the start() method. Rather, these subclasses of Core-
Task begin execution at some point following invocation of the start() method, in 
response to an asynchronous trigger invocation. The Core signature is shown belo

final public void start();

CoreTask._start(). The _start() method shall start up a Core task (in the same way that 
CoreTask.start() method starts up a CoreTask) from the Baseline domain. The Core signa
ture is shown below:

final public baseline void _start();

CoreTask.stop(). The stop() method shall render the CoreTask inoperable, making it no 
longer eligible for dispatching by the Core Execution Environment. If this task is execut-
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ing its work() method when stop() is invoked, this method implements the equivalent of 
CoreTask.abort() followed by whatever additional work is required by the semantics of 
the stop() method. Following invocation of the stop() method, subsequent invocations of 
start() have no effect. If the CoreTask is running (or suspended) when the stop() method is 
invoked, all finally clauses associated with nested execution of try statements by this 
CoreTask are executed, enabling release of all synchronization locks held by the task. If 
the core task is executing within an “Atomic Synchronized” region (See Section 
3.17.11), abortion of the CoreTask is deferred until after the Atomic Synchronized regio
completes its execution. Similarly, if the core task is executing the body of a finally state-
ment, abortion of the core task is deferred until after the finally statement has executed to
completion. The Core signature is shown below:

public void stop();

CoreTask.suspend(). The suspend() method shall temporarily set the Base Priority of this 
task to the special Never Scheduled Priority level. Assuming that this task is not cur-
rently inheriting a higher priority level, this causes this task to be put to sleep until it is 
subsequently awakened by some other task’s invocation of the resume(). If, however, the 
task holds a synchronization lock that is required by some other task, this task will
tinue to run at its active priority, as determined by the corresponding lock’s priority 
inversion avoidance mechanism (either priority inheritance or immediate priority ce
ing). The Core signature is shown below:

public final void suspend();

CoreTask.systemPriority(). The systemPriority() method shall return the system-level pri-
ority that corresponds to this Core task’s priority level. For example, if this real-time core 
task is running at host operating system priority 23, regardless of what core priority
might correspond to, this method shall return 23. The Core signature is shown bel

public final int systemPriority();

CoreTask.work(). The work() method shall be invoked by the Core Execution Environ-
ment to do the work of this task. The default implementation of the work() method sim-
ply returns void. Normally, the Core programmer will override this default 
implementation with an appropriate replacement. The Core signature is shown bel

public void work();

CoreTask.yield(). The yield() method shall cause the currently executing Core task to 
yield the remainder of its time slice to another Core task of equal priority. If no othe
Core tasks of equal priority are ready to run, the yield() method shall have no effect. The
Core signature is shown below:

final public void yield();

3.17.24 The ISR_Task Class

The ISR_Task class extends CoreTask and implements Atomic. This class is used to imple-
ment interrupt service routines. With ISR_Task objects, the associated work is triggered
by physical or software interrupts. The work of an ISR_Task is executed as part of an 
interrupt service routine rather than an operating system thread. Multiple ISR_Task 
objects may be registered to service the same interrupt event. Each time the share
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rupt is triggered, the Core Execution Environment shall invoke the work() methods asso-
ciated with each of the interrupt handlers in sequence, ordered according to the priority 
of the ISR_Task objects that represent the respective interrupt handlers with higher prior-
ity ISR_Task objects serviced before lower priority ISR_Task objects. Following comple-
tion of each ISR_Task’s work() method, the Core Execution Environment shall invoke th
ISR_Task’s serviced() method to determine whether the interrupt has been completely
viced. If ISR_Task.serviced() returns true, the Core Execution Environment shall conside
interrupt processing done for this particular trigger, and shall not invoke the remain
lower priority ISR_Task objects’ work() methods for this particular trigger.

ISR_Task Constructor. When an ISR_Task is created, it is necessary to identify several 
characteristics of the task, as listed below:

1. The size of this task’s run-time stack.

2. The size and type of the default allocation context for this CoreTask.

3. The task’s Base Priority.

4. The number of the interrupt that is to trigger execution of this ISR_Task.

The signature of the ISR_Task constructor is shown here:

public ISR_Task(long stack_size, long allocation_size, 
CoreString allocation_block_name, int priority, int interrupt_no)

throws CoreBadPriorityException, CoreEmbeddedConflictException;

The stack_size argument specifies the number of words on the task’s run-time stack
stack_size equals zero, the task’s stack will be the default stack size. The allocation_size 
argument specifies the number of bytes in the task’s default AllocationContext. If 
allocation_size equals zero, the default AllocationContext for this task is variable, growing 
at run time based on demand and availability of memory. The allocation_block_name 
argument specifies the name of the block of memory within which the AllocationContext’s 
memory shall be located. If this argument equals null, the Core Execution Environment 
shall place the AllocationContext’s memory region in the host computer system’s main 
memory. If allocation_block_name specifies an allocation region that does not exist with
this Core Execution Environment, or if the Core Execution Environment chooses (
implementation-defined reasons) to not permit this task to use the named memory
region as its default allocation region, the constructor shall throw a previously alloc
instance of CoreEmbeddedConflictException. The priority argument specifies the Base Pri-
ority at which the ISR_Task’s work() method executes each time the corresponding int
rupt is triggered. The interrupt_no argument specifies the number of the interrupt that i
to trigger execution of this ISR_Task’s work() method. If interrupt_no equals -1, this 
ISR_Task object is not bound to a hardware interrupt, and can only be triggered by s
ware. The constructor throws a previously allocated instance of CoreBadPriorityException 
if the priority argument is outside the range of valid Core task priorities or is lower th
the interrupt priority of the interrupt that is to trigger execution of this interrupt serv
routine. There is no lower bound on this task’s priority if the interrupt_no argument 
equals -1. The constructor throws CoreEmbeddedConflictException if the Core Execution 
Environment cannot bind this ISR_Task to the requested interrupt number. 

ISR_Task.serviced(). If multiple ISR_Task objects share a single interrupt, the Core Exe
cution Environment shall invoke the work() methods for these tasks in order of decrea
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ing priority. If multiple ISR_Task objects of the same priority are bound to the same 
interrupt number, their respective work() methods shall be executed in the order that 
these ISR_Task objects were bound to the corresponding interrupt (by invocation of the 
ISR_Task’s arm() method). Following completion of each work() method, the Core Execu-
tion Environment shall invoke that same task’s serviced() method to determine if the 
interrupt is considered to have been completely serviced. If a given task returns true 
from its serviced() method, this indicates that the interrupt has been completely serv
and the Core Execution Environment shall not invoke any additional ISR_Task.work() 
methods for this particular interrupt trigger. The default implementation of ISR_Task.ser-
viced() shall return false. The Core signature follows:

public boolean serviced();

ISR_Task.trigger(). The trigger() method allows software to trigger execution of this inte
rupt service routine. Invoking trigger() has the effect of causing this ISR_Task alone to run 
its work() method at the ISR_Task’s interrupt priority level. Note that this ISR_Task’s 
work() method will be invoked even if this ISR_Task is currently disarmed. Also note that
invoking the trigger() method for this ISR_Task does not cause whatever other ISR_Task 
objects are bound to the same interrupt to have their work() methods executed.

Trigger requests (whether by hardware or software) shall not be queued. For each
ger, the Core Execution Environment shall defer execution of the corresponding work() 
method as long as other tasks are running at higher priority, and as long as other i
rupt service routine tasks are running at equal priority. If the same ISR_Task is triggered 
again while it is still deferring execution of its work() method from a previous trigger, the
new trigger shall have no effect.

The Core signature is shown below:

public final void trigger();

ISR_Task.work(). The Core Execution Environment shall invoke the work() method each 
time the interrupt is triggered. This method is “Atomic Synchronized”, meaning that
work() method must be execution-time analyzable. During execution of this method
interrupts at this object’s priority ceiling level and below are disabled. The default 
implementation of the work() method simply returns void. The Core signature is show
below:

public synchronized void work();

All implementations of the work() method in subclasses of ISR_Task shall declare the 
method to be synchronized. The Core Verifier shall enforce this restriction.

ISR_Task.ceilingPriority(). The ceilingPriority() method shall return 129 minus Core-
Task.numInterruptPriorities(). Note that subclasses of ISR_Task may override this method to 
return a different priority. The Core signature is shown below:

public short ceilingPriority();

ISR_Task.arm(). The arm() method shall cause this ISR_Task to become armed. When first
constructed, ISR_Task objects are not armed. This means that the ISR_Task’s work() 
method is not invoked by the Core Execution Environment in response to signaling
96 Copyright 1999, 2000 J Consortium, All Rights Reserved



The Specification

nal-
e 

-

revi-
st 

e, 

d 
the corresponding hardware interrupt. To install an interrupt handler, the Core program-
mer must first construct the ISR_Task, following which he must invoke the start() or 
_start() methods, following which he must invoke the arm() method. The Core signature 
is shown below:

public final void ISR_Task.arm();

ISR_Task.disarm(). The disarm() method shall cause this ISR_Task to become disarmed. 
When first constructed, ISR_Task objects are not armed. This means that the ISR_Task’s 
work() method is not invoked by the Core Execution Environment in response to sig
ing of the corresponding hardware interrupt. To install an interrupt handler, the Cor
programmer must first construct the ISR_Task, following which he must invoke the 
start() or _start() methods, following which he must invoke the arm() method. To return 
the ISR_Task to disarmed state after arming it, the Core programmer invokes the disarm() 
method. The Core signature is shown below:

public final void ISR_Task.arm();

3.17.25 The SporadicTask Class

The SporadicTask class extends CoreTask. Use this class to implement responses to spo
radic (asynchronous) events. To trigger a SporadicTask to respond to an asynchronous 
event, invoke the task’s trigger() method. This causes the task’s work() method to be exe-
cuted by this task running at the designated priority. If the task is still executing a p
ous invocation of its work() method when a new execution is triggered, the new reque
is queued so that this task can perform the requested invocation of the work() method fol-
lowing completion of previously triggered executions of the work() method.

SporadicTask Constructor. When a SporadicTask is created, it is necessary to identify 
several characteristics of the task, as listed below:

1. Whether or not asynchronous event handling other than abort() and stop() is enabled 
for this core task.

2. The size of this task’s run-time stack.

3. The size and type of the default allocation context for this CoreTask.

4. The task’s Base Priority.

The signature of the SporadicTask constructor is shown here:

public SporadicTask(ATCEventHandler handle, long stack_size, long allocation_size, 
CoreString allocation_block_name, int priority)

throws CoreBadPriorityException, CoreEmbeddedConflictException;

If handler is null, this SporadicTask shall ignore asynchronous event signaling. Otherwis
the initial event handler for this task is represented by handler. The stack_size argument 
specifies the number of words on the task’s run-time stack. If stack_size equals zero, the 
task’s stack will be the default stack size. The allocation_size argument specifies the 
number of bytes in the task’s default AllocationContext. If allocation_size equals zero, the 
default AllocationContext for this task is variable, growing at run time based on deman
and availability of memory. The allocation_block_name argument specifies the name of 
the block of memory within which the AllocationContext’s memory shall be located. If 
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this argument equals null, the Core Execution Environment shall place the AllocationCon-
text’s memory region in the host computer system’s main memory. If 
allocation_block_name specifies an allocation region that does not exist within this Co
Execution Environment, or if the Core Execution Environment chooses (for implem
tation-defined reasons) to not permit this task to use the named memory region as
default allocation region, the constructor shall throw a previously allocated instanc
CoreEmbeddedConflictException. The priority argument specifies the Base Priority at whic
the SporadicTask’s work() method executes each time the corresponding interrupt is tr
gered. 

SporadicTask.trigger(). The trigger() method allows software to trigger execution of this
sporadic task. Each invocation of the trigger() method is queued. The SporadicTask object 
remembers the number of pending work() invocations and decrements this count each 
time it completes an execution of work(). If no work() invocations are pending, this task 
suspends itself awaiting a subsequent invocation of trigger(). The Core signature for the 
trigger() method is shown below:

public final void trigger();

SporadicTask.work(). The Core Execution Environment shall invoke the work() method 
each time the sporadic task is triggered. The default implementation of the work() 
method simply returns void. The Core signature is shown below:

public synchronized void work();

SporadicTask.pendingCount(). The pendingCount() method returns the difference betwee
the number of times this task has been triggered (by invoking its trigger() method) and 
the number of times this task has completed execution of its work() method in response 
to previous trigger() invocations. Note that pendingCount() treats a triggered invocation as
still pending until the triggered work() invocation completes. The Core signature is 
shown below:

public final int pendingCount();

SporadicTask.clearPending(). The clearPending() method clears all pending invocations 
of this task’s work() method except for the currently executing work() invocation, if any. 
Immediately following execution of clearPending(), pendingCount() returns zero if this 
task is not currently executing its work() method and one otherwise. The Core signatu
is shown below:

public final void clearPending();

3.17.26 The IOPort class

A frequent need of embedded and real-time programmers is to be able to transfer 
into and out of physical device ports that are seen by the embedded processor as 
ports or memory-mapped I/O channels. This class, and its subclasses, provide the 
to perform these actions.

There are many subclasses of IOPort, each one named according to the following
plate:

IOPort<port-width><permissions>I
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Within this template, <port-width> is replaced with 8, 16, 32, or 64 representing 8-bit, 16-
bit, 32-bit, and 64-bit ports respectively. <permissions> is replaced with I, O, or IO, repre-
senting permission to read only, write only, or both read and write. For example, the 
class IOPort8O represents an 8-bit output-only port. All methods of the IOPort subclasses 
are final.

There is no constructor for IOPort or for any of its subclasses. Instead, IOPort provides a 
static factory method named createIOPort(). Given that the arguments to createIOPort() 
specify the port width and permissions, createIOPort() returns an instance of the IOPort 
subclass which represents the requested port width and I/O permissions.

IOPort.createIOPort(). Use this method to create instances of an IOPort subclass class. 
Each instance of an IOPort subclass is configured with permissions to perform a 
restricted subset of the full IOPort API. For example, instances of IOPort8O only permit 
8-bit output operations. For instances of IOPort8O, all other I/O services (input opera-
tions, and operations that attempt to transfer 16, 32, or 64 bits) terminate by throwing 
CoreOperationNotPermittedException. The Core signature for createIOPort() is shown 
below:

public static IOPort createIOPort(long address, boolean memory_mapped, int port_width, 
boolean read_permission, boolean write_permission)
throws CoreEmbeddedConflictException;

Instead of returning the requested IOPort object, createIOPort() throws CoreEmbeddedCon-
flictException if the Core Execution Environment cannot grant the requested I/O access. 
The conditions under which createIOPort() might throw this exception are implementa-
tion-defined.

IOPort.readByte(). The readByte() method fetches an 8-bit value from the corresponding 
port, assuming this is an instance of IOPort8I or IOPort8IO. In all other cases, this method 
terminates by throwing a previously allocated instance of CoreOperationNotPermittedEx-
ception. The Core signature is shown below:

public byte readByte() throws CoreOperationNotPermittedException;

IOPort.writeByte(). The writeByte() method stores an 8-bit value to the corresponding port, 
assuming this is an instance of IOPort8O or IOPort8IO. This method returns the value of 
its single argument. In all other cases, this method terminates by throwing a previously 
allocated instance of CoreOperationNotPermittedException. The Core signature is shown 
below:

public byte writeByte(byte b) throws CoreOperationNotPermittedException;

IOPort.readShort(). The readShort() method fetches a 16-bit value from the corresponding 
port, assuming this is an instance of IOPort16I or IOPort16IO. In all other cases, this 
method terminates by throwing a previously allocated instance of CoreOperationNotPer-
mittedException. The Core signature is shown below:

public short readShort() throws CoreOperationNotPermittedException;

IOPort.writeShort(). The writeShort() method stores a 16-bit value to the corresponding 
port, assuming this is an instance of IOPort16O or IOPort16IO. This method returns the 
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value of its single argument. In all other cases, this method terminates by throwing a 
previously allocated instance of CoreOperationNotPermittedException. The Core signature 
is shown below:

public short writeShort() throws CoreOperationNotPermittedException;

IOPort.readInt(). The readInt() method fetches a 32-bit value from the corresponding port, 
assuming this is an instance of IOPort32I or IOPort32IO. In all other cases, this method 
terminates by throwing a previously allocated instance of CoreOperationNotPermittedEx-
ception. The Core signature is shown below:

public int readInt() throws CoreOperationNotPermittedException;

IOPort.writeInt(). The writeInt() method stores a 32-bit value to the corresponding port, 
assuming this is an instance of IOPort32O or IOPort32IO. This method returns the value of 
its single argument. In all other cases, this method terminates by throwing a previously 
allocated instance of CoreOperationNotPermittedException. The Core signature is shown 
below:

public int writeInt() throws CoreOperationNotPermittedException;

IOPort.readLong(). The readLong() method fetches a 64-bit value from the corresponding 
port, assuming this is an instance of IOPort64I or IOPort64IO. In all other cases, this 
method terminates by throwing a previously allocated instance of CoreOperationNotPer-
mittedException. The Core signature is shown below:

public long readLong() throws CoreOperationNotPermittedException;

IOPort.writeLong(). The writeLong() method stores a 64-bit value to the corresponding 
port, assuming this is an instance of IOPort64O or IOPort64IO. This method returns the 
value of its single argument. In all other cases, this method terminates by throwing a 
previously allocated instance of CoreOperationNotPermittedException. The Core signature 
is shown below:

public long writeLong() throws CoreOperationNotPermittedException;

3.17.27 Core Throwable Types

The Core specification distinguishes four broad classes of throwable types. 

1. CoreThrowable: org.rtjwg.CoreThrowable extends org.rtjwg.CoreObject. Within the Core 
Execution Environment, only CoreThrowable objects shall be thrown and caught. If 
a method declares itself to throw objects, the type of the thrown object shall be 
CoreThrowable or one of its derivatives.

2. CoreException: org.rtjwg.CoreException extends org.rtjwg.CoreThrowable. Within the 
Core Execution Environment, CoreException is used to indicate a throwable object 
that typical Core components would want to catch. The Core Verifier shall enforce 
that any context that might throw a CoreException object declares in its signature 
that it does so. Further, the Core Verifier shall enforce that any context that invokes 
a method that might throw a CoreException object either catches the CoreException 
object or declares that it propagates the thrown CoreException object. In the com-
mon vernacular, a CoreException is a “checked” exception.
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3. CoreRuntimeException: org.rtjwg.CoreRuntimeException extends org.rtjwg.CoreThrow-
able. Within the Core Execution Environment, CoreRuntimeException is used to indi-
cate a throwable object that typical Core components would probably not want to 
catch. The Core Verifier shall not require that contexts that might throw a CoreRunt-
imeException object declare that they do so. Further, the Core Verifier shall not 
require contexts that invoke methods that might throw CoreRuntimeException objects 
to catch the object or to declare that the context propagates the thrown CoreRuntime-
Exception object. In the common vernacular, a CoreRuntimeException is an 
“unchecked” exception.

4. ScopedException: org.rtjwg.ScopedException extends org.rtjwg.CoreException. A Scope-
dException object is special in that when thrown, it is only “catchable” by catch 
clauses belonging to the method within which the ScopedThrowable object was 
enabled. The intended uses of ScopedException objects are as follows:

a. A routine that anticipates the need to establish a special asynchronous ev
handler which will cause abortion of a particular scoped region of code co
structs a ScopedException object, establishes a scope-specific ATCEventHandler 
to throw this ScopedException object, and initiates execution of the scoped co
text.

b. When the asynchronous ATCEventHandler is signaled, its handleATCEvent() 
method throws the previously created ScopedException object.

c. In processing this thrown exception, the Core Execution Environment does
allow any intervening scopes to “see” the thrown exception. Even a catch 
clause that is declared to catch any CoreException object does not match this 
thrown exception. The only catch clause that are allowed by the Core Execu-
tion Environment to see the thrown exception are the catch clauses found 
within the method that constructed the exception.

ScopedException supports two methods that are not supported by CoreException: 
enable() and disable(). The Core signatures are as follows:

public final void enable(); // enable this ScopedException
public final void disable(); // disable this ScopedException

The special semantics of these two methods are as described here:

d. If an ATCEventHandler attempts to throw a ScopedException that has been dis-
abled, the effect is to simply return from the ATCEventHandler (returning to the 
code that had been executing so it can resume execution, as if the event h
never been signaled).

e. The activation frame from within which a ScopedException is enabled repre-
sents the only scope that can catch the exception. A catch clause contained 
within any other invoked method’s activation frame is unable to see this 
scoped exception. If an object is enabled multiple times, the most recent 
enabling is the one that establishes its context. Enabling and disabling of Sco-
pedException objects does not nest.

f. When a ScopedException is instantiated, it is automatically enabled in the con
text from within which the object was constructed. 

g. Whenever a method’s activation frame is removed from the run-time stack
of the ScopedException objects that are enabled for that specific activation 
frame are automatically disabled. This is done atomically with respect to h
dling of nested asynchronous transfer of control events.
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Note that the Core Execution Environment does not support the analog of java.lang.Runt-
imeException, which extends java.lang.Exception but is unchecked.

Table 4 on page 102 details the various CoreThrowable classes that are part of the official 
Core specification. In all cases, each of these CoreThrowable classes supports two con-
structors, one taking no arguments and the other taking a single CoreString object which 
represents the message to which this CoreThrowable object shall maintain a reference.

TABLE 4. Core CoreThrowable Classes

Class Name Super 
Class

Usage

CoreIllegalMonitor-
StateException

Core-
Runtime-
Exception

Thrown if a wait() or synchronization request vio-
lates the rules for priority inheritance or priority 
ceiling synchronization.

CoreOutOfMemory-
Exception

Core-
Runtime-
Exception

Thrown if a request to allocate memory cannot be 
immediately satisfied because of insufficient mem-
ory.

CoreArrayIndexOut-
OfBoundsException

Core-
Runtime-
Exception

Thrown if a response to an array (or CoreString) 
subscripting operation reaches beyond the length of 
the array.

CoreClassFormatError Core-
Runtime-
Exception

Thrown if an attempt to dynamically load a class 
cannot be satisfied because the class, or one of the 
class it refers to, is of improper format or because it 
fails byte-code verification.

CoreOperationNotPermitted-
Exception

Core-
Exception

Thrown if a particular operation is not permitted (or 
supported) for a particular combination of parame-
ters and/or system state.

CoreSecurityException Core-
Exception

Thrown if request to create a task or to change the 
priority or period of a task is not permitted for the 
requesting component.

CoreBadPriorityException Core-
Exception

Thrown if a request to set the priority of a Core task 
is outside the range of valid Core priorities.

CoreBadArgumentExcep-
tion

Core-
Exception

Thrown if an argument to a method has an unac-
ceptable value.

CoreEmbeddedConflict-
Exception

Core-
Exception

Thrown if a request to obtain access to a particular 
I/O resource (such as an interrupt vector) conflicts 
with some other software component’s access to the
same resource.

CoreATCEventsIgnoredEx-
ception

Core-
Exception

Thrown if a component requests to signal an asyn-
chronous event or to change the asynchronous 
event handler for a Core task that does not support
asynchronous event handling.

CoreUnsignedCoercion-
Exception

Core-
Exception

Thrown if a request to coerce an unsigned integer to
a smaller size unsigned integer overflows the 
capacity of the smaller integer.
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Throughout the Core API description provided in this specification, it is stated that Core 
methods which throw exceptions do so by throwing “previously allocated instances
the exceptions. The point in emphasizing this detail is that the act of throwing an e
tion does not require allocation of any new objects and that the thrown exception o
need not be explicitly released. All of the previously allocated exceptions describe
the official Core API descriptions shall be allocated once during startup of the Core
tual machine.

4.0 Baseline API

The real-time core has been designed to facilitate cooperation between componen
written for execution on the Baseline virtual machine and components written for e
cution within the Core Execution Environment. Core Execution Environments need
support the optional connection to the Baseline virtual machine. When the Core Ex
tion Environment is combined with a Baseline virtual machine, the Baseline API sh
support the services described in this section.

As discussed in Section D.2 (starting on page 153), every Core object has two app
tion programmer interfaces, one for the core domain and the other for the Baseline
domain. Conceptually, these two interfaces are represented by distinct class repre
tions. Consider, for example, representation of org.rtjwg.CoreObject. Though this class 
and instances of it reside in the Core domain, this same class is also visible to the
line domain. However, the Baseline domain does not know about the variables or 
core methods associated with this object.

This section discusses the Baseline domain’s view of particular Core objects. In thi
tion, when we speak of CoreObject and CoreClass, we are specifically referring to the 
Baseline view of those classes. Another subtle issue to emphasize is that even tho
the Baseline domain cannot see everything that is inside of a core object, if the Bas
domain passes a reference to a core object back into the core domain (by supplyin
reference as an argument to a Core-Baseline method), the core domain can see th
vate information that had been invisible to the Baseline domain.

CoreClassInUseException Core-
Exception

Thrown if a request to unload a class cannot be sat-
isfied because the class is currently in use.

CoreClassNotFound-
Exception

Core-
Exception

Thrown if a request to dynamically load a class can-
not be satisfied because the class cannot be found.

CoreArithmeticOverflow-
Exception

Core-
Exception

Thrown by certain contexts (such as unit conver-
sion operations of the Time class) if arithmetic 
operations result in overflow.

CoreObjectNot-
AddressableException

Core-
Exception

Thrown if the CoreObject whose address is 
requested is not an array of primitive type.

TABLE 4. Core CoreThrowable Classes

Class Name Super 
Class

Usage
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Semaphore Operations. Baseline components can synchronize with Core components by 
performing appropriate semaphore operations. See Section 3.17.17 for a description of 
the Baseline SignalingSemaphore operations and Section 3.17.18 for a description of the 
Baseline CountingSemaphore operations.

CoreTask Operations. A special service is provided to allow Baseline components to 
start up core tasks. See “CoreTask._start()” on page 93 for more information on th
topic.

Core Execution Profiles. To determine the set of optional profiles that have been 
installed into a particular Core Execution Environment, the Baseline component 
invokes the CoreDomain.profiles() method, described in the section titled “CoreDo-
main.profiles()” on page 106.

Starting Up a Core Execution Environment. To start up a Dynamic Core Execution Envi
ronment, the Baseline programmer must load and instantiate the special BaselineCore-
ClassLoader class, described in Section 4.1.

4.1 The BaselineCoreClassLoader Class

BaselineCoreClassLoader Constructors. There are two constructors for BaselineCore-
ClassLoader. The first of these takes no arguments. Its Core signature is shown here

public BaselineCoreClassLoader();

The first instantiation of the BaselineCoreClassLoader class shall define the mechanism 
for all Core class loading to be performed within this Core Execution Environment.
the first BaselineCoreClassLoader instance is constructed using the no-argument con-
structor, the Core Execution Environment shall use the default implementation of Core-
ClassLoader to search for class files that need to be loaded. As described below, the
default CoreClassLoader implementation searches the local file system as directed by
CoreClassPath environment variable for class files to be loaded.

To override the default behavior, a system integrator extends CoreClassLoader, overrid-
ing the implementation of findClassBytes(). See Section 3.15 for a more complete 
description of the CoreClassLoader class. This new implementation of findClassBytes() 
might search a compressed ROM image, or probe a network class file server, or em
special request to have the class file transmitted over digital wireless carrier. To co
the special implementation of findClassBytes() to the BaselineCoreClassLoader, the system 
integrator shall supply a reference to the specialized CoreClassLoader object as an argu-
ment to the BaselineCoreClassLoader constructor. The signature for the second form of
the BaselineCoreClassLoader constructor is shown below:

public BaselineCoreClassLoader(CoreClassLoader specialized_ccl);

BaselineCoreClassLoader semantics. BaselineCoreClassLoader extends java.lang.Class-
Loader. In this regard, it behaves like other Java class loaders. However, there are a
ber of ways in which BaselineCoreClassLoader is distinct. The special attributes of this 
class loader are as follows:
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1. Insofar as the Baseline domain is concerned, the Baseline interface to all Core 
classes is represented as if those classes had been loaded by the BaselineCoreClass-
Loader class loader.

2. The BaselineCoreClassLoader class loader shall only load classes that correspond to 
Core objects and selected infrastructure routines (such as the Baseline CoreDomain 
class). Any attempt to load any other class with the BaselineCoreClassLoader shall 
abort by throwing a ClassNotFoundException exception.

3. BaselineCoreClassLoader shall be a final class, meaning that it cannot be extended.

4. The constructors for BaselineCoreClassLoader shall load org.rtjwg.CoreDomain, shown 
below, and all of the other key Core classes that are required for implementation of 
the Baseline interface to the Core domain, including org.rtjwg.CoreObject, 
org.rtjwg.CoreThrowable, and org.rtjwgCoreIntArray. 

5. The BaselineCoreClassLoader class loader shall perform security manager checks on 
all class load requests, making sure that the requests originate from within CoreDo-
main.defineClass() or CoreDomain.loadClass(), or indirectly from within the Core Exe-
cution Environment’s CoreClassLoader.defineClass() or CoreClassLoader.loadClass() 
methods. Any other requests to load Core classes shall be refused by throwin
java.lang.SecurityException.

4.2 The CoreDomain Class

The CoreDomain class extends java.lang.Object. The static initializer for the CoreDomain 
class creates the primordial instance of the CoreDomain class. The CoreDomain class pub-
lishes a static variable named core which represents the primordial instance of this cla

public final static CoreDomain core;

CoreDomain.lookup(). The lookup() method returns the core object that was previously
published in the core registry with the specified name, throwing ObjectNotFoundExcep-
tion if no such object exists in the core registry. The Core signature is shown below

public final CoreObject lookup(String name) throws ObjectNotFoundException;

CoreDomain.defineClass(). The defineClass() method converts the sub-sequence rangin
from position offset to position (offset + len - 1) within the array of bytes b into an instance 
of class Class. The Class object returned from defineClass() represents the Baseline inter
face to the newly loaded class. The Core methods of the newly loaded class are no
ble to the Baseline domain, so they are omitted from the Baseline class representa
A side effect of loading a Baseline class in this way is that the Core version of the s
class is loaded into the Core Execution Environment. The defineClass() method shall 
throw ClassNotFoundException if any referenced class was not previously loaded. The
Core signature is shown below:

public final CoreClass defineClass(String name, byte[] b, int off, int len)
throws ClassNotFoundException;

CoreDomain.loadClass(). The loadClass() method shall load the class specified by its 
name argument, searching for the class file representation according to the strategy
resented by this Core Execution Environment’s CoreClassLoader implementation. This 
method shall resolve all referenced classes. The Core signature is shown below:
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public final CoreClass loadClass(String name) throws ClassNotFoundException;

CoreDomain.instantiate(). The instantiate() method instantiates a Core object within the 
Core heap to implement the CoreClass c. The no-argument constructor for the newly 
allocated Core object runs as if it were invoked from a Core task. In other words, the 
constructor is not a Core-Baseline method. The Core signature is shown below:

public final CoreObject instantiate(CoreClass c);

CoreDomain.profiles(). The profiles() method shall return an array of java.lang.String 
objects representing the collection of all real-time profiles that are present within this 
Core Execution Environment. Profile naming conventions serve to differentiate key fea-
tures of the profiles, as described in the section titled “CoreRegistry.profiles()” on p
78.

The Core signature for the profiles() method follows:

public static String [ ] profiles();

4.3 The ObjectNotFoundException Class

The org.rtjwg.ObjectNotFoundException class extends java.lang.Exception. This class has a 
two constructors, one taking no arguments and the other taking a single java.lang.String 
argument to represent the message associated with this exception. There are no o
methods defined for this exception class.

4.4 The CoreBaselineThrowable Class

The org.rtjwg.CoreBaselineThrowable class, which extends java.lang.Throwable, is a Base-
line class. If a Core-Baseline method is declared to throw a CoreThrowable object which 
does not derive from either the CoreRuntimeException or CoreException classes, the Core 
Class Loader shall represent the Baseline API of this method as throwing CoreBase-
lineThrowable. At run time, if this method terminates by throwing a CoreThrowable object, 
the Core Execution Environment shall wrap a CoreBaselineThrowable object around the 
thrown CoreThrowable object by constructing the CoreBaselineThrowable object, passing a 
reference to the thrown CoreThrowable object as the sole argument to the CoreBaselineTh-
rowable constructor. The CoreBaselineThrowable object shall be constructed in the Base-
line context, and its stack backtrace shall begin at the point of the Core-Baseline m
invocation whose execution terminated by throwing the CoreThrowable object.

CoreBaselineThrowable Constructors. There shall be only one constructor for the Core-
BaselineThrowable class. This constructor shall require a reference to an org.rtjwg.Core-
Throwable object as its sole argument. The Core signature is shown below:

public CoreBaselineThrowable(org.rtjwg.CoreThrowable throwable_core_exception);

CoreBaselineThrowable.getCoreThrowable(). The getCoreThrowable() method shall return 
a reference to the org.rtjwg.CoreThrowable object that was supplied as the sole argumen
to the CoreBaselineThrowable constructor. The Core signature is shown below:

final public org.rtjwg.CoreBaselineThrowable getCoreThrowable();
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4.5 The CoreBaselineRuntimeException Class

The org.rtjwg.CoreBaselineRuntimeException class, which extends java.lang.RuntimeExcep-
tion, is a Baseline class. When a Core-Baseline method terminates by throwing a Core-
RuntimeException object, the Core Execution Environment shall wrap a 
CoreBaselineRuntimeException object around the thrown CoreRuntimeException object by 
constructing the CoreBaselineRuntimeException object, passing a reference to the thrown 
CoreRuntimeException object as the sole argument to the constructor. The CoreBase-
lineRuntimeException object shall be constructed in the Baseline context, and its stack 
backtrace shall begin at the point of the Core-Baseline method invocation whose execu-
tion terminated by throwing the CoreRuntimeException object.

CoreBaselineRuntimeException Constructor. There shall be only one constructor for the 
CoreBaselineError class. This constructor shall require a reference to an org.rtjwg.CoreRun-
timeException object as its sole argument. The Core signature is shown below:

public CoreBaselineRuntimeException(
org.rtjwg.CoreRuntimeException throwable_core_exception);

CoreBaselineRuntimeException.getCoreException(). The getCoreException() method shall 
return a reference to the org.rtjwg.CoreException object that was supplied as the sole argu-
ment to the CoreBaselineError constructor. The Core signature is shown below:

final public org.rtjwg.CoreBaselineRuntimeException getCoreException();

4.6 The CoreBaselineException Class

The org.rtjwg.CoreBaselineException class, which extends java.lang.Exception, is a Baseline 
class. When a Core-Baseline method terminates by throwing a CoreException object, the 
Core Execution Environment shall wrap a CoreBaselineException object around the 
thrown CoreException object by constructing the CoreBaselineException object, passing a 
reference to the thrown CoreException object as the sole argument to the CoreBaselineEx-
ception constructor. The CoreBaselineException object shall be constructed in the Baseline 
context, and its stack backtrace shall begin at the point of the Core-Baseline method 
invocation whose execution terminated by throwing the CoreException object.

CoreBaselineException Constructors. There shall be only one constructor for the Core-
BaselineException class. This constructor shall require a reference to a org.rtjwg.CoreEx-
ception object as its sole argument. The Core signature is shown below:

public CoreBaselineException(org.rtjwg.CoreException throwable_core_exception);

CoreBaselineException.getCoreException(). The getCoreException() method shall return a 
reference to the org.rtjwg.CoreException object that was supplied as the sole argument to 
the CoreBaselineException constructor. The Core signature is shown below:

final public org.rtjwg.CoreBaselineException getCoreException();
Real-Time Core Extensions 107



Acknowledgments

tici-

eir 

July 

m-

 

5.0 Acknowledgments

This work represents the results of many people’s efforts, including the various par
pants in the J Consortium’s Real-Time Java Working Group, NewMonics real-time 
development team, and NewMonics administrative support staff. We thank all for th
contributions to this specification.

6.0 Informative References

1. Requirements For Real-time Extensions For the Java ™ Platform, edited by Lisa 
Carnahan and Marcus Ruark, National Institute of Standards and Technologies. 
April 1999.

2. Java Language Reference, 2nd Edition, by Mark Grand, O’Reilly Publications, 
1997, ISBN 1-56592-326-X.

3. Java Virtual Machine, by Jon Meyer and Troy Downing, March 1997, ISBN 1-
56592-194-1.

4. The Java™ Programming Language, Second Edition, by Ken Arnold and James 
Gosling, Addison-Wesley, 1998, 464 pages, ISBN 0-201-31006-6.

5. The Java Language Specification, by James Gosling, Bill Joy and Guy Steele, Add-
ison-Wesley, September 1996, ISBN 0-201-63451-1.

6. The Java Class Libraries Volume 1, Second Edition, by Patrick Chan, Rosanna Lee 
and Douglas Kramer, Addison-Wesley, July 1998, ISBN 0-201-31002-3. 

7. The Java Class Libraries Volume 2, Second Edition, by Patrick Chan and Rosanna 
Lee, Addison-Wesley, April 1998, ISBN 0-201-31003-1.

8. The Java Virtual Machine Specification, by Tim Lindholm, Frank Yellin, Bill Joy, 
and Kathy Walrath, Addison-Wesley, 1998, 256 pages, ISBN 0-201-63452-X.

9. Compilers: Principles, Techniques, and Tools, by Alfred Aho, Ravi Sethi, and Jef-
frey Ullman, 1986, 796 pages, ISBN 0-201-10088-6.

10. C ISO/IEC 9899:1990

11. C++ ISO/IEC/14882: 1998

12. Improving the Java Memory Model Using CRF, by Jan-Willem Maessen, Arvind, 
and Xiaowei Shen, in Proceedings of the Conference on Object Oriented Progra
ming, Systems, Languages, and Applications, Minneapolis, Minnesota, 2000.

13. Fixing the Java Memory Model, by William Pugh, in Proceedings of the ACM Java
Grande Conference, June 1999.

14. The Java Memory Model, Issues and Discussions hosted at http://www.cs.umd.edu/
~pugh/java/memoryModel/.
108 Copyright 1999, 2000 J Consortium, All Rights Reserved



History

elow:

sed 
 inter-

rove 

 
 

 The 
x. 
rary 

e 6)) 
 

s 

 the 
syn-
 has 

es 
gra-

eri-

g 
t.

clar-

e 
ge 35 
vi-
Annex A History

A.1 Revision 1.0.14

This revision represents changes motivated by the possible opportunity to present the 
Core Specification to ISO under ISO’s PAS program. Specific changes are listed b

1. Removed the word Java from the title and from many of the notational terms u
throughout the document. Concern was raised that using Java in the title of an
national standard might violate Sun Microsystems trademark guidelines.

2. Various small changes to correct misspellings, cut-and-paste errors, and to imp
clarity. These are scattered throughout the document.

3. Reordered the document to move the edit history, requirements, rationale, and
implementation suggestions into annexes, removing them from the body of the
specification.

4. Removed the notion of Syntactic Core extensions from the Core specification.
use of baseline and stackable keywords is no longer supported as conforming synta
These words are used only as a notational convenience in presenting Core lib
signatures.

5. Revised the discussion of conformity assessment (Section 3.1 (starting on pag
to make conformity requirements more clear and precise. Removed all syntax
dependencies from conformity requirements. Conformity is now defined in term
of class file representations rather than source code syntax.

6. Removed the entire “I/O Subsystem” section from the Core specification. This 
material was redundant with the specification being developed concurrently by
Real-Time Data Access Working Group. Keeping the efforts of the two groups 
chronized was difficult and time consuming. In its place, the Core specification
new simplified definitions of ISR_Task, SporadicTask, and IOPort. We expect that the 
Real-Time Data Access Working Group will eventually supplement these class
by defining a variant of the Real-Time Access Profile which is designed for inte
tion within a Core Execution Environment.

7. Replaced CoreError with CoreRuntimeException and CoreBaselineError with CoreBase-
lineRuntimeException. It was felt this represents a better match to the existing exp
ence of current Baseline programmers.

8. Added Section 3.9 (starting on page 24), which clarifies the required schedulin
behavior for Baseline threads executing within the Core Execution Environmen

9. Added Section 3.10 (starting on page 24), which discusses briefly the need to 
ify the Core Memory Model. This section needs further work.

10. Added discussion of predictability requirements for the C/Native API and for th
Baseline API. See Section 3.14.2 (starting on page 34). Updated Table 1 on pa
to reflect changes to the API and to correct several errors from the previous re
sion.

11. Replaced the C library function corePriorityInterleave() with corePriorityMap() in Sec-
tion 3.16 (starting on page 57). Added enterSynchronized() and exitSynchronized() 
methods to that same section.
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A.2 Revision 1.0.13

In preparation for submission to ISO through the PAS program, the Real-Time Data 
Access Group and Real-Time Java Working Group identified two general areas that 
could be improved in order to achieve significant quality improvement to the specifica-
tion. These are:

1. To remove unnecessary reference and dependency on the Baseline specification, 
and

2. To further unify the Core specification with the evolving specification for the Real-
Time Data Access Profile.

This draft represents proposed changes intended to address both of these concerns. The 
changes identified in this draft have not yet been approved by the Real-Time Java Work-
ing Group. The following list identifies a number of additional contemplated changes 
that have not yet been folded into the document.

1. Add a OneShotEvent class that is similar to PeriodicEvent class except that execution 
of the corresponding work() method occurs only once each time this event handler is 
enabled. Following the one-time execution of the event handler, the event handler 
automatically disables itself. The OneShotEvent class is patterned after the class by 
the same name which is defined in the Real-Time Data Access specification version 
1.5.

a. It shall be implementation-defined when a OneShotEvent handler’s work() 
method is invoked relative to the timing of any fixed-period timer ticks that
might be part of the system. In particular, the work() invocation may either pre-
cede or trail the periodic delay by up to one full period.

2. For all kinds of events (PeriodicEvent, OneShotEvent, SporadicEvent, and Interrupt-
Event), any such events that are triggered while that event is disabled shall be 
ignored. This represents a change in the specified behavior for SporadicEvent.

3. There are a number of contemplated changes regarding queueing and buffer o
run:

a. For all kinds of events (PeriodicEvent, OneShotEvent, SporadicEvent, and Inter-
ruptEvent), add enableQueue() and disableQueue() methods. While queueing is 
enabled, each event maintains a count of how many times it has been trigg
and not serviced. Note that each event has a single event handler. 

b. The meaning of Event.disable() is to prevent new events from being queued.

c. For all kinds of events, the enable() and disable() methods may involve inte
tion with the operating system, which may result in error conditions being s
naled by the operating system. For this reason, the enable() and disable() 
methods are now declared to throw CoreOperationFailedException.

d. The meaning of Event.disableQueue() is also to prevent new events from being
queued. Additionally, Event.disableQueue() wipes the event queue clean. 

e. Add an onError() method to each of the EventHandler classes.

f. Add an error() method to each kind of event. This method returns an integer
code representing the reason that the onError() method was invoked. A special 
error code named OverrunError is defined to equal one (1) in IOEventHandlerInter-
face. Other error codes remain to be specified. The intent is that we will spe
additional error codes for publication in this specification.
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g. If the work() method of an event handler is still running and the one of the 
Events that this event handler handles is enabled, and queueing is disabled for 
that event when a new event arrives, we invoke the onError() method for the 
corresponding EventHandler object.

h. Eliminate the numberOverruns() method from PeriodicTask.

4. Add an IODescription class patterned after the class by the same name in the Real-
Time Data Access profile specification, version 1.5.

5. Add an enumerate() method to IONodeLeaf, which returns an array of IODescription 
objects representing all of the proxies and events that have been created by this ION-
odeLeaf object.

6. Add an event handler to the IOChannel proxy objects. Specify this as an argument to 
the createIO() invocation.

7. Add a Version class, which has the following final fields:

CoreString spec_no // which version of the specification does

// this implement?
CoreString vendor_name; // Which vendor supplied this class?
CoreString vendor_version; // What is vendor’s version number for

// this product?

8. Add an IOEventHandler class from which PeriodicTask, InterruptTask, and SporadicTask 
derive. This is patterned after the class by the same name in the Real-Time Data 
Access profile specification, version 1.5.

a. Tentatively, add a reference to SymbolTable as an argument to the various cre-
ateXX() methods. This argument may be null, signifying that the object to be 
created is not named symbolically.

9. Move pendingCount() to EventHandler class and remove this method from Event 
classes.

10. Give the IONode constructor an argument named driver_name, of type CoreString, 
which represents the name of a system driver which shall be initialized by this con-
structor. The driver_name argument shall name a Java class which implements the 
necessary driver services in an implementation-defined manner. This is patterned 
after the same concept as described in the Real-Time Data Access profile specifica-
tion, version 1.5.

11. A change is proposed to the range checking associated with the IONodeLeaf.cre-
ateIO() method, which would read as follows: “If the mode attribute’s IOInter-
face.IOMemoryMapped bit is set and the sum of the I/O channel’s offset attribute with 
the range calculated above exceeds the value returned from the memoryRange() 
method invoked on this IONodeLeaf object, throw an instance of OperationNotPermit-
tedException. Note that the memory range of this IONodeLeaf is computed by sub-
tracting this IONodeLeaf’s base address from the memory range of this IONodeLeaf ’s 
parent.)

A.3 Revision 1.0.12

Upon distribution of revision 1.0.11, Omron observed inconsistencies in the signat
of the value() methods of the IOChannel subclasses. In some cases, these were declare
throw an exception, and in other cases, they were declared to not throw an except
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That was an editing oversight. In this revision, all of the value() methods are declared to 
not throw an exception.

A.4 Revision 1.0.11

During the 30-day strategic review period initiated following the Jan. 31, 2000 J Con-
sortium board meeting, a number of oversights and small errors were uncovered. These 
are addressed in this “errata” revision.

1. In Section C.15 (starting on page 145), the sample code did not compile. We fo
it necessary to capitalize Class and change the initial assignment to the cd variable. 
Also, we added constructor arguments to the invocation of CoreClass.instantiate().

2. In Section C.17 (starting on page 146), we modified the sample timeout code a
the description thereof to improve clarity.

3. In Section 3.5 (starting on page 15), paragraph 20, removed mention of the Atomic 
interface. This change was supposed to have been incorporated into revision 
of this document.

4. In the PeriodicEvent class description (since removed from this document), remo
the numberOverruns() method as this is redundant with PeriodicTask.numberOverruns().

5. In the IONodeLeaf class description (since removed from this document), remove
the readable and writeable arguments of the createIO??() method. Add discussion of 
the “proxy” attribute for IONodeLeaf descriptions. In this same section, add an Inter-
ruptTask argument to the IONodeLeaf.createInterrupt() method.

6. In Section 4.2 (starting on page 105), we clarified that the constructor triggered by 
execution of CoreDomain.instantiate() runs as a Core task, and not as a Baseline 
thread executing a Core-Baseline method.

7. A number of minor typographic errors were corrected.

A.5 Revision 1.0.10

The J Consortium Board met on Jan. 31, 2000 and approved the start of the 30-day stra-
tegic review period concurrent with publication of the specification for additional public 
review. Prior to beginning this review, board members requested that a small number of 
minor errors and oversights be corrected. This is what was addressed with this Revision 
1.0.10.

A.6 Revision 1.0.9

The J Consortium Technical Committee met on Jan. 27, 2000 and approved revision 
1.0.8 for submission to the J Consortium board to begin the 30-day strategic review. In 
preparation for that review, a small number of minor typographic errors and editing 
oversights were corrected, resulting in revision 1.0.9. Additionally, the following 
changes, each of which had been discussed previously by participants of the Real-Time 
Java Working Group but which were accidentally omitted from subsequent drafts of the 
specification, were incorporated:

1. Allow nesting of PCP synchronization locks. This change is reflected in Section 
3.17.10 (starting on page 71) and discussed in Section C.11 (starting on page 144).
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2. Removed the prohibition on invocation of methods from within finally clauses. 
This change is reflected in Section 3.5 (starting on page 15) and in Section 3.11 
(starting on page 25).

A.7 Revision 1.0.8

A meeting of the Real-Time Java Working Group was held on Jan. 25, 2000. As a result 
of that meeting, the following additional revisions were made to this specification and 
the resulting specification was forwarded to the Technical Committee of the J Consor-
tium to be advanced to its next milestone.

1. Remove “draft” from the title of Section 3.0 (starting on page 6). Also, replace 
number of occurrences of the word “draft” with the word “revision”.

2. Add IOEventInterface.PeriodicEventCode to the list of special cases associated with 
invocations of IOEventInterface.fire(). This change is reflected in the description of 
the IOEventInterface interface, which was removed in a subsequent revision of th
document.

3. Replace IONodeLeaf.createIOxxx() with IONodeLeaf.createIO??(). This change is 
reflected in the description of the IONodeLeaf class, which was removed from a sub
sequent revision of this document, and in assorted other locations that make u
this name.

4. Add to description of IONodeLeaf.createIO??() that if the IOChannel object is created 
with implicit_io argument set to true, the created IOChannel object’s read() and write() 
methods throw CoreOperationNotPermittedException. This change is reflected in the 
description of the IONodeLeaf class, which was removed from a subsequent revisi
of this document.

5. In the description of the IODeviceDescription class, which was removed from a sub-
sequent revision of this document, remove redundant reference to “memory-
mapped I/O addresses”. In this same section, clean up the wording of number
paragraph 1.

6. For IODeviceDescription objects that represent I/O channels, replace the “range” 
attribute with an “entries” attribute. Change the meaning from size of spanned 
address space measured in bytes to number of entries spanned by this multi-port 
channel, each entry representing a scalar I/O channel of the width specified by the 
IODeviceDescription’s “mode” attribute. This change is reflected in the descriptions of 
the IODeviceDescription and IONodeLeaf classes, both of which were removed from a 
subsequent revision of this document.

7. In the description of IOInterface.mode() (subsequently changed to IODescrip-
tion.mode()), explain that the value() methods transfer a block of data as a complete 
array if the IOArrayAccess bit is set for a particular IOInterface object. This change is 
reflected in the description of the IOInterface interface, which was removed from a 
subsequent revision of this document.

8. Add a “Scope” section, as Section 1.0 (starting on page 1).

9. A few typographic errors were corrected.
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A.8 Revision 1.0.7

Based on a meeting of the Real-Time Java Working Group which was held on Jan. 21, 
2000, the following additional revisions were made to this specification.

1. Add to IOEventHandlerInterface and to the classes that implement this interface a 
method named handleEvent(). This method has the effect of setting the event for this 
invocation of work(), triggering execution of the work() method, and then waiting for 
the work() method to complete its processing. The handleEvent() method is synchro-
nized in the following sense: Once the handleEvent() method has been invoked, no 
other invocations of handleEvent() are allowed to overwrite the value of the set event 
until the corresponding invocation of work() completes. Having introduced the han-
dleEvent() method described above, remove the setEvent() method from IOEv-
entHandlerInterface and the classes that implement this interface. These changes are 
reflected in sections treating IOEventHandlerInterface, PeriodicTask, and SporadicTask, 
all of which were removed from a subsequent revision of this document.

2. Remove the explicit constructor from the InterruptEvent class. This change is 
reflected in the section treating InterruptEvent, which was removed from a subse-
quent revision of this document.

3. Change the constructor for IONodeLeaf to take a single integer interrupt number 
rather than a string that potentially represents multiple interrupt numbers. If multi-
ple interrupt numbers need to be associated with a particular device, application 
developers must describe that device using multiple IODeviceDescription objects, one 
for each of the distinct interrupt numbers. These changes are reflected in the section 
describing IONodeLeaf, which was removed from a subsequent revision of this doc-
ument.

4. Add an exchangeInterruptNumber() method to IONodeLeaf. This has the effect of 
replacing the value of the interrupt number associated with the IONodeLeaf object. 
The replacement is atomic with respect to invocations of the createInterrupt() 
method. This change is reflected in the section describing IONodeLeaf, which was 
removed from a subsequent revision of this document.

5. Remove the length argument of the IONodeLeaf.createIOxxx() method. Instead, com-
pute the length based on the value of the “range” attribute of the corresponding entry 
within the IODeviceDescription object. This change is reflected in the section describ-
ing IONodeLeaf, which was removed from a subsequent revision of this document.

6. When creating an I/O channel using the createIOxxx() method, clarify the meaning 
of a special slash character (‘/’) within the entry_name argument. In particular, the 
decimal digits that follow the slash shall represent an offset relative to the base 
address of this I/O channel, which offset is measured in terms of the data transfer 
size associated with this channel (i.e. an offset of 3 for a 32-bit channel represents a 
byte-offset from the base memory address of 12). Further, modify the specification 
so that when creating an I/O channel using the special slash character entry naming 
convention, the created I/O channel represents only a single data value rather than 
an array of data values. This change is reflected in the section describing IONode-
Leaf, which was removed from a subsequent revision of this document.

7. Throughout the document, use the phrase “memory-mapped access” to descri
access to memory-mapped I/O channels, use the phrase “I/O-space access” t
describe access to I/O ports residing in I/O space, and use the term “I/O chann
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represent either or both. These changes are reflected throughout the document. 
Appropriate definitions were added to Section 2.2 (starting on page 2).

8. Analogous to the “timer” attribute for IONodeLeaf.createPeriodic() and the “trigger” 
attribute for IONodeLeaf.createSporadic() methods, define a special “trigger” attribute 
for IONodeLeaf.createInterrupt(). This attribute shall either have the value “Interrupt-
Event”, or it shall hold the name of a class that extends from InterruptEvent. This 
change is reflected in the section describing IONodeLeaf, which was removed from a 
subsequent revision of this document.

9. Add the IOImplicit and IOExclusive symbolic constants back into the definition of the 
IOInterface interface. These are provided for convenience of the application devel-
oper and have no meaning insofar as built-in APIs are concerned. Add a symbolic 
constant named IOArrayAccess which identifies I/O channels that can be treated as I/
O arrays. These changes are reflected in the sections describing IONodeLeaf and 
IOInterface, both of which were removed from a subsequent revision of this docu-
ment.

10. Add enable() and isEnabled() methods to IOInterface and the classes that implement 
this interface. This change is reflected in the sections describing IOInterface and 
IOChannel, both of which were removed from a subsequent revision of this docu-
ment.

11. Add a constructor to allow new IODeviceDescription objects to be created and added 
to the system dynamically. Also, add a method to allow such dynamically added 
IODeviceDescription objects to be removed from the system. These capabilities need 
not be supported by all conforming implementations. If dynamic manipulation of 
the IODeviceDescription database is not supported, invocations of the constructor and 
removal method throw CoreOperationNotPermittedException. Further, add a 
dynamic_devices variable to the Configuration class and a static dynamicDevices() 
method to the IODeviceDescription class which represent whether or not this system 
allows IODeviceDescription objects to be added while the system is running. These 
changes are reflected in the section describing IODeviceDescription, which was 
removed from a subsequent revision of this document, and Section 3.17.20 (starting 
on page 81).

12. Add clarification re: address arithmetic for IOChannel nodes. In particular, base 
memory and I/O addresses are expressed in terms of byte addresses. However, 
when using the forward slash convention to name an entry argument for a cre-
ateIOxxx() invocation, the offset number is expressed in terms of the channel size. 
So, for example, if the IODeviceDescription entry named dma_buffer represents 512 
32-bit integers, and an application invokes createIO8Bit(), with “dma_buffer/8” as its 
first argument, the resulting IO8Bit object refers to the ninth integer in the 
dma_buffer, which is found at byte offset 32 relative to the beginning of the 
dma_buffer address range. For another example, suppose that we create an IO8Bit 
object to represent the entire dma_buffer by invoking createIO8Bit() with “dma_buffer” 
as its first argument. Invoking read(8) on the resulting IO8Bit object fetches the ninth 
integer (found at byte offset 32 from the base address) of the dma_buffer memory 
range. These changes are reflected in the section describing IONodeLeaf, which was 
removed from a subsequent revision of this document..

13. Add clarification re: endian behavior of I/O operations. In particular, all multi-byte 
values are transmitted to and from I/O channels using the representation that is 
most natural for a given platform. Add a little_endian variable to the Configuration 
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class and a static littleEndian() method to the IODeviceDescription class, both of which 
are true if the natural representation on this platform is little-endian, and false other-
wise. These changes are reflected in Section 3.17.20 (starting on page 81) and the 
section describing IODeviceDescription, which was removed from a subsequent revi-
sion of this document.

14. On the cover page, removed “draft” from the title and other cover material, and
added trademark symbol and trademark attribution for the Java trademark. 
Removed the word “draft” from the document’s abstract.

15. Throughout the document, changed the footer to say Copyright 1999, 2000 on
even-numbered pages.

16. Renamed the readDevice() method to update(). Renamed the writeDevice() method to 
flush().

17. Assorted typographic errors were corrected.

A.9 Revision 1.0.6

In response to comments received at the Jan. 14, 2000 meeting of the Real-Time 
Working Group, the following additional revisions were made to this specification.

1. Clarify that the IOEventHandlerInterface.setEvent() method is called automatically 
before calling IOEventHandlerInterface.work() each time an event triggers execution 
of this event handler. Add a protected method to PeriodicEvent to allow subclasses to 
trigger the start of each new period. These changes are reflected in the sectio
describing IOEventHandlerInterface and PeriodicEvent, both of which were removed 
from subsequent revisions of this document.

2. Do not require that 1-bit IOChannel objects be implemented using implicit reading
and writing. This change is reflected in the section describing IOChannel, which was 
removed from a subsequent revision of this document.

3. Create new IOChannel sub-classes to represent block-transfer I/O operations, as
addition (not a replacement) to existing capabilities. For example:

class IO8BitArray {
public byte[] value();
public void value(byte [] b);

}

These changes are reflected in sections describing the various sub-classes of
IOChannel, all of which were removed from a subsequent revision of this docum

4. For the various I/O proxy classes (IOChannel and all of its descendants), rename th
existing read() and write() methods to be readDevice() and writeDevice() methods. Then 
add the following methods to the subclasses:

a. read(): has effect of atomically performing a readDevice() operation followed by 
a value() operation.

b. read(offset): has effect of atomically performing a readDevice(offset) operation 
followed by a value() operation.

c. write(value): has effect of performing a value(val) operation followed by a writ-
eDevice() operation.

d. write(value, offset): has effect of performing a value(val) operation followed by a 
writeDevice(offset) operation.
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These changes are reflected in the sections describing IOChannel and its subclasses, 
all of which were removed from a subsequent revision of this document.

5. Establish better consistency between the use of interfaces and the use of classes. 
Note that we have IOEventHandlerInterface which is implemented by SporadicTask, 
PeriodicTask, and InterruptTask; and we have IOEventInterface which is implemented 
by InterruptEvent, SporadicEvent, and PeriodicEvent. We should also have IOInterface 
which is implemented by IOChannel. These changes are reflected in the sections 
describing IOInterface and IOChannel, both of which were removed from a subse-
quent revision of this document.

6. Add a disable() method to IOInterface and IOChannel. This change is reflected in the 
sections describing IOInterface and IOChannel, both of which were removed from a 
subsequent revision of this document.

7. Use a special subclass of IONode named IONodeLeaf to represent leaf nodes within 
the IONode hierarchy. These are different from interior nodes in the following 
respects:

a. Only leaf nodes have an associated IODeviceDescription object.

b. Only leaf nodes keep track of which interrupt numbers are associated with the 
node. Since multiple interrupts may be associated with a given device, this 
information is represented as a string, encoded in the leaf IONode’s constructor 
according to the conventions demonstrated in the following example:

int-1:int-2:int-3=5:1:1

This example shows three interrupts, named int-1, int-2, and int-3, which are 
associated with interrupt numbers 5, 1, and 1 respectively. The correspond
IODeviceDescription object should have entries by these same names, with e
entry having an attribute named “type”, for which the associated value is “Inter-
rupt”.

c. When leaf nodes are constructed, they do not need to specify mem_range and 
io_range arguments. These ranges are instead represented in the corresponding 
IODeviceDescription object.

d. Only leaf nodes are allowed to create IOChannel proxies (instantiate subclasses 
of IOChannel).

These changes are reflected in the sections describing IONode and IONodeLeaf, both 
of which were removed from a subsequent revision of this document.

8. Replace the IONodeLeaf.createIO() method with multiple methods, each one return-
ing an instance of a different IOChannel subclass. Each of these methods takes argu-
ments indicating:

a. Whether readDevice() and writeDevice() operations on the IOChannel object are 
implicit or explicit.

b. Whether the IOChannel object represents read permission.

c. Whether the IOChannel object represents write permission.

d. Whether the IOChannel object represents exclusive access to the given channel.

Further, remove implicit and exclusive mode information from the IODeviceDescrip-
tion representation. 

These changes are reflected in the sections describing IONode and IOInterface, both 
of which were removed from a subsequent revision of this document.
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9. Fix the descriptions of IONode.createIOxxx() and IONode.createInterrupt(). The current 
revision says createIO() instantiates an InterruptEvent and createInterrupt() instantiates 
a subclass of IOChannel. Reverse these. These changes are reflected in the section 
describing IONodeLeaf, which was removed from a subsequent revision of this doc-
ument.

10. For all of the IONodeLeaf.createIOxxx() operations, use the entry-name within the 
corresponding IODeviceDescription to identify the I/O channel to be created. Allow a 
forward slash followed by a sequence of decimal digits to be appended to the end of 
the entry name. If present, this sequence of digits represents an offset from the base 
address associated with the channel range. For example, the following two code 
sequences are equivalent:

// Version 1
IO1Bit m_proxy = IONodeLeaf_xx.createIO1Bit(“entry-name”, ...);
m_proxy.readDevice(7);

// Version 2
IO1Bit n_proxy = IONodeLeaf_xx.createIO1Bit(“entry-name/7”, ...);
n_proxy.readDevice();

This change is reflected in the section describing IONodeLeaf, which was removed 
from a subsequent revision of this document.

11. Add a new constructor for IONode and IONodeLeaf which does not include argu-
ments to specify the io_offset and io_range arguments. If these are not specified, they 
default to 0 and the size of parent node’s io_range respectively. For the root node, 
which doesn’t have a parent, these default to represent the beginning and end 
range of valid I/O-space addresses for the host platform. These changes are 
reflected in the sections describing IONode and IONodeLeaf, both of which were 
removed from a subsequent revision of this document.

12. Add an IONodeLeaf.createPeriodic() method. Among its arguments is an entry nam
The named entry must have an attribute named “type” with value “Periodic”. Addi-
tionally, the entry must have an attribute named “timer” for which the string argu-
ment is the name of the class to be instantiated. If the class is named “PeriodicEvent”, 
the created PeriodicEvent shall use the default system timer. Otherwise, the named 
class must be a subclass of PeriodicEvent, and may use a different timer than the sys-
tem default. The public constructor for PeriodicEvent has been removed. This 
change is reflected in the section describing IONodeLeaf, which was removed from a 
subsequent revision of this document.

13. Add an IONode.createSporadic() method. Among its arguments is an entry name. The 
named entry must have an attribute named “type” with value “Sporadic”. Additionally, 
the entry must have an attribute named “trigger” for which the string argument is the 
name of the class to be instantiated. If the class is not named “SporadicEvent”, the 
named class must be a subclass of “SporadicEvent”. The public constructor for Spora-
dicEvent has been removed. This change is reflected in the section describing ION-
ode, which was removed from a subsequent revision of this document..

14. Change the conventions for representation of information within IODeviceDescrip-
tion. 

a. For entries that represent I/O proxies, there shall be no required attribute 
named “address”. Instead, there shall be an attribute named “offset”, whose value 
is the byte offset relative to the corresponding IONode’s base address of this 
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channel, encoded as a sequence of lower-case hexadecimal digits with a lead-
ing “0x” prefix. If this IODeviceDescription’s “mode” attribute has the IOMemory-
Mapped bit set, the “offset” field is computed relative to the IONode’s base 
memory address. Otherwise, the “offset” field is computed relative to the ION-
ode’s base I/O address.

b. For entries that represent I/O proxies, the “mode” attribute shall encode only the 
values of the IO1Bit, IO8Bit, IO16Bit, IO32Bit, IO64Bit, IOReadPermission, IOWriteP-
ermission, and IOMemoryMapped bit fields. It shall not represent the values of the 
IOImplicit and IOExclusive fields.

c. If a particular entry represents an interrupt vector, it must have an attribute 
named “type” with value equal to “Interrupt”. The interrupt number associated 
with this interrupt shall be determined by the corresponding IONode’s represen-
tation.

These changes are reflected in the sections describing IODeviceDescription and IOInt-
erface, both of which were removed from a subsequent revision of this docume

15. IODeviceDescription should specify the range of memory and I/O addresses relati
to the parent’s respective base addresses. Thus, there is no need to supply ra
arguments when constructing a leaf node of the IONode hierarchy. These changes 
are reflected in the sections describing IONodeLeaf and IODeviceDescription, both of 
which were removed from a subsequent revision of this document.

16. Make the Core Verifier be required in any conforming implementation of the Co
development environment. In particular, Core Verification must be performed o
each Core program before execution of that program. These changes are refle
in Section C.4 (starting on page 138) and Section 3.5.1 (starting on page 18).

17. Change the behavior of CoreTask.setPriority(). If the task for which setPriority() is 
invoked is running within a priority ceiling context when setPriority() is invoked, the 
effect of setPriority() shall be deferred until after that task leaves its priority ceilin
context. This change is reflected in Section 3.17.23 (starting on page 88).

18. The previous revision of the specification states that time slicing shall be inhib
while the currently executing task executes within a priority ceiling context. Wh
this is a reasonable implementation, it is not the only feasible way to implemen
desired semantics. The key requirement is to enforce that priority ceiling regio
are executed with mutual exclusion, and leave it to the discretion of implemen
to enforce this behavior. This change is reflected in Section 3.8 (starting on pa
21).

19. The constructor for InterruptTask should not take an ATCEventHandler argument, 
since the InterruptTask’s work method always runs to completion with asynchrono
event handling deferred. This change is reflected in Section 3.17.24 (starting o
page 94).

20. Change ScopedException to extend CoreException instead of CoreError. This change is 
reflected in Section 3.17.27 (starting on page 100).

21. Add enable() and disable() methods to ScopedException. These have the following 
semantics:

a. If an ATCEventHandler attempts to throw a ScopedException that has been dis-
abled, the effect is to simply return from the ATCEventHandler (returning to the 
code that had been executing so it can resume execution, as if the event h
never been signaled).
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b. The activation frame from within which a ScopedException is enabled repre-
sents the only scope that can catch the exception. A catch clause contained 
within any other invoked method’s activation frame is unable to see this 
scoped exception. If an object is enabled multiple times, the most recent 
enabling is the one that establishes its context. Enabling and disabling of Sco-
pedException objects does not nest.

c. When a ScopedException is instantiated, it is automatically enabled in the con
text from within which the object was constructed. 

d. Whenever a method’s activation frame is removed from the run-time stack
of the ScopedException objects that are enabled for that specific activation 
frame are automatically disabled. This is done atomically with respect to h
dling of nested ATC events.

These changes are reflected in Section 3.17.27 (starting on page 100).

22. Update Table 1 on page 35 to represent all of the methods of all classes in the
API libraries.

23. Several typographic errors were corrected.

A.10 Revision 1.0.5

During the week of Jan. 10, 2000, members of the Real-Time Java Working Group 
asked to review revision 1.0.4 and the public review comments in preparation for f
izing the specification. This revision results from observations made by participants
the Real-Time Java Working Group during this review period. This revision has no
been approved by the Real-Time Java Working Group membership.

1. The core NIST requirements state that the core specification must identify the 
resource requirements associated with services provided within the real-time c
execution environment. This has been missing from previous versions of the c
specification. Add it. This change is reflected in Section 3.14.2 (starting on pag
34).

2. Exchange the definitions of CoreTask.stackSize() and CoreTask.stackDepth(). This 
change is reflected in Section 3.17.23 (starting on page 88).

3. Add a sizeof() method to CoreObject. This change is reflected in Section 3.17.1 
(starting on page 60).

4. Add an allocated() method to AllocationContext. This change is reflected in Section 
3.17.8 (starting on page 68).

5. Change the signature of AllocationContext.available() to return long. This change is 
reflected in Section 3.17.8 (starting on page 68).

6. Clarify description of constructor for ATCEventHandler. This change is reflected in 
Section 3.17.14 (starting on page 75).

7. Clarify description of constructor for ATCEvent. This change is reflected in Section
3.17.15 (starting on page 76).

8. Modify behavior of CoreRegistry.publish() to assure that the memory used to repre-
sent CoreRegistry data structures is not released prematurely.

9. Make PeriodicTask implement the IOEventHandlerInterface. Remove its executionPe-
riod() and numberOverruns() methods. These changes are reflected in the section 
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describing PeriodicTask, which was removed from a subsequent revision of this doc-
ument.

10. Add the numberOverruns() method to PeriodicEvent. In the same class, modify the 
return type of the handler() method to be PeriodicTask. This change is reflected in the 
section describing PeriodicEvent, which was removed from a subsequent revision of 
this document.

11. In IOEventInterface, rename SoftwareEventCode to be SporadicEventCode. Rename 
TimerEventCode to be PeriodicEventCode. Replace mention of SoftwareEvent with 
SporadicEvent. Revise the signature of exchangeHandler() to throw CoreOperationNot-
PermittedException. These changes are reflected in the section describing IOEventInt-
erface, which was removed from a subsequent revision of this document.

12. Add a getType() method to IOEventHandlerInterface. Define symbolic constants in this 
same class for SporadicTaskCode, InterruptTaskCode, and PeriodicTaskCode. Define the 
getType() method for SporadicTask, InterruptTask, and PeriodicTask. These changes are 
reflected in sections describing IOEventHandlerInterface, PeriodicTask, SporadicTask, 
and InterruptTask, all of which were removed from a subsequent revision of this doc-
ument.

13. Correct the description of IOChannel.mode() to properly identify that 7 bits are 
required to represent the channel width. This change is reflected in the section 
describing IOChannel, which was removed from a subsequent revision of this docu-
ment.

14. Make clear in the description of CoreTask that the start() and _start() methods do not 
result in immediate execution of the work() method for PeriodicTask, InterruptTask, 
and SporadicTask subclasses. This change is reflected in Section 3.17.23 (starting on 
page 88).

15. Change the signature of SporadicEvent.handler() to return SporadicTask. This change 
is reflected in the section describing SporadicEvent, which was removed from a sub-
sequent revision of this document.

16. Remove the constructors for InterruptEvent and all IOChannel subclasses. These 
changes are reflected in sections describing InterruptEvent, IOChannel, and all of the 
IOChannel subclasses, all of which were removed from a subsequent revision of this 
document.

17. Add createIO() and createInterrupt() methods to the IONode class. These changes are 
reflected in the section describing IONode, which was removed from a subsequent 
revision of this document.

18. Add a symbolic constant named IOExclusive to the IOChannel class. This change is 
reflected in the section describing IOChannel, which was removed from a subse-
quent revision of this document.

19. Remove attributeConstants() from the IODeviceDescription class. Add entryNames() and 
modify the definition of attributeNames(). These changes are reflected in the section 
describing IODeviceDescription, which was removed from a subsequent revision of 
this document.

20. Remove armInterrupt() and disarmInterrupt() from the InterruptEvent class. These 
changes are reflected in the section describing InterruptEvent, which was removed 
from a subsequent revision of this document.

21. Remove the value(x) method from all read-only subclasses of IOChannel. Remove 
the value() method from all write-only subclasses of IOChannel. Require that 1-bit I/
Real-Time Core Extensions 121



History

ec-
O objects be configured for implicit I/O. These changes are reflected in the sections 
describing IOChannel and its subclasses, all of which were removed from a subse-
quent revision of this document.

22. Miscellaneous typographic, spelling, and punctuation fixes, along with improve-
ments to indexing.

A.11 Revision 1.0.4

A meeting of the Real-Time Java Working Group was held on Jan 7, 2000. At this meet-
ing, the group surveyed the changes incorporated in Revision 1.0.3. A few minor editing 
changes were requested, which are incorporated in Revision 1.0.4.

1. Remove all references to DeviceRegistry and DeviceCapability as these classes have 
been removed from the specification.

2. Add cross references to point 34 of Section A.12 (starting on page 122).

3. Fix a few typographic and formatting errors.

A.12 Revision 1.0.3

A meeting of the Real-Time Java Working Group was held on Dec. 7, 1999. The pur-
pose of this meeting was to review comments received during the public review period 
for Revision 1.0.2. Revision 1.0.3 was prepared in response to the received comments. 
Specific issues with the 1.0.2 revision which have been addressed in the 1.0.3 revision 
are listed here.

1. The prohibition on string catenation in Core components is too severe. We need to 
allow catenation of string literals, as long as the catenation is performed by the 
Baseline Compiler. This change is reflected in paragraph 6 of Section 3.2 (starting 
on page 8) and paragraph 18 of Section 3.5 (starting on page 15).

2. The requirement that entry into and departure from a synchronized context not allo-
cate memory needs to generalize to apply to locking and unlocking operations per-
formed on Mutex objects as well. This change is reflected in paragraph 2 of Section 
3.8 (starting on page 21).

3. The prohibition on use of synchronized statements to lock Atomic objects other than 
this needs to generalize to apply to all Core objects. Furthermore, the wording of 
this requirement needs to be edited so as to allow the synchronized statement to lock 
this object. This change is reflected in paragraph 3 of Section 3.8 (starting on page 
21).

4. The discussion of synchronization issues must include the possibility that a blocked 
task becomes runnable because some other task signals an asynchronous event to 
this blocked task. This change is reflected in paragraph 4 of Section 3.8 (starting on 
page 21).

5. Introduce the notion of asynchronous transfer of control, as it has been proposed for 
inclusion in the Core specification. These changes are reflected in newly drafted 
Paragraph 5 of Section B.2 (starting on page 127), Section C.17 (starting on page 
146), Section 3.17.14 (starting on page 75), and “The Event Class” (since 
removed); and in modifications of Section 3.17.23 (starting on page 88) and S
tion 3.17.27 (starting on page 100).
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6. Mention that a task may become runnable because some other task signals an asyn-
chronous event. This change is reflected in Section 3.8 (starting on page 21), para-
graph 4.

7. Add a way to timeout a Mutex.lock() invocation. This is handled by introduction of 
the asynchronous transfer of control mechanism (See paragraph 5).

8. Add a CoreTask.join() method, along with a way to time it out. This change is 
reflected in Section 3.17.23 (starting on page 88). The timeout capability is pro-
vided by the asynchronous transfer of control mechanism (See paragraph 5).

9. Say that when CoreObject.notifyAll() awakens multiple tasks of equal priority, they 
are awakened in FIFO order. This change is reflected in Section 3.8 (starting on 
page 21), paragraph 4.

10. The special treatment given to thrown CoreError objects during execution of a finally 
statement that is part of the cleanup associated with asynchronous abortion of a task 
needs to generalize to all exceptions thrown during execution of finally statements 
executing in this cleanup mode. Generalizing this behavior allows the Core specifi-
cation to relax its prohibition on invoking other methods from within finally state-
ments. Accompanying this change, we need to modify the Core specification to 
allow Core finally statements to invoke other methods. This change is reflected in 
paragraph 4 of Section 3.11 (starting on page 25).

11. Add discussion regarding asynchronous abortion that execution of finally statements 
is “abort deferred”. If an asynchronous abort request is received during execut
of a finally statement, the executing thread does not respond to the abort reques
after the finally statement has completed its execution. (This is consistent with th
general notion that finally statements are always executed to termination, and are
never aborted by asynchronous requests.) This change is reflected in Section 
(starting on page 25).

12. Allow for the possibility that some implementations of the Core specification do
not support time slicing. If ticksPerSlice() returns zero, that means time slicing is di
abled. These changes are reflected in Section 3.17.20 (starting on page 81) an
tion 3.17.23 (starting on page 88).

13. Make clear that if a multi-dimensional array is considered to be stackable, all 
dimensions are considered stackable. This change is reflected in Section 3.12 (sta
ing on page 27).

14. Explain why the inner-class stack-allocation example presented by Aonix is no
valid Core program, and consequently why the example does not represent a 
hole in the Core specification. These changes are reflected in Section C.6 (sta
on page 141) and Section 3.12 (starting on page 27).

15. Delete the requirement that “support for the Core specification and all profiles 
all or nothing”. This is confusing and misleading. In the same paragraph, and 
throughout the document, substitute “conform to” for “comply with”. To many 
readers, “comply with” suggests the Sun Microsystems style of conformity ass
ment, which depends on demonstrating compatibility with a “reference implem
tation”. Instead, the J Consortium defines conformance in terms of the 
specification, as demonstrated through execution of appropriate test suites. Th
changes are reflected in paragraph 3.f of Section B.2 (starting on page 127).

16. State that all run-time error exceptions that are thrown by official Core API libra
ies are pre-allocated. It is important to establish this in order to assure determin
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execution of Core applications. These changes are reflected throughout the docu-
ment, in the descriptions of each method that might throw an exception. Summary 
overview comments are provided in Section 3.17.27 (starting on page 100).

17. Specify the Core priority semantics in terms of “Base” and “Active” priorities, a
suggested in comments submitted by Aonix. These changes are reflected in Se
3.7 (starting on page 21).

18. Specify exactly when a CoreTask’s allocation context is released, so that its memo
may be reclaimed. For PeriodicTask, InterruptTask, and SporadicTask, the task’s Alloca-
tionContext is released after the task’s stop() method has been executed. For CoreTask 
tasks which do not extend from any of the above three subclasses, the allocat
context is released upon termination of the work() method, which may be triggered 
by several different events. These changes are reflected in Section 3.17.8 (sta
on page 68).

19. Specify for AllocationContext that if the size is specified when the AllocationContext is 
created, the allocation region will be contiguous and allocation requests will be
served in constant time. These changes are reflected in Section 3.17.8 (startin
page 68).

20. For AllocationContext, provide an option to allow programmers to specify the loca
tion, in memory, of the allocation region. For example, the application develop
may desire that particular AllocationContext regions reside in fast local memory. 
These changes are reflected in Section 3.17.8 (starting on page 68).

21. The priority interleave stuff is too confusing and probably not sufficiently gener
Replace priority interleave with an array that provides a one-way map from co
priorities to operating system priorities. These changes are described in Sectio
3.17.20 (starting on page 81) and Section 3.17.23 (starting on page 88). See t
descriptions of Configuration.system_priority_map and CoreTask.systemPriorityMap().

22. Make the Core Static Linker reject invocations of unloadClass() and loadClass(). 
(Developers who are using the Core Static Linker are not supposed to be usin
dynamic class loading and unloading.) These changes are reflected in Section
3.17.6 (starting on page 65). See the descriptions of the loadClass() and unloadClass() 
methods of CoreClass.

23. Throughout the document, replace uses of the word “prototype” with the word “
nature” in all contexts that are speaking of Java source code. This change is 
reflected throughout the document.

24. Get rid of OngoingTask. Use CoreTask to implement the behavior originally intended
for OngoingTask. This change is reflected in Section 3.17.23 (starting on page 88

25. Define a SporadicTask class, which extends from CoreTask. This is like InterruptTask 
except it is intended to be triggered by software and it does not require execut
time analyzable implementations of the work() method. This change is reflected in 
Section 3.17.25 (starting on page 97).

26. Allow the _start() Core Baseline method for PeriodicTask, InterruptTask, and Sporad-
icTask in addition to allowing this for CoreTask. This change is reflected in Section 
3.17.23 (starting on page 88).

27. Remove pendingCount() and clearPendingCount() from Interrupt. Also, remove hardwa-
reInterruptBuffer(). These are not necessarily portable across all targeted platform
These changes are reflected in the section describing InterruptEvent, which was 
removed from a subsequent revision of this document.
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28. Explain that by default, all interrupts (which are armed at startup) are handled by 
interrupt handlers that provide implementation-defined behavior. This change is 
reflected in the section describing InterruptEvent, which was removed from a subse-
quent revision of this document.

29. For the Unsigned class, rename the equal() method as eq(). Add ge(), le() and neq() 
methods to the Unsigned class. These changes are reflected in Section 3.17.22 (start-
ing on page 85).

30. Be more explicit in describing overflow conditions for the Unsigned class’s toByte(), 
toShort(), and toInt() methods. These changes are reflected in Section 3.17.22 (st
ing on page 85).

31. For interrupt handlers, support an atomic exchangeHandler() method to allow atomic 
changing of the routine responsible for handling interrupts. (Atomicity is measu
with respect to triggering of the interrupt. Each trigger is handled either by the o
inal handler or the new handler. No triggers are ignored, and no trigger is hand
by multiple handlers.) This change is reflected in the section describing Interrupt-
Event, which was removed from a subsequent revision of this document.

32. Create a new CoreTask constructor that allows the option of specifying the size of
the default allocation context for the task. Be sure to define appropriate varian
this constructor for PeriodicTask, InterruptTask, and SporadicTask. These changes are 
reflected in Section 3.17.23 (starting on page 88), the sections describing Period-
icTask and InterruptTask, both of which were removed from a subsequent revision
this document, and Section 3.17.24 (starting on page 94).

33. For Core profiles, specify that official J Consortium profiles are named using th
org.j-consortium prefix rather than the org.rtjwg prefix. This change is reflected in 
Section 3.17.16 (starting on page 76).

34. Refine the definition of the IOChannel system for improved compatibility with the 
Real-Time Access profile. These changes are reflected in a number of section
which were removed from a subsequent revision of this document.

A.13 Revision 1.0.2

Revision 1.0.2 of this document was published September 27, 1999. This was the 
revision intended specifically for official public review.
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Annex B Requirements for the Core Specification

B.1 The Working Principles of the Real-Time Java Working Group

The Real-Time Java Working Group’s working principles follow:

1. Real-time Java programs written in Core notations must support limited coope
tion with programs written in the Baseline language on the same Java virtual 
machine. The specification for Core extensions shall enable implementations i
which execution of Core components in cooperation with Baseline component
does not degrade the performance of either the Core or Baseline components

2. Programs written for the Core extensions must support limited cooperation wit
programs written according to the specifications for higher level real-time Java
files (subject to resource availability and contention issues) in environments th
implement these optional real-time profiles. The specification for Core shall en
implementations in which execution of Core components in cooperation with c
ponents written for higher-level real-time profiles does not degrade the perfor-
mance of either the Core components or the higher-level real-time profile 
components.

3. Core extensions offer “minimal latency”, where latency means the least upper 
bound on the time (the longest time) required by a Core interrupt handler to res
to an asynchronous event. We quantify our expectation for minimal latency as 
lows: The semantics of the real-time core shall be sufficiently simple that interr
handling latencies and context switching overheads for programs running in th
Core Execution Environment can match the latencies and context switching ov
heads of today’s RTOS products running programs written in C or C++. As a p
of reference, we expect that commercial implementations of the Core extensio
shall demonstrate that this objective has been achieved.

4. Core real-time extensions shall offer “maximal throughput”. Support for maxim
throughput means the Core specification shall enable implementations that off
throughputs that are essentially the same as are offered by today’s optimizing 
compilers, except for semantics differences required, for example, to check ar
subscripts. 

5. Real-time Java programs that are written using Core extensions need not incu
run-time overhead of coordinating with a garbage collector. Among the overhe
that shall not be required by the Core specification are (1) read and write barrie
access to dynamically allocated objects and stack locations, (2) garbage colle
scanning of run-time stacks, and (3) pointer identification information required 
support garbage collection.

6. Baseline components and components written for yet-to-be-defined higher-lev
real-time profiles shall be able to read and write the data fields of objects that re
in the Core “object space”, where access could be restricted to accessor and s
methods. Code written for the Core Execution Environment need not be able t
read or write the data fields of objects that live in the Baseline object space. 

7. In the Core domain, it might not be possible for the programming language co
piler or run-time environment to enforce compliance with protocols that enable
able coordination between independent software components. Protections sha
put in place to prevent programmers who are using Baseline programming not
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tions from compromising the reliability of components written to use the Core 
extensions.

8. Components written for execution in the Core environment shall run on a wide 
variety of different operating systems, with different underlying CPUs, and inte-
grated with different supporting Baseline virtual machine implementations. Fur-
thermore, it is important to enable the creation of applications that are composed of 
a combination of Core and Baseline components. Therefore, there shall be a way 
for Baseline components to load and execute Core components. There shall be a 
documented entry point which allows Core components to be run without change 
on competing platforms adhering to this Core specification. (e.g. Browsers have the 
Applet as a code entry point, and a Browser supports more than one Applet concur-
rently. We need to have something like an Applet, but GUI-less.)

9. Program components written for execution in the Core Execution Environment can 
be dynamically loaded and unloaded within Dynamic Core Execution Environ-
ments.

B.2 Additional Requirements

Subsequent to the RTJWG Meeting in which the original nine working principles were 
identified, additional requirements were introduced into the group’s set of constrain
These are identified here:

1. The Core specification shall support the ability to perform stack allocation of 
dynamic objects under programmer control. It is implementation-defined wheth
particular implementations of the Core Execution Environment honor programm
requests to allocate objects on the stack.

2. The Core specification shall be designed to support a small footprint, requiring
more than 100K for a typical Static Core Execution Environment.

3. The Core specification shall enable the creation of profiles which expand or su
tract from the capabilities of the Core foundation.

a. The description of each profile must clearly identify whether it resides in th
Core Execution Environment (e.g. safety critical) or in the Baseline virtual 
machine (e.g. real-time garbage collection), or both.

b. The Core specification shall provide support both for profiles officially sup-
ported by the J Consortium and proprietary or 3rd party profiles.

c. Profiles shall be named using reverse domain name conventions (e.g. 
com.aonix.high_integrity).

d. There shall be an API available to Baseline programmers to allow Baselin
components to determine which profiles are supported by a particular Cor
Execution Environment.

e. There shall be an API available to Core programmers to allow Core compo
nents to determine which profiles are supported by a particular Core Execu
Environment.

f. If a particular Core Execution Environment claims to conform to the Core 
specification, it shall support all features of the Core specification. If a part
lar Core Execution Environment claims to support a particular profile, it sh
support all features of that profile’s specification.
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g. Each profile may add to or disable certain specified capabilities of either or 
both of the Core or Baseline domains. The description of the Core specification 
shall enumerate which of the specified capabilities might be disabled by 
“acceptable profiles” (e.g., AllocationContext.release(), stackable, disabling of 
stack overflow checking, configuration of tick and time slice duration, supp
for suspending and resuming tasks).

h. A cursory review (perhaps the registration authority provides a registry of 
which profiles are known to disable capabilities, and all profiles not identifi
by the registration authority must be considered “unknowns”) of the profile
supported by a particular Core Execution Environment reveals whether th
profiles disable particular capabilities. A correctly written Core application 
shall run on any Core Execution Environment for which none of the suppo
profiles disables any of the officially specified Core capabilities. For each p
file that is known to disable particular Core capabilities, a mechanism shal
available for determining exactly what capabilities are missing from the Co
Execution Environment.

4. The requirements for Core dynamic class loading facilities are as follows:

a. Support for dynamic class loading in a Core Execution Environment shall 
optional.

b. The dynamic class loader for the Core Execution Environment shall be imp
mented as a Baseline component. This means that dynamic class loading
not be available in Core Execution Environments that are not paired with a
Baseline virtual machine. 

c. The Core APIs for dynamic class loading shall support flexibility regarding
where and how dynamic classes are loaded. Integrators of Core Execution
Environments shall be able to configure the Core Execution Environment 
specify where to search for and how to obtain the class files that are to be
dynamically loaded.

d. The Core dynamic class loader need not be as sophisticated or general as
Baseline class loader. In particular, we do not anticipate the need for appli
tion-specific core class loaders. Instead, the Core dynamic class loader sh
allow integrators to define an implementation-specific core class loader tha
serves all core class loading needs of a particular implementation of the C
Execution Environment.

e. All Core classes shall be fully resolved and initialized at the time they are 
dynamically loaded. 

5. Requirements for Core asynchronous transfer of control are as follows:

a. Asynchronous transfer of control shall apply only when the affected code p
mits asynchronous transfer of control. Asynchronously transferring control 
of code that was not designed for the possibility of asynchronous transfer 
control might introduce program logic inconsistencies.

b. There shall be a mechanism to allow Core application programmers to est
lish syntactic contexts within which asynchronous transfer of control shall 
deferred. If some other task requests asynchronous transfer of control whi
this task is executing within a deferral context, the control transfer is delay
until this task completes execution of the code contained within the deferre
context.
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c. The asynchronous transfer of control mechanism shall support common pro-
gramming idioms, such as abortion of a task, timing out of a code sequence 
(including nested timeouts), mode change for a particular task, and software 
interrupt during code.

d. The asynchronous transfer of control mechanism shall prevent unintended 
catches of any exceptions that are used in the implementation of asynchronous 
transfer of control, if the asynchronous transfer of control mechanism relies 
upon exceptions.

e. The asynchronous transfer of control mechanism must address the question of 
whether nested timeouts work properly.

f. The asynchronous transfer of control mechanism shall be easy for Core pro-
grammers to use and understand.

g. The run-time implementation costs of asynchronous transfer of control shall be 
paid primarily by those components that make use of this mechanism. The run-
time overhead imposed by the asynchronous transfer of control implementa-
tion on Core components that do not use this feature shall be minimal.

h. The asynchronous transfer of control mechanism shall provide a way to protect 
against stack overflow caused by asynchronous event handling by stack-lim-
ited Core tasks.

i. The asynchronous transfer of control mechanism shall provide a way for Core 
application programmers to establish contexts within which particular context-
specific asynchronous event handlers are relevant and enabled.

j. It is required that the asynchronous transfer of control mechanism support 
abortion of the currently executing task. It is desirable (but not required) that 
asynchronous transfer of control support resumption semantics (for which the 
original Core component is resumed following execution of the event handler).
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Annex C Background and Rationale

C.1 Historical Background

Since June of 1998, the U.S. National Institute of Standards and Technology has been 
hosting regular meetings of the “Requirements Group for Real-time Extensions for
Java™ Platform”. This group includes representatives from 37 different companies
additional information on the NIST requirements group, refer to its web page: http://
www.nist.gov/rt-java.

Using a consensus-based approach, the NIST-sponsored group has drafted a doc
detailing requirements for real-time extensions for the Java platform. These requir
ments represent the collective input of technology suppliers, technology users, and
academic research community.

C.1.1 NIST Requirements for the Real-Time Core

Members of the NIST-sponsored group recognize that the needs of the real-time in
try are varied and diverse. Satisfying all of the needs of the entire prospective user
munity will require monumental effort. Further, the needs of particular constituencie
conflict with the needs of others. In recent meetings of the NIST group, the consen
position has been to partition real-time extensions into a real-time core and a colle
of optional real-time profiles. Throughout this document, we use the term “Core” to
resent the API and special syntaxes and restrictions associated with the real-time 
According to consensus positions reached at the NIST meetings, key characteristi
the real-time core are:

1. The real-time core shall provide services of the sort that are typically provided
commercially available real-time operating systems. The core shall not endeav
“advance the state of the art” in development of real-time software.

2. The real-time core shall be simpler to implement than the full range of capabili
that are required by the NIST group’s requirements document.

3. The real-time core shall provide a foundation upon which more sophisticated 
higher level real-time capabilities would be constructed as optional profiles.

It should be noted that the real-time core does not address all of the requirements 
NIST document. It is specifically intended to address only the above subset of the 
set of requirements. The intent is that the many NIST requirements that have not b
addressed in the core requirements will be addressed by higher level real-time pro
which supplement the real-time core.

The consensus positions resulting from the NIST requirements meetings are desc
in Reference 1.

C.2 NCITS Principles for Real-Time Core

On January 11, 1999 (before the formation of the J Consortium), a subcommittee o
Real-Time Java Working Group met to discuss the core requirements of the NIST 

requirements group and to begin work on a straw man specification1. One of the results 
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of that meeting was a document titled “Consensus Positions of the Real-Time Java
Working Group: Scarecrow (1/11/99)”. That document, which describes the group’s
general recommendations for a specification for Core real-time extensions, was su
ted to the NCITS R1 committee, and was assigned document reference number R
007. 

Document R1/99-007 was prepared in anticipation of NCITS approval of proposed
standardization work for real-time Core. However, on January 15, 1999, NCITS 
announced that its members had voted to reject the proposed standards activities.
Among the reasons cited by those who voted against the effort, the principal objec
were as follows:

1. There was a question of whether it would be possible to create a specification
real-time Core which did not infringe on Sun Microsystems’ intellectual propert
rights.

2. Concern was raised that if it were possible to create a real-time Core specifica
that does not infringe on Sun Microsystems’ intellectual property, the specifica
would necessarily be sub-optimal in comparison with a specification that migh
developed by Sun Microsystems, which would not have to work around possib
intellectual property issues.

3. Concern was raised that Java standardization work carried out within NCITS m
fragment the Java marketplace.

Even though NCITS rejected the proposed standardization work, members of the R
Time Java Working Group felt it was important to continue work on refining a draft 
specification for Real-Time Core Extensions for the Java Language in order to add
the concerns that had been raised by the NCITS voting membership.

This specification grows from the NCITS R1/99-007 document. In this document, w
expand and clarify on the points of R1/99-007. Additionally, this document reflects
changes to the recommendations of R1/99-007 as have been motivated by feedba
lected as part of the public review process.

The Real-Time Java Working Group recognized that there was considerable flexib
in fulfilling the NIST group’s core requirements. In order to narrow the breadth of 
opportunity, this group formulated a list of principles for real-time Core. These prin
ples, which are described in Section B.1, are intended to supplement and clarify th
NIST requirements. 

In general, the Real-Time Java Working Group took the position that real-time Cor
would address the needs of a particular important class of real-time programs that
characterized by the following attribute:

1. At that time, the Real-Time Java Working Group was a group of companies who shared a common interest in advancing the art of 
real-time programming with the Java language. Most of the core members of the Real-Time Java Working Group also participated 
in the NIST meetings that produced the NIST requirements document and have now joined the J Consortium to continue work 
under its sponsorship.
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Nearly all dynamic memory is allocated during initialization of the program, and 
following initialization of the program, no further dynamic memory management is 
required.

The significance of this observation is mainly to justify the exclusion of real-time gar-
bage collection from the Core specification. It is not to say that the Core specification 
should not provide any support for any form of dynamic memory management. The 
Core specification shall not be prohibited from providing support for dynamic memory 
management, and to the degree that limited forms of dynamic memory management can 
be supported without compromising other guiding principles, that is desirable.

Specific comments and rationale for each of the guiding principles is presented here:

1. Regarding guiding principle number 1, we emphasize that neither the semantics nor 
the typical implementation of the Baseline language is appropriate for real-time 
programming. Though it might be possible to redefine the semantics of the Base-
line language to make it more appropriate for real-time programming, it is the posi-
tion of the RTJWG that this would not be practical. A key obstacle is the legacy 
now supported by the Baseline language. This legacy already includes millions of 
lines of existing Java source code and hundreds of licensees of Sun’s Java tec
ogies, most of whom have little interest in the specialized niche needs of the re
time community. For this reason, we make a strong distinction between Baseli
programming and Core programming, and we state the requirement that these
worlds be able to cooperate with each other.

2. Though the J Consortium has not yet defined the services to be provided by ea
the higher level real-time profiles mentioned in this paragraph, the NIST Requ
ments document (See Reference 1) states that high-level profiles shall suppor
deadline driven task scheduling; so-called negotiating components; and accur
defragmenting, paced garbage collection.

Of key importance is the observation that satisfying the first working principle i
significantly easier than satisfying the second. One reason for this is that the g
bage collection requirements for the Baseline platform are very lax in comparis
with the likely garbage collection requirements for a high-level real-time profile
The more sophisticated garbage collection required by high-level real-time pro
generally imposes higher penalties on both latency and throughput.

3. As originally introduced to the NIST requirements group, the intent of Core ext
sions is to provide services equivalent to what is currently offered by commerc
available off-the-shelf real-time operating systems. During the past decade, re
time operating system vendors have been pushed by their customers to comp
among other areas, interrupt response times and context switching efficiency. 
order to satisfy these same customers who drove this marketplace competition
felt it important to address these same requirements.

Feedback received in response to distribution of the R1/99-007 document has
requested that we characterize minimal latency and maximal throughput in term
Java overheads rather than describing the total cost resulting from the combin
of RTOS services with Java overheads. In those terms, this principle essential
states that the Core extensions shall be defined such that implementations are
ble in which the scheduling and context switching overhead of real-time Core t
is zero.
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4. This objective, like the one that precedes it, is motivated by the intent to address the 
demands of current users of real-time operating systems.

We recognize that there are certain semantic differences between the Java language 
and C++. One example is the behavior of array subscript operations. In the Java 
language, the array subscripting operation implies an array subscript bounds check. 
In C++, it doesn’t. Thus, this operation has different semantics between the Ja
and C++ languages. Given that the operation has different semantics, we do n
expect equivalent performance; the two languages are doing different things. H
ever, the Core specification shall enable implementations of instance method i
cation and field access for dynamically allocated objects that perform with 
performance equivalent to that of C++.

Feedback received in response to distribution of the R1/99-007 document has
requested that we characterize minimal latency and maximal throughput in term
Java overheads rather than describing the total cost resulting from the combin
of RTOS services with Java overheads. In those terms, this principle essential
states that Core extensions shall be defined such that implementations are po
in which the run-time overhead of coordinating real-time Core tasks with the g
bage collector and with other components of the Java virtual machine is zero i
comparison with the costs of comparable services on typical commercially ava
able real-time operating systems. 

5. A decision made by the Real-Time Java Working Group was that programs wr
using Core extensions need not incur the overhead of garbage collection. This
motivated by (1) the recognition that the target constituency for the Core extens
is programs that allocate nearly all memory during startup and have no subseq
dynamic memory allocation needs, (2) the objective that the Core extensions s
port maximal throughput, and (3) the objective that the Core extensions suppo
minimal latency.

While we recognize that garbage collection is a key benefit of the Java langua
we also perceive that garbage collection imposes significant costs in terms of 
time efficiency and system complexity. There are large classes of real-time sof
ware components (e.g. typical interrupt handlers and device drivers) that deriv
tle benefit from having automatic garbage collection and our group felt that 
imposing the burden of garbage collection on those components would only di
courage the use of the Java language as an appropriate technology for implem
tion of those components.

In comparison to the current state of the art in development of real-time softwa
which tends to favor the C language, we see numerous benefits in the use of t
Java language beyond the benefits of garbage collection alone. In particular:

a. Portable binary code representations

b. Ability to leverage widely available off-the-shelf Java development environ
ments

c. Good object-oriented programming language features facilitate maintenan
and reuse of software

d. Strong compile- and load-time type checking

e. Familiar syntax and development environments to the many developers w
have already developed skills as Java programmers
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f. Straightforward integration and access to all of the APIs of the Baseline plat-
form (though these Baseline APIs will not necessarily promise real-time per-
formance)

g. Support for secure dynamic loading

Note, in the statement of this objective, our choice of the words “need not”. Th
significance of this wording is to emphasize that there may exist implementatio
of the Core extensions that do incur the respective garbage collection costs. H
ever, it is our intent to make sure the definition of the core semantics allows m
efficient implementations.

In order to allow compile- and load-time enforcement of partitioning between th
Core domain and the Baseline domain, the Core specification partitions all AP
and application-specific methods between those methods that are available to
line components and those that are only available to the Core tasks. Below, w
identify a number of the reasons for this partitioning of APIs.

a. The existing Baseline API definitions and implementations are not “real-tim
ready”. You cannot, for example, safely abort a thread that is in the middle
executing a Baseline library function. And the synchronization semantics t
we intend to carefully define for the use of real-time components are differ
and incompatible with large bodies of existing Java library code. Another d
culty is that existing Baseline library routines are not resource predictable 
terms of memory or CPU time requirements. In summary, you cannot calcu
a worst-case execution time, and you cannot abort the code if the routine r
too long.

b. Almost all of the Baseline libraries assume the presence of a garbage colle
(Though a developer may discover through inspection of the source code 
implementations of Baseline libraries that certain of these libraries do not a
cate temporary objects, there is no general assurance that future impleme
tions of the same libraries will not allocate memory.) In our initial discussio
about the Core extensions, the consensus position was that we did not wa
rely on real-time garbage collection. Instead, we had identified as our con
ency the important class of problems that allocates memory during startup
thereafter simply makes use of previously allocated objects. This is the cla
problems for which we “tuned” the Core specification. Given that we felt it 
essential to avoid the burden of a real-time garbage collector in the Core 
domain, the use of existing Baseline libraries from within the Core domain w
viewed as inappropriate, because nearly all existing Baseline libraries dep
on automatic garbage collection for reliable operation.

c. One of the requirements for the Core extensions is that the resource requ
ments of each “service” supported by Core extensions be precisely define
we want to include the full Baseline API, we need to analyze and constrain
resources required to implement each method of the complete Baseline A
That task appears impractical, especially considering the rapid rate at whic
Baseline libraries continue to evolve. It is much more practical to define a 
small set of API libraries for use by Core components, and to carefully def
the resource requirements of these libraries.

d. Given that one of the objectives of the Core extensions is to provide maxim
throughput, it is important that the implementation of Core methods not inc
the overhead of coordinating with garbage collection. This means, for exa
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ple, that a method that is invoked from a Core task does not need to incur the 
overhead of read or write barriers when accessing the fields of an object whose 
reference is passed into the method as an argument. Since the implementation 
of this method does not include read and write barrier overheads, it is impor-
tant that this method not be invoked with a reference to a garbage-collected 
object as its argument. Thus, a protocol that allows clear distinction between 
methods that deal with garbage collected objects and methods that deal only 
with Core objects (so-called Core methods) is required. In order to minimize 
the performance impact of enforcing this protocol, it is desirable for differenti-
ation between Core and Baseline methods to be based on static (compile-time) 
information rather than run-time checks.

e. Another benefit of partitioning the APIs involves the ability to shrink memory 
footprints of embedded real-time applications. By restricting the Core API to a 
small set of primitive services, we enable tremendous shrinkage of the Java 
footprint. The Baseline libraries are huge in comparison to typical embedded 
software systems. Static linking techniques have been demonstrated that prune 
large amounts of the standard Baseline libraries from an embedded produ
load image. However, if a system must support dynamic loading, the static
linking approach does not work and very little of the Baseline API can be 
pruned from the load image without violating Sun's specifications for the B
line virtual machine. With a limited-library Core Execution Environment, we
have the opportunity to build a very small footprint configuration without sa
rificing the ability to support dynamic loading of Core components. Such s
tems can be designed so that the Baseline side is totally static, and can th
reduced in size using static-link-time pruning. Only Core components wou
be dynamically loaded in this configuration.

6. Given the desire to support limited cooperation between Baseline components
Core components, and given that Core programs shall not support garbage co
tion, we felt it very important to provide mechanisms to facilitate information sh
ing and synchronization between components written for execution in the Core
Baseline environments respectively.

In terms of intended functionality, think of the Core components as comprising
operating system kernel, and think of the Baseline components as comprising
application space. In traditional operating system environments, the kernel is 
allowed access to user space, but user applications are not allowed access to 
memory. Here, we reverse these restrictions. 

The reason we do not want Core components to have direct access to Baselin
objects is because those objects are subject to garbage collection. If the Core
objects were to have access to garbage collected objects, then dispatching of 
tasks would have to coordinate with the Baseline garbage collector, and this w
likely have a negative impact on the latency of Core tasks. An additional difficu
with allowing Core tasks to access garbage-collected objects is that this would
make it more difficult for the garbage collector to know when objects are dead.
only would the garbage collector have to examine the thread state of each Bas
thread, but it would also have to examine the thread state of each Core thread
in order to enable the garbage collector to examine the thread state of a Core 
additional bookkeeping overhead would have to be inserted into the protocols 
ciated with running of Core tasks. This would have a negative impact on the 
throughput performance of Core tasks.
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We do allow Baseline threads to access Core objects. Because of the Java lan-
guage’s strong type checking and support for secure data encapsulation, this d
not compromise the integrity of the Core components. There is no way for a B
line application to see or modify data contained within Core objects unless the
grammer of the Core components makes that data available by providing 
appropriate accessor or setter methods.

Note the restriction that access to the fields of Core objects be directed by wa
accessor or setter methods. Though we can envision implementations that wo
not require this restriction, it was the sentiment of the group that imposing this
restriction would offer greater flexibility to implementors of the Core Execution
Environment. We expect this choice will not impose a performance penalty, giv
the ability to in-line methods.

7. Writing Core applications is like writing device drivers for an operating system k
nel. Consistent with current practices of commercial real-time operating system
users, programmers who write Core applications have access to very powerfu
tools, and accidental or malicious misuse of these tools could compromise inte
of the system. For this reason, only trusted expert real-time programmers shou
author Core components. These programmers are responsible for considering
bal resource contention issues and for following recommended coordination p
cols.

It is our intent that security mechanisms shall be available to help programmer
avoid accidents. Wherever possible, these security mechanisms should be enf
at compile- and load-time rather than at run time. Doing so reduces the run-tim
overhead of the security enforcement protocol. Though we intend to build upo
existing Java type-checking mechanisms to eliminate many common programm
errors, we recognize that there are certain kinds of errors that cannot be preve
by these mechanisms. Thus, we acknowledge in stating this objective that inso
Core programming is concerned, we would prefer to allow the use of these “da
gerous tools” in spite of the risks they engender, rather than prohibit all such to
in order to assure elimination of all such risks.

It is our expectation that the amount of code written in the Core notations is typ
cally only a small fraction of any particular real-time software system. The grea
majority of code in a typical system would be written either as Baseline thread
using the higher level real-time profiles. Core extensions are intended for impl
mentation of components that require extreme efficiency, either in throughput 
response latency, or both.

Though we allow sharing of objects between Core and Baseline components, 
require that the specification for the Core extensions provide protection mecha
nisms to ensure that Baseline components do not compromise the integrity of 
components. This is because developers of Baseline applications are not nece
ily “trusted experts”.

8. The intent is that there shall be a documented way for Baseline software comp
nents to cause Core components to be loaded and executed. Further, this imp
that the Core API definitions are precise enough to allow creation of portable C
components (which will run in a wide variety of different Java virtual machines
each produced by a different vendor).
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9. Note that the security requirements of Core components may be different than the 
security requirements of the Baseline language, and may be context specific. Secu-
rity checking for Core components, if any, is implementation-defined.

C.3 Rationale for Partitioning of Memory

In order to provide high reliability and allocation efficiency, certain garbage collectors 
relocate objects as part of a memory defragmenting effort. We specify that Core objects 
shall not be relocated to emphasize that this is part of the semantics of Core objects. 
This is an important behavioral constraint because it means that Core objects may be 
shared with non-Java tasks (if memory sharing is supported by the host operating sys-
tem), with non-Java interrupt handlers, and with hardware DMA devices.

We impose the restriction that Core methods shall not in general be invoked by Baseline 
components because the implementation of Core methods may not include synchroniza-
tion code for coordination with garbage collection. If Baseline threads were to invoke 
these Core methods, passing as arguments references to Baseline objects, this would 
lead to the possibility of the following sorts of problems: (1) the garbage collector might 
reclaim an object while the Core method is trying to access it, or (2) the Core method 
copies the Baseline reference into a Core data structure, introducing the likelihood that 
the Baseline garbage collector will reclaim the object at some future time while the 
object is still visible to the Core domain.

Conceptually, each Core object shall have two method tables. One of the method tables 
is used exclusively by Core components. The other method table is used exclusively by 
Baseline components. Baseline components do not need to understand the internal orga-
nization of Core objects because they are not allowed to directly access any data fields. 
They are only allowed to invoke methods.

Instead of allowing Baseline direct access to the instance variables of Core objects, the 
object partitioning protocol requires that all such access be made by way of accessor 
and setter methods (the so-called Core-Baseline methods).

Note that we prohibit Core-Baseline methods from modifying the pointer fields of Core 
objects, even indirectly through invocation of a setter method. If we were to allow Core-
Baseline methods to modify the pointer (reference) fields of Core objects, we would 
introduce the possibility that the reachability of particular Core objects could be modi-
fied by execution of Core-Baseline methods. That in turn would require a more sophisti-
cated garbage collection interaction protocol between the Core and Baseline domains. 
In the interest of simplicity and run-time efficiency (avoiding write barriers in the 
implementation of Core-Baseline methods), we chose to prohibit Core-Baseline meth-
ods from modifying pointer instance and heap variables.

The Core Verifier shall reject as invalid any classes that make reference to StringBuffer 
objects. This is because StringBuffer objects create scratch memory that must be 
reclaimed by a garbage collector, and the Core Execution Environment does not have a 
garbage collector.
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Core objects shall be accessible to Baseline threads. For this reason, it is not possible to 
support explicit deallocation. Otherwise, a Core task might deallocate an object while 
the Baseline world is still trying to make use of the object. This is why we have 
designed a protocol that allows cooperation between garbage collection and explicit 
dynamic memory management. In particular, the Core task “releases” a collection 
objects after it is done using the objects. We trust the developers of Core compone
correctly manage their dynamic memory. The effect of the allocation context’s rele
operation is to make the objects eligible for garbage collection (and possible reloca
The objects shall not be reclaimed, however, until the garbage collector verifies tha
objects are unreachable from the Baseline domain.

C.4 Comments Regarding the Core Verifier

Use of a Core Verifier is required in the deployment of any conforming Core applic
tion. Core developers might ask: “What are the risks in the absence of a Core Verif
If a system did not enforce these restrictions, this would introduces a number of pos
risks. Here we list some of the risks that might arise in the absence of enforcemen

1. Interrupts might remain disabled for too long

2. Memory leaks might result from temporary object allocation in Core tasks

3. Objects might be reclaimed by the garbage collector while a Core or Baseline 
is still looking at the objects

4. The garbage collector might become confused because of premature deallocat
objects, resulting in fatal termination of the Core Execution Environment, or of 
Baseline Virtual Machine

5. A request to abort a task doesn’t really abort the task, because the task does n
cooperate with the abort request

C.5 Comments on Syntactic Core Extensions

During early development of the Core Specification, two optional syntax extension
were proposed for inclusion in the specification. Subsequently, it was decided by th
Real-Time Java Working Group to remove these syntax extension from the Core S
fication and to describe the proposed technologies for possible implementation an
within vendor-specific Core development tools. The Core development architecture
shown in Figure 4 on page 139.. In this figure, the components drawn with solid bl
outlines are described in Section 3.4 (starting on page 12). The components drawn
dashed blue outlines are special components that are not defined by this specifica
Rather, these represent technologies and tools that independent tool developers m
implement to simplify the development and maintenance of Core software compon
The special components are:

1. Syntactic Core Source Files: Syntactic Core Source Files are Java 1.1 source fi
written to take advantage of special syntaxes that have been designed to simp
the development of Core Components. In particular, Syntactic Core Source Fil
make use of two special keywords, stackable and baseline, which are not a part of 
the traditional Baseline syntax.

2. Core Preprocessor: A Core Preprocessor transforms Syntactic Core Source Fil
to Java 1.1 source files which do not contain any uses of the baseline and stackable 
keywords. 
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3. Core Compiler: The Core Compiler translates Syntactic Core Source Files to real-
time Core Class Files. At the same time, it performs all of the verification checking 
that is performed by the Core Verifier.

Figure 4. Overview of Real-Time Core Development Architecture
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The baseline keyword would be used to identify Core-Baseline methods. Rather than 
inserting an invocation of CoreRegistry.registerBaseline() as part of the class’ static initial-
izer (as described in “CoreRegistry.registerBaseline()” on page 77), a Core program
who chooses to use the Core Compiler or Core Preprocessor might instead insert 
baseline keyword into the declaration of the method’s prototype, as suggested by th
lowing example:

public baseline void foo(int i, float x) {
...

}

Special Notations for Syntactic Core Source Code. Syntactic Core Source Code is code 
written for the Core Execution Environment which is intended to be compiled by a 
cial Core Compiler. This compiler provides all of the functionality of a traditional javac 
compiler, with the following additional functionality:

1. For each class file produced by this special compiler, the Core Compiler shall in
an invocation of CoreRegistry.registerCoreClass() as the first executable code in the 
static initializer for the class.

2. The Core Compiler shall allow the special baseline keyword as an attribute for 
method definitions. For each method that is identified as a Core-Baseline meth
(by the presence of the baseline keyword), the Core Compiler catenates the name
and signature of this method into the CoreString argument for this class’s invocation
of CoreRegistry.registerBaseline(). For each class compiled by the Core Compiler th
has at least one Core-Baseline method, the Core Compiler shall insert an invoc
of CoreRegistry.registerBaseline() into the static initializer for the class immediately 
following the invocation of CoreRegistry.registerCoreClass().

3. The Core Compiler shall allow the special stackable keyword as an attribute for 
local variable and argument definitions. For each variable or parameter that is 
tified as stackable (by the presence of the stackable keyword in its declaration), the 
Core Compiler inserts the variable or parameter name into the CoreString argument 
for the invocation of CoreRegistry.registerStackable() method as the first executable 
line of code in the method.

4. For any class that fails to identify which class it extends, the Core Compiler ge
ates code to indicate that the class extends java.lang.Object, with the understanding 
that the Core Class Loader shall replace the reference to java.lang.Object with a ref-
erence to org.rtjwg.CoreObject.

5. All throw statements, catch statements, and method declarations from which exce
tions are thrown are understood to refer to objects extending from org.rtjwg.Core-
Throwable, and type checking is performed to enforce conformance with this 
understanding. However, the class file produced by the Core Compiler replace
erences to CoreThrowable with references to java.lang.Throwable, references to Core-
Exception with references to java.lang.Exception, and references to 
CoreRuntimeException with references to java.lang.RuntimeException, with the under-
standing that the Core Class Loader will replace each of these types with its ori
representation.

6. All string constants are treated as CoreString objects for purposes of type consis-
tency checking. The Core Compiler shall represent string constants as Baselin
String_CONSTANT objects in the class-file constant pool, recognizing that the Co
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Class Loader shall replace all String_CONSTANT objects with appropriate CoreString 
replacements representing the same sequence of characters.

7. Each variable that is declared to be of type array is treated as a variable of type 
CoreArray (or an appropriate subclass of CoreArray). See Section 3.17.7 (starting on 
page 66) for additional description of the CoreArray class. Each allocation of a new 
array object is treated as if it produced an instance of the CoreArray class (or the 
appropriate subclass of CoreArray). The Core Compiler shall enforce type consis-
tency checking by using the appropriate CoreArray type as the type of each allocated 
array and of each variable that is declared to hold a reference to an array object. In 
the class-file representation that is emitted from the Core Compiler, each CoreAr-
ray type is represented as a Baseline array type. The Core Class Loader shall 
replace each reference to a Baseline array type with a reference to an appropriate 
derivative of CoreArray when it loads the class.

8. Except for the specific exceptions described above, the Core Compiler shall 
enforce all of the requirements of the Java 1.1 language specification as described 
in Reference 5. Further, except for the specific exceptions described above, the 
translated output from the Core Compiler shall be compatible with the output pro-
duced by existing Baseline Compilers and shall comply with the existing conven-
tions for translation of the Java language as described in References 5 and 8.

9. The Core Compiler shall ensure that the translated Core Class Files that it produces 
conform with all of the rules and constraints described in Section 3.5. If the Core 
source code is such that complying with these constraints is not possible, the Core 
Compiler shall issue appropriate implementation-defined diagnostic messages and 
shall not produce a translation of the offending source program.

C.6 Clarification and Rationale re: Stack Allocation

Note that being able to allocate objects on the run-time stack might benefit the Baseline 
language as well. The motivations for supporting stack allocation in Core are several 
fold: (1) to enable better throughput performance, (2) to enable dynamic allocation (and 
deallocation) of temporary objects in the absence of a garbage collector, and (3) to facil-
itate creation and verification of certified software for safety critical applications.

Certification agencies, such as the Nuclear Regulatory Commission, the Federal Avia-
tion Administration, and the Food and Drug Association, are generally very conserva-
tive. The general sense among companies who have been involved in certification of 
safety critical software is that automatic garbage collection is much more complicated 
that stack allocation, both to implement correctly and to prove implemented correctly.

In order to safely allocate objects on the run-time stack, we must assure that no refer-
ences to a stack-allocated object survives beyond disappearance of the stack activation 
frame within which the object is allocated. The various restrictions described in Section 
3.12, all of which can be enforced at compile and link time, are sufficient to guarantee 
that all references to stack-allocated objects disappear by the time the stack-allocated 
object is reclaimed from its run-time stack.

In general, objects should only be stack allocated if it has been verified that all of the 
special restrictions and conditions for stack allocation described in Section 3.12 have 
been satisfied. The process of verifying compliance with these conditions is intention-
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if 
ally conservative, meaning that there may exist situations in which a more sophisticated 
analysis would conclude that particular objects are stack allocatable even though the 
rules of the Core specification do not so permit. We prefer a conservative approach in 
that it makes very clear to Core programmers exactly which objects shall be allocated 
from the run-time stack.

A careful reader of the Core specification suggested that the following sample code rep-
resents a loophole in the specification:

import org.rtjwg.*;
class C extends CoreObject { // core class

static void foo() {
stackable final int [] intarray = new int[100];
class MyTask extends CoreTask { // declaration of an inner class

public void work() {
sleep(1000);
 // refer to elements of intarray

}
}

MyTask mt = new MyTask();
mt.start();
return;

}

static { // static initializer for this class
foo();

}
}

When C is loaded, foo() will be invoked by the static initializer. This constructs an 
instance of MyTask, assigning a reference to its local variable mt, and starts this task up. 
Then foo returns, releasing the activation frame within which the stackable array of inte-
gers intarray. However, the mt task is still running and is continuing to access the stack-
allocated intarray object.

The above example appears to demonstrate that the safeguards designed to prevent the 
existence of dangling pointers are insufficient to serve this purpose. The fact is, how-
ever, that the above example is not a valid Core program. The reason for this is as fol-
lows:

1. MyTask is a “member class” of class C. 

2. When C.foo() creates a new MyTask, the Baseline Compiler silently inserts code at
the constructor call to pass a copy of the intarray reference into MyTask’s constructor.

3. MyTask’s constructor silently saves its copy of the intarray reference in a hidden 
member field. According to the Java Language specification, this is permitted 
and only if the object referenced by intarray is declared to be final. 
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It appears from examination of Java source code that this sample program conforms to 
all of the requirements for a Core application. However, examination of the correspond-
ing class file reveals that this program does not conform to the Core class-file specifica-
tion. In particular, this program passes as an argument to a method (MyTask’s 
constructor) a reference to a stackable object, and the formal argument is not decla
be stackable. Even if this implicit argument were declared to be stackable, MyTask’s con-
structor would not be allowed by the Core restrictions on uses of stackable variabl
copy the intarray reference into a “hidden member field” of a heap object.

C.7 Motivation for Special Class Loading Semantics

The Baseline specification requires that classes be initialized upon first access. Im
mentation of these semantics is burdensome, requiring run-time checks on freque
used operations and/or self-modifying code. Self-modifying code does not work we
for code executing out of ROM. Furthermore, code that resolves and initializes itse
the fly is difficult to analyze with respect to execution time.

C.8 Clarifications re: Execution Time Analyzability

Section 3.14 describes a number of constraints on the byte-code generator for the
Compiler. Clearly, it would be desirable to impose these same requirements on the
Baseline Compiler. However, the specification for compliant behavior of Baseline C
pilers is in the hands of Sun Microsystems and the J Consortium does not control 
that might evolve. To the extent that Baseline Compilers continue to conform to the
requirements stated in Section 3.14, it will continue to be possible to use Baseline 
pilers for development of Core Class Files.

Note that the restrictions on analyzable loops are more strict than is really necessa
Certainly, it would be possible to analytically determine the worst-case execution ti
for more loops than satisfy our fairly restrictive criteria. Our main objective, howeve
to provide reliable support for execution-time analysis of a restricted subset of the 
language, and we want to make sure that programmers can easily understand the
(though not necessarily the implementation) that characterize this restricted subse

C.9 Rationale for Core Class Loading Requirements

The rationale for requiring that the dynamic Core Class Loader be implemented as
Baseline component is that class loading is a complicated activity, and it is desirab
the Core Class Loader implementation to take full advantage of the Baseline langu
high-level benefits, such as garbage collection and the full breadth of Baseline AP
Further, the expectation is that Core class loading is relatively rare (thus, it is not p
mance critical) and does not have stringent timing constraints. For these reasons, w
there was no need for the Core Class Loader to run within the Core Execution Env
ment.

C.10 Comments on Run-Time Differentiation between Core and Baseline Tasks

In the NIST requirements document (see reference 1), Section 5, core requiremen
states: “The RTJ specification must provide a mechanism to allow code to query 
whether it is running under a real-time Java thread or a non-real-time Java thread.
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The Core APIs do not provide any run-time mechanism to address this requirement. 
Instead, Core programmers distinguish code intended for execution in a Baseline thread 
from code intended for execution as a Core task with static (syntactic) notations. In par-
ticular, all of the methods of any class for which the static initializer code starts with an 
invocation of the CoreRegistry.registerCoreClass() method that are not identified as Core-
Baseline methods are executed as Core tasks. Any other methods are executed as Base-
line tasks.

C.11 Comments re: the PCP Interface

One of the key benefits of using the Priority Ceiling Protocol for task synchronization is 
that it enables non-blocking implementations of synchronization. Whenever any task 
has the lock, its priority is automatically increased to the highest priority of any task that 
might attempt to lock the object. Thus, any other task that might attempt to access the 
same object shall not be allowed to run (because of priority) while a particular task has 
the monitor locked. Another way to think of this: For any given task, if the system 
scheduler has dispatched the task for execution, the task can be assured that no other 
task owns access to any of the monitor locks that this task might want to use.

Given the specification as drafted, the implementation of Priority Ceiling Protocol does 
not require a queue of objects waiting for access to the monitor’s lock. This allows 
small-memory, easy-to-analyze implementation of synchronization locks.

Though the current specification does not address the special needs of multiproce
systems, it is important to recognize that the specification is designed to generaliz
such targets in the future. It is the intent that a future variant or profile of this speci
tion will provide support for an N-processor SMP computer, in which PCP synchroniza-
tion shall block the currently running task no longer than the time required for each
the other N-1 processors in the system to execute at most one segment of  code a
ated with the same PCP object. Further, it is desirable to avoid deadlock conditions 
which might arise when multiprocessors attempt to enter multiple shared PCP-protected 
contexts in different orders. For this reason, the specification requires that the prio
ceilings associated with nested PCP contexts be strictly increasing.

Note that we allow the system to disable time slicing while any task is executing w
PCP lock. Otherwise, some other task of equal priority might attempt to access the s
monitor lock and would necessarily block. This would require that each lock mainta
queue of waiting tasks.

Note that we prohibit Core tasks from executing blocking operations while they hol
PCP lock. Otherwise, a task might block while it holds the PCP lock, making it possible 
for some other task of equal or lower priority to run and attempt to lock the same 
resource. In this case, the new task would have to block on a queue, waiting for the
task to complete its I/O operation and release the lock. But this contradicts our ass
that no queues are required in the implementation of priority ceiling locks.

Note also that we prohibit nesting of PCP locks. Otherwise, a multiprocessor implemen
tation of the Core specification would likely experience deadlock for programs that
correctly on a single-processor implementation of the Core specification.
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C.12 Rationale for the CoreString and DynamicCoreString Specifications

At the March 30, 1999 meeting of the Real-Time Java Working Group, there were sev-
eral requests to make CoreString very simple. However, there were also people who 
desired to retain a broader set of capabilities for CoreString. To satisfy both audiences, 
the API supports two classes: CoreString and DynamicCoreString. CoreString is intended to 
support string constants, as required for error messages and interactive user prompts. 
DynamicCoreString, which extends CoreString, supports additional capabilities. The 
expectation is that the DynamicCoreString class would be pruned from the load image in 
static applications for which it is not needed.

C.13 Rationale for Semaphores to Complement Built-In Java Primitives

Note that wait() and notify() are not appropriate signaling mechanisms for use from within 
interrupt handlers. The difficulty with using notify() from within an interrupt handler is 
that the interrupt handler must acquire the monitor lock before it can invoke the notify() 
operation. Since interrupt handlers are triggered by hardware (and not necessarily by the 
system dispatcher), it is not possible for interrupt handlers to block waiting for access to 
the monitor.

C.14 Rationale for the Mutex Class

The reason for providing Mutex lock() and unlock() operations in addition to providing the 
built-in locking mechanisms for synchronized statements is that the use of synchronized 
statements requires all locks to be released in LIFO order. There are particular algo-
rithms that require locks to be released in a different order than LIFO.

Furthermore, though it would be possible for Core programmers to implement their own 
Mutex class by building upon the built-in synchronization wait() and notify() mechanisms, 
it would not be possible for application developers to implement priority inheritance for 
their Mutex implementation.

C.15 Comments on Loading and Starting Core Tasks from Baseline Domain

With a Dynamic Core Execution Environment, the Baseline domain is responsible for 
starting up the Core Execution Environment. It does so by instantiating a BaselineCore-
ClassLoader object using either one of the two constructors for this class (See Section 
4.1). For example:

org.rtjwg.BaselineCoreClassLoader bccl = new BaselineCoreClassLoader();

Having created the primordial instance of BaselineCoreClassLoader, the Baseline compo-
nent obtains a reference to the primordial instance of the org.rtjwg.CoreDomain class by 
executing code of the following form:

java.lang.Class cdc = bccl.findSystemClass(“org.rtjwg.CoreDomain”);
org.rtjwg.CoreDomain cd = null;
cd = cd.core;

The Baseline component uses the CoreDomain object to load and instantiate Core 
objects. The following code sequence, for example, loads a Core class named Sam-
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pleCoreClass and instantiates it, assigning the instantiated object’s reference to the ct 
variable. This code template assumes that SampleCoreClass extends org.rtjwg.CoreTask.

org.rtjwg.CoreClass cc = cd.loadClass(“SampleCoreClass”);
org.rtjwg.CoreTask ct = (org.rtjwg.CoreTask) cd.instantiate(cc);

To cause the newly instantiated ct task to begin running, the Baseline component 
invokes its Core-Baseline _start() method, as in the following code sample:

ct._start();

Note that the Baseline domain can only start CoreTask tasks. It cannot directly start peri-
odic or interrupt-driven tasks. To start up other kinds of tasks, the Baseline domain cre-
ates a proxy CoreTask object to start up the periodic or interrupt-driven task, and then 
starts up the proxy CoreTask object.

C.16 Comments on Explicit Memory Management

By default, all memory allocated within a particular Core task is automatically released 
when that Core task terminates. This requires great care by Core programmers to make 
sure that no other task is allowed to see references to the objects it allocated. Otherwise, 
that other task will end up with a dangling pointer to the reclaimed object’s memory
There are a few programming practices that are recommended to Core programm

1. Keep all references to objects allocated by your task local to your task, or

2. Make sure that your task runs forever, so its memory will never be released, o

3. Whenever it is necessary to allocate objects that must be visible to other tasks
cate those objects from special AllocationContext regions which persist as long as the
objects continue to be referenced.

C.17 Rationale and Discussion Regarding Asynchronous Transfer of Control

Asynchronous transfer of control describes the ability for one Core task to cause th
control flow of some other Core task to change, asynchronously. We say this chan
asynchronous because the affected task does not know or exert any control over w
the control transfer takes place.

Asynchronous transfer of control is a common programming tool for dealing with re
world processes and events. As motivation for providing this programming languag
feature, consider the many ways that humans handle asynchronous events:

1. A telephone rings and we suspend whatever we are doing to answer it. Follow
completion of the phone call, we resume the previously suspended task.

2. A fire alarm sounds at work. In response, we abort the task on which we are c
rently working, lock our confidential papers into a fireproof safe, and leave the
building.

3. While we are driving a car, we hear a siren. In response, we check rear view m
and scan the road ahead for flashing lights. None is seen so we continue drivin
established course.
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4. A student is taking a timed college entrance examination. She is notified that only 
five minutes remains for completion of the test. She abandons work in progress and 
begins darkening circles for the computer answer sheet.

5. While we are driving a car, we hear a siren. In response, we check the rear view 
mirror and scan the road ahead for flashing lights. A fire truck is seen in the rear 
view mirror so we pull to the side of the road and wait for it to pass. Once passed, 
we pull into the road and continue driving towards our intended destination.

6. A researcher is working on a 3-year federally funded project. Two years into the 
project, his administrative assistant informs him that he is 40% over the proposed 
spending budget. In response, the researcher modifies the remainder of the research 
plan in order to bring the project back into budget before proceeding with the last 
year’s research efforts.

7. In a crowded meeting room, a cell phone rings. Five different people check to s
it is theirs. Only one interrupts his work to answer the phone. The others resum
whatever activity they were already participating in.

8. A team of five developers is working on a six-month engineering project. Two 
months into the project, they are notified that funding cuts force the project to b
abandoned. Each of the five developers is reassigned to other efforts.

These examples highlight the importance of supporting two forms of asynchronous
transfer of control: (1) abortion and (2) resumption. The abortion form abandons w
ever work was in progress when the asynchronous event is triggered. The resump
form allows a certain amount of work to be performed in response to the asynchro
event, following which the original work which was preempted is resumed.

An earlier revision (1.0.2) of the Core specification provided no general purpose as
chronous transfer of control mechanism. Instead, it provided explicit timeout forms
particular Core Library methods. During the public review period of that draft specif
tion, the absence of general asynchronous transfer of control support was identified
shortcoming in the Core specification. In discussing whether to add asynchronous 
fer of control at our Dec. 7, 1999 meeting, the Real-Time Java Working Group con
ered the following:

1. Against adding asynchronous transfer of control:

a. This would complicate the implementation of the Core Execution Environ-
ment, especially the implementations of operating system services that mi
block a Core task (e.g. a semaphore operation that must be timed out).

b. This would represent a significant change to the Core specification, delayi
publication of the final specification and probably requiring another public 
review period.

2. In favor of adding asynchronous transfer of control:

a. The Core specification as originally drafted already required that blocking 
operating system services be timed out. Thus, the burden of implementing
asynchronous transfer of control is not perceived to be significantly greate
than the burden of implementing the originally described specification.

b. The group felt it would be better to have a stronger specification later than
weaker specification earlier.
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c. Having fully general asynchronous transfer of control increases the relevance 
of the Core specification to a broader set of potential users. It also improves the 
expressive power available to Core programmers, making it easier to solve par-
ticular classes of programming problems.

d. Using asynchronous transfer of control in place of explicit timeout arguments 
for particular methods replaces many special-case situations with a single gen-
eral-purpose solution. This makes it easier for programmers to use and main-
tain software components that interact with timeouts.

In the end, the Real-Time Java Working Group decided in favor of adding asynchronous 
transfer of control to the Core specification, provided that the various identified require-
ments could be satisfied to the mutual satisfaction of the member organizations.

There has been discussion and conflicting viewpoints on certain topics related to the 
design of the asynchronous transfer of control mechanism. In particular:

1. Why defer asynchronous event handling during execution of finally statements? The 
main observation is that finally statements generally represent cleanup code that is 
necessary to maintain the integrity of shared data structures and system-wide logi-
cal invariants. If an asynchronous event results in abortion of a particular code seg-
ment, all of the finally statements associated with that code segment will be executed 
as a side effect of the abort operation. If an asynchronous event is delivered during 
execution of a finally statement, we have two options:

a. We could immediately interrupt the finally statement to execute the event han-
dler, and resume execution of the finally statement after the interrupt handler 
completes, or

b. We could defer execution of the event handler until after the finally statement 
completes its execution.

In either case, the finally statement runs to completion. However, the first option 
introduces the risk that certain shared data structures may be in an inconsistent state 
during execution of the asynchronous event handler. For this reason, we chose to 
pursue the second option for the Core specification.

2. Why not defer asynchronous event handling during execution of all synchronized 
contexts? Programmers who are accustomed to programming real-time systems in 
the Ada programming language have come to expect that all synchronization is 
“abort deferred”. A primary objection to adopting the Ada semantics is that dea
lock situations cannot be remedied by aborting the offending tasks. For this rea
the Core specification does not defer asynchronous event handling during exe
tion of synchronized code. We note that the type(s) of programming for which the
Core specification is intended are more general than typical Ada applications (
ing more dynamic behavior, and using priority inheritance in addition to priority
ceiling protocols for synchronization), which is part of the reason that we feel a
ferent approach toward abortion of synchronized contexts is appropriate. Given
there do not currently exist any legacy Core applications, there is relatively low
cost in adopting a different semantics than has been used for the Ada program
language.

Among the requirements for asynchronous transfer of control (See paragraph 5 of
tion B.2 (starting on page 127)) is the ability to support common asynchronous pro
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gramming idioms, such as abortion of a task, timeouts and nested timeouts for particular 
code sequences, software interrupts, and application mode changes. Here, we discuss 
how each of these idioms would be addressed with the proposed asynchronous transfer 
of control mechanism.

Abortion of a task. To abort a running Core task t, invoke its abort() method, as shown 
here:

t.abort();

Timing out a sequence of code. To establish a timeout on the sequence of code repre-
sented by the method named arbitraryCode(), structure the code as shown below:

class ScopedTimeoutException extends ScopedException { }

class TimeoutEvent extends ATCEvent {
CoreThrowable exception;

public TimeoutEvent(CoreThrowable scoped_exception) {
exception = scoped_exception;

}

public void defaultAction() throws CoreThrowable {
throw exception;

}
}

Given the ScopedTimeoutException and TimeoutEvent classes defined above, the following 
code fragment demonstrates how to run the arbitraryCode() method with a watchdog tim-
eout to abort its execution if it runs too long:

ScopedTimeoutException timeout_x = new ScopedTimeoutException();
TimeoutEvent timeout_e = new TimeoutEvent(timeout_x);
Alarm alarm;
alarm = timer.createAlarm();
try {

alarm.setAlarmRelative(Time.ms(3), timeout_e);
this.arbitraryCode();

} catch (ScopedTimeoutException z) {
System.out.println(“Code timed out after 3 ms.”);

} finally {
alarm.cancelAlarm();

}

In this sample code, we assume that this thread has an asynchronous event signal han-
dler which simply invokes the defaultAction() of whatever event is signaled to this task. 
We also assume the existence of an application-defined timer object and application-
defined Alarm class, the definitions of which are not provided here. The timer object sup-
ports a createAlarm() factory method, which creates an instance of Alarm that is bound to 
this particular timer object. The returned Alarm object is used by this thread to register 
requests for the timer object to deliver asynchronous timeout events at appropriate future 
moments in time. The Alarm class supports a setAlarmRelative() method, which takes as 
Real-Time Core Extensions 149



Background and Rationale

celed. 

uts 
 of 

ailed 
ng 

 

r 
ent 
e 
ut is 

 we 

n. 

r 

t 
r tim-

 we 

 
eted 
, we 

ted, 
arguments a long integer specifying the number of nanoseconds from the current time in 
which the timer service should send the asynchronous timeout event to this task and a 
reference to the scope-specific timeout event object that the timer service is to send at 
the appropriate time. Setting of the alarm by the setAlarmRelative() method is atomic in 
the sense that if execution of this method is aborted because this thread receives an 
asynchronous transfer of control signal, we are guaranteed that either the alarm has been 
completely set or that it has not been set. The Alarm class also supports a cancel() 
method, which has the effect of turning off the alarm if it was previously set. A side 
effect performed by the Alarm.cancelAlarm() method is to re-signal all “active” alarms. 
An active alarm is an alarm that was previously signaled and has not yet been can
The reason for specifying this behavior for cancelAlarm() is to simplify the handling of 
nested timeouts.

Nested timeouts. The approach described immediately above for implementing timeo
works properly for nested timeouts. Suppose, for example, that the implementation
this.arbitraryCode() includes code to set a nested timeout, using the same protocol det
above. The possible interplay between nested timeouts is described by the followi
four scenarios:

1. If the inner-nested timeout occurs first, the inner TimeoutEvent object will be sig-
naled to the task, and this will trigger event handling associated with the inner 
scope. The outer timeout remains pending.

2. If the outer-nested timeout occurs first, the outer TimeoutEvent object will be sig-
naled to the task, and this will trigger event handling associated with the outer
scope. Because TimeoutEvent objects use ScopedTimeoutException objects for their 
implementation, we are assured that a timeout event corresponding to an oute
nested scope will not be mistakenly processed by an inner scope’s timeout ev
handler. When exception handling for the outer timeout’s exception unwinds th
context within which the inner timeout context was established, the inner timeo
canceled.

3. Suppose the inner timeout occurs first, and then the outer timeout occurs while
are still “handling” the inner timeout’s event. There are two cases to consider:

a. If the defaultAction() method has already thrown its exception object, handling of 
the outer nested timeout is deferred until after all of the finally statements asso-
ciated with handling of the thrown exception have completed their executio
Note that the timeout context’s catch clause will not be allowed to execute.

b. If the defaultAction() method has not yet thrown its exception object, the oute
timeout’s event handler immediately preempts the inner timeout’s defaultAc-
tion() method and throws its exception object. In this case, the inner timeou
event handler never gets a chance to throw its exception, because the oute
eout aborts the inner timeout’s event handler.

4. Suppose the outer timeout occurs first, and then the inner timeout occurs while
are still “handling” the outer timeout’s event. There are two cases to consider:

a. If the outer timeout’s defaultAction() method has already thrown its exception 
object, handling of the inner nested timeout is deferred until after all of the
finally clauses associated with handling of the thrown exception have compl
their execution. In the process of unwinding the stack for the outer timeout
cancel the alarm and disable the ScopedTimeoutException object for the inner 
nested timeout. When the inner timeout’s event handler is eventually execu
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it will throw the disabled ScopedTimeoutException. This has the effect of simply 
resuming the code that immediately follows the context of the outer-nested 
timeout exception.

b. If the outer timeout’s defaultAction() method has not yet thrown its exception 
object, the inner timeout’s event handler preempts the outer timeout’s even
handler. When the inner timeout’s defaultAction() method throws its ScopedTime-
outException object, this causes the stack to unwind to the point of the inner
timeout’s context. That context’s finally clause causes the alarm to be cancele
Execution of alarm.cancel() causes the outer context’s timeout event to be re-
signaled.

Software interrupts. The idea of software interrupts is to allow one Core task to caus
some other Core task to execute a special code sequence (an “interrupt handler”) 
then resume whatever code was previously executing. 

It is straightforward to implement software interrupts using the asynchronous transf
control system described in this specification. To cause another task to execute its
ware interrupt handler” (also known as its event handler), invoke the task’s signalAsync() 
method, passing as an argument a reference to an ATCEvent object that provides what-
ever application-specific information is required as parameters to the event handle

The task to which the event is signaled must provide an appropriate asynchronous
handler which executes the desired interrupt handling code and then returns. Upon
return from the asynchronous event handler, the code within the task that was exec
when the asynchronous event was signaled is resumed.

System mode changes. The notion of a system mode change is that a complex syste
comprised of many cooperating tasks may operate in multiple modes. For example
control software for a fighter aircraft may have modes dedicated to such independ
activities as takeoff, cruise, evade incoming missiles, engage enemy aircraft, and l
Each time the system transitions from one mode to another, multiple tasks need to
informed of the transition.

The two most common ways of supporting mode changes in complex software sys
comprised of multiple cooperating tasks are:

1. Each task is required to periodically poll a system state variable which reports w
the system is transitioning to another mode. Each task is independently respon
for performing whatever work is necessary to effect the transition.

2. When a mode change is required, a supervisor activity signals this requiremen
delivering an asynchronous event to each of the cooperating tasks. Each task
asynchronous event handler is responsible for performing whatever work is ne
sary to effect the transition.

C.18 Comments re: low-level I/O Services

A previous draft of this specification included a much more sophisticated collection
I/O services. The design of that earlier set of services was patterned after the Real
Data Access profile, which is currently under development within a working group 
the J Consortium. A July 2000 teleconference call involving the memberships of bo
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the Real-Time Java Working Group and the Real-Time Access Working Group con-
cluded that it would be best to remove the Real-Time Data Access compatibility from 
the Core specification. The main reason for this change was that the Real-Time Data 
Access profile is maturing and evolving independently of the Core specification, and it 
is very difficult to keep the two documents synchronized. Instead, it was felt that the 
Real-Time Data Access profile could be written so as to complement the Core specifica-
tion. Ultimately, we expect the Real-Time Access Working Group to produce two vari-
ants of the Real-Time Data Access profile - one describing extensions to the Baseline 
environment, and the other describing extensions to the Core.

Having removed the generality of the Real-Time Data Access services, it was necessary 
to replace these with simpler primitive API libraries. Thus, the IOPort, ISR_Task, and 
SporadicTask classes were introduced.
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Annex D Implementation Suggestions

D.1 Comments on the Implementation of Partitioned Heaps (Section 3.3)

There are many possible implementations for the memory management system 
described in this section. Here, we offer comments describing one possible implementa-
tion.

1. When a Core object is allocated, it is allocated from a region of memory that is nor-
mally garbage collected using mark-and-sweep (non-relocating) techniques. Note 
that techniques are available to allow coexistence of mark-and-sweep garbage col-
lection with copying garbage collection. 

2. At the moment a Core object is allocated, a reference to the object is stored into a 
Baseline hash table. As long as this reference to the object continues to exist in the 
hash table, the object shall not be garbage collected. Since the object was allocated 
from a mark-and-sweep region, the object shall not be relocated.

3. The garbage collector marks and scans the anchored Core object, treating it like 
every other object in the mark-and-sweep region. The object shall not be treated as 
garbage because we know the hash table holds a live pointer to the object.

4. When a Core task releases an allocation context, the references to all of the objects 
belonging to that allocation context which were stored into the Baseline hash table 
in step 2 above are removed from the hash table. If garbage collection is active at 
the moment the allocation context is released, all of the newly released objects are 
marked as live for purposes of this pass of the garbage collector. At this point, the 
released objects are now eligible to be garbage collected.

The reason the object must be marked as live for this pass of the garbage collector 
is because the recent actions of the Core tasks are not necessarily visible to the gar-
bage collector. Recent Core actions may have affected the pointer paths by which 
this object is known to be reachable (i.e. live). After an object’s allocation conte
has been released, any further changes to the object’s reachability graph mus
performed by Baseline components, all of which implement appropriate read a
write barriers. Thus, subsequent passes of the garbage collector shall be able
identify the object as unreachable and reclaim its memory.

D.2 Comments on Implementation of Multiple Method Tables (Section 3.3)

Each Core object must implement two method tables, one to support the Core-Bas
methods and the other to support the Core methods. There exist many different po
implementations of Core object method tables. Here, we describe one possible im
mentation.

Note that each Core object must support two different interfaces. Within Core tasks
Core object must support the Core API (all the Core methods). If the Core object is
lished to the Baseline world, the Core object must also support the Baseline API (e
thing inherited from the Baseline java.lang.Object class, plus any Core-Baseline method
declared for that object or its Core superclasses). One way to efficiently implemen
two different method interfaces is to augment the traditional virtual method table so
it represents two tables in a single data structure, using positive offsets to represen
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Baseline method table, and using negative offsets to represent the Core method table, as 
illustrated in Figure 5 on page 154.

D.3 Comments on Implementation of Stack Allocation

Once a class loader has determined which objects are stack allocatable, there are at least 
two possible approaches for the implementation of the new memory allocation requests 
that correspond to the stack allocatable objects. Assume that the Core Class Loader 
replaces new invocations with a special stack-new operation for each new memory allo-
cation request that assigns its result to a stackable variable.

Dynamic stack allocation. One possible approach toward stack allocation is to imple-
ment the stack-new operation using the same implementation that is typical for imple-
mentations of the C alloca() service. In particular, each time the stack-new operation is 
invoked, the stack is expanded to make space for the new stack-allocatable object and 
the object is allocated and initialized from the newly available stack space.

Static stack allocation. An alternative approach toward stack allocation of objects is to 
have the Core Class Loader arrange for space in the method’s stack activation fra
represent one copy of each stack-allocatable object for each stack-new operation found 
within the method. The memory for these objects shall be initialized at the momen
corresponding stack-new operation is executed. Note that stack-allocation of arrays 
whose size is not known until run-time must uses a form of dynamic stack allocatio

Figure 5. Method Tables for Core Objects
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	2. Adheres to all of the special restrictions identified in section 3.5 of this document.
	3. Contains at least one invocation of the CoreClass.loadClass() or CoreClass.unloadClass() metho...

	3.1.4 A Conforming Core Verifier
	1. Accepts as input a Core class file and verifies that the Core class file is of the proper form...
	2. The Core verifier may be packaged either as part of the Core Execution Environment or as a ded...

	3.1.5 A Conforming Static Core Development Environment
	1. Includes Core class file implementations of all of the class libraries described in Section 3....
	2. Includes a conforming Core Verifier.
	3. Includes a conforming Static Core Linker and whatever native components (also known as Static ...
	4. Does not necessarily implement support for stack allocation of local variables, but does imple...
	5. May, but need not, include a Core Native Compiler.
	6. May, but need not, include support for integration of native methods within Core applications....

	3.1.6 A Conforming Static Core Executable Load Image
	1. Is an executable program comprised of a Core application bound to the subset of Core API libra...

	3.1.7 A Conforming Dynamic Core Development Environment
	1. Includes Core class file implementations of all of the class libraries described in Section 3....
	2. Includes a conforming Core Verifier.
	3. Includes a Dynamic Core Java Execution Environment which includes implementations of the Basel...
	4. Does not necessarily implement support for stack allocation of local variables, but does imple...
	5. May, but need not, include a Core Native Compiler.
	6. May, but need not, include support for integration of native methods within Core applications....

	3.1.8 A Conforming Static Core Linker
	1. Must be able to process any collection of conforming Core class files, producing as output an ...
	2. May, but need not, provide the capability of linking native method implementations into the re...
	3. May, but need not, include support for integration of native methods within Core applications....

	3.1.9 A Conforming Core Native Interface Compiler
	1. Shall process any conforming Core class file and produce as output a C header file which ident...


	3.2 Core Objects
	1. Core objects shall not be relocated. Once the location of a Core object has been determined, t...
	2. There are two ways for software developers to author Core class files. Either they use a tradi...
	a. If they use a traditional Baseline Compiler and a Core Verifier, they express core concepts us...
	b. If they use a Core Compiler, they express concepts using notations that we characterize in thi...

	3. When a Core task does a new memory allocation, this never blocks or causes garbage collection ...
	4. Core tasks are only allowed to allocate instances of org.rtjwg.CoreObject and its sub- classes.
	5. Except for the special Core-Baseline methods described in paragraph 3 of Section 3.3, only Cor...
	6. In the Core methods, programmers shall not perform string catenation except for catenation of ...
	7. Every Core object is allocated within a particular Allocation Context. Each Core task has a de...
	8. A Core application may invoke the release() method of any Allocation Context to cause the Core...

	3.3 Partitioning of Memory
	1. Core classes are identified by the way they are loaded. There is no syntax to distinguish Core...
	2. Core methods shall not invoke methods of Baseline objects. Further, Core-Baseline methods shal...
	3. A special protocol is available to allow developers of Core components to identify the set of ...
	4. Note in Figure�1 on page�13 that there are several paths for deploying Core programs. Either t...
	5. A special registry shall allow Core Components to publish particular core objects so they may ...
	6. Since Core objects may become visible to the Baseline world (through the publish() service of ...
	7. Style guidelines prohibit Baseline threads from direct access to the instance and class variab...
	8. Style guidelines prohibit the Core-Baseline methods from modifying the pointer instance and po...
	9. No code within Core-Baseline methods is allowed to make any reference to Baseline objects. Not...
	10. Baseline threads are not allowed to allocate instances of org.rtjwg.CoreObject and its subcla...
	11. When the Core Execution Environment is bound to a Baseline virtual machine as part of an Exte...
	3.3.1 Partitioning Protocol from Core programmer’s perspective
	1. It is my responsibility to make sure I’m done with object X before I release the Allocation Co...
	2. It is my responsibility to make sure I release the Allocation Context for object X when I am c...
	3. Once I’ve released the Allocation Context for object X, I have no need to worry about object X...
	4. I realize that object X may be useful to other components in the system, and I have no assuran...

	3.3.2 Partitioning Protocol from the Baseline programmer’s perspective
	1. From my perspective, Core objects are garbage collected just the same as other objects.
	2. I can only access or modify Core objects by way of Core-Baseline methods.
	3. I am not allowed to modify the pointer (reference) fields of Core objects.


	3.4 Architectural Overview of the Core Development Architecture
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	3.5 Core Class Files
	1. Every Core class must extend from org.rtjwg.CoreObject.
	2. Every Core class must include a static initializer which contains, as its first line of execut...
	3. If the class contains any Core-Baseline methods, the next line of the class static initializer...
	4. For each Core method (excluding the Core-Baseline methods) of the class that contains referenc...
	5. For each reference to java.lang.Object from within a Core Class File, it is understood that ja...
	6. For each reference to java.lang.Throwable, it is understood that java.lang.Throwable is a plac...
	7. For each reference to java.lang.Exception, it is understood that java.lang.Exception is a plac...
	8. For each reference to java.lang.Error, it is understood that java.lang.Error is a placeholder ...
	9. For each occurrence of the anewarray and multianewarray byte-code instructions, it is understo...
	10. If a particular Core Class File defines the org.rtjwg.CoreObject class, that class definition...
	11. Within the class file’s constant pool, any constant of type CONSTANT_String is understood to ...
	12. After performing the substitutions described in Paragraphs 5 through 11 above, the Core Verif...
	13. For all methods of Core objects except for the Core-Baseline methods, these methods shall not...
	14. For all Core-Baseline methods of Core objects, these methods shall not invoke any method of a...
	15. For all Core-Baseline methods of Core objects, the arguments to these methods shall be either...
	16. Except for the Core-Baseline methods that have been defined for a particular Core class, the ...
	17. The code contained within the Core-Baseline methods of Core objects shall not write to any Co...
	18. The code contained within the methods of Core objects shall not include any string catenation...
	19. For each synchronized context that occurs within a Core class that is declared to implement t...
	20. The Core Class File shall only include byte-code representations of source code statements of...
	21. The code contained within finally statements of Core methods (this restriction does not apply...
	22. For each local and argument variable identified as stackable (see Section 3.12), the variable...
	23. For each class that extends org.rtjwg.ISR_Task, the implementation of the work() method shall...
	3.5.1 The Core Verifier
	1. The Core Verifier shall perform all of the standard checking that is described as “Class File ...
	2. The Core Verifier shall enforce all of the special constraints described in Section 3.5 of thi...

	3.5.2 The Core Class Loader
	1. Check to make sure that this class has a static initializer that contains as its first executa...
	2. For each reference to java.lang.Object within this class, replace it with a reference to org.r...
	3. For each reference to java.lang.Throwable within this class, replace it with a reference to or...
	4. For each reference to java.lang.Exception, replace it with a reference to org.rtjwg.CoreExcept...
	5. For each reference to java.lang.RuntimeException, replace it with a reference to org.rtjwg.Cor...
	6. If the name of the class being loaded is org.rtjwg.CoreObject, check to make sure the class pr...
	7. For each CONSTANT_String object contained within the constant pool of this class, replace it w...
	8. Check to see if the next executable code within the static initializer for this class is an in...
	9. For each method of this class except those methods that were marked in step 8 above as Core-Ba...
	10. For each invocation of CoreRegistry.coerce() that is found within this class, the Core Class ...
	11. If the class is to be loaded into an Extended Baseline Virtual Machine, for which it is neces...
	a. If a particular Core-Baseline method’s argument makes reference to a Core array type, the sign...
	b. If a particular Core-Baseline method throws CoreException, the signature of this method within...
	c. If a particular Core-Baseline method throws CoreRuntimeException, the signature of this method...
	d. If a particular Core-Baseline method throws CoreThrowable or some derivative of CoreThrowable ...



	3.6 Special Notations for Stylized Core Source Code
	1. If a Core programmer declares a variable to be of type array (or makes any reference to an arr...
	2. If a Core programmer declares a class to extend from java.lang.Throwable, it is understood tha...
	3. If a Core programmer uses a string constant, it is understood that this is really a constant o...
	4. If a Core programmer fails to indicate the type from which a class extends, it is understood t...
	5. Given that the Core programmer may be dealing with objects that extend from CoreObject but whi...

	3.7 Core Priorities
	3.8 Synchronization Issues
	1. The Core Execution Environment shall run only on single-processor computers. A future version ...
	2. The implementation of synchronized locks within the Core Execution Environment shall not alloc...
	3. An attempt to obtain a synchronized lock using a source-level construct such as the following:
	4. Queues for wait/notify monitors, Mutex locks, SignalingSemaphore and CountingSemaphore impleme...
	a. Each queue shall be maintained in priority order, with multiple entries of the same priority m...
	b. If a task’s priority drops due to loss of inherited priority, and consequently some other high...
	c. When a running task becomes preempted by a higher-priority task, the preempted task shall be p...
	d. When a running task’s time slice expires, the preempted task shall be placed onto the ready qu...
	e. When a blocked task becomes runnable, that previously blocked task shall be placed on the read...
	f. A running task can explicitly change its own priority or the priority of another task. If the ...
	g. When a running task yields by executing the CoreTask.yield() method, the task shall be placed ...
	h. At no other time shall the position of a task within a task priority queue be affected.
	i. a task that was blocked (e.g. in org.rtjwg.CoreObject.wait(), org.rtjwg.SignalingSemaphore.P()...
	ii. because the task was sleeping, and has slept the designated amount of time, or
	iii. because some other task awakens this task by invoking org.rtjwg.CoreObject.notify() or
	iv. because some other task awakens this task by invoking org.rtjwg.CoreObject.notifyAll(),

	5. There shall be no blocking and consequently no queue of waiting tasks in the implementation of...
	a. On entry into a PCP-synchronized context, the Core Execution Environment checks to make sure t...
	b. Assuming that entry into the PCP-synchronized context is not prohibited by the check performed...
	c. As long as this task continues to execute within the PCP-synchronized context, this task shall...
	d. The Core Execution Environment shall assure that only one Core task at a time executes within ...
	i. it is preempted by a higher priority task (a task with priority higher than the PCP ceiling pr...
	ii. it completes execution of the body of code that comprises the PCP-synchronized context.
	e. Upon exit from the PCP-synchronized context, the Core Execution Environment shall:
	i. Restore this task’s priority to its original value, queuing this task on the ready queue and d...
	ii. If there are no other Core tasks executing within PCP-synchronized contexts, the Core Executi...
	iii. If this CoreTask has received a stop() request, the Core Execution Environment shall begin p...


	3.9 Task Execution Model for Execution of Core-Baseline Methods
	1. All Core-Baseline methods shall execute with Base Priority equal to one, which is the lowest p...
	2. When a Core-Baseline method enters a synchronized context, all of which are governed either by...
	3. When a Core-Baseline method acquires a Mutex lock, its priority is automatically adjusted as r...
	4. If a Core-Baseline method acquires a Mutex lock and then returns without releasing the lock, o...
	5. If a Baseline thread uses the Core-Baseline Mutex._lock() method to acquire a mutual exclusion...

	3.10 The Core Memory Model
	3.11 Abort Mechanism and Asynchronous Transfer of Control in General
	1. Except for Core-Baseline methods, finally statements within Core methods shall not contain bre...
	2. Except for Core-Baseline Methods, finally statements shall not include throw statements.
	3. The Core Verifier and the Core Compiler shall enforce the above restrictions.
	4. If a CoreTask is executing finally statements as part of the cleanup associated with respondin...
	5. If a CoreTask is executing within a synchronized region of code that corresponds to an object ...
	3.11.1 Asynchronous Transfer of Control
	1. If the task is constructed to ignore asynchronous events and this transfer-of-control request ...
	2. If the task is currently executing within a deferral region, the task is allowed to continue e...
	a. The body of a synchronized statement contained within a class that implements the Atomic inter...
	b. The body of a finally statement is a deferral region.

	3. If this control-transfer request was triggered by an abort() invocation, go to step 8.
	4. Create a new activation frame on the task’s run-time stack for execution of its event handling...
	5. The event handler for the task would have been set by a prior action of one of the following f...
	a. At the time the task was constructed, one of the constructor arguments provides a reference to...
	b. Subsequently, the event handler may have been replaced by invoking the task’s asyncHandler() m...

	6. If the invoked handleATCEvent() method returns, control resumes within the interrupted method ...
	7. Otherwise, if the invoked handleATCEvent() method throws an exception, this exception is propa...
	8. This control-transfer request was triggered by invocation of the task’s abort() invocation. Th...
	9. The implementation-defined method that is invoked to handle the abort() request shall throw th...


	3.12 Stack Allocation of Dynamic Objects
	1. Within each Core method (excluding Core-Baseline methods), the programmer identifies which loc...
	a. Stylized Core source programmers concatenate the names of the variables into a string constant...
	b. Syntactic Core source programmers use the stackable keyword in the declarations of each variab...

	2. If a particular method has parameters (including this) which are declared to be stackable, the...
	3. Additional restrictions are of the form described below. Throughout this discussion, the word ...
	a. Each Core Execution Environment shall identify through the CoreRegister.stackAllocation() API ...
	b. For each variable that is declared as stackable, a new object request that assigns its result ...
	c. In order to allow the Core Execution Environment to blindly stack allocate each new object tha...
	i. There shall be no data path within the method that allows the value of any stackable variable ...
	ii. There shall be no data path within the method that allows the stackable variable’s value to b...
	iii. There shall be no data path within the method that allows the value of the stackable variabl...
	iv. There shall be no data path within the method that allows the stackable variable’s value to b...
	v. For each new operation that assigns its result to a stackable variable, the constructor shall ...
	vi. Any new operation that assigns its result to a stackable variable shall not appear within a l...
	vii. If a given Core Execution Environment does not implement stack allocation, any allocated obj...


	3.13 Initialization and Class Loading
	3.14 Execution-Time Analyzable Code
	1. A straight-line sequence (without conditional or unconditional branching and without method in...
	2. The athrow instruction shall be execution-time analyzable. Note that the Core Execution Enviro...
	3. The code represented by an invokestatic or invokespecial instruction is execution-time analyza...
	4. Given a program control flow consisting of a conditional branch and two alternative code flows...
	Figure 2. Analyzable Conditional Control Flow

	5. In Java byte code, both the lookupswitch and tableswitch instructions represent multiway condi...
	Figure 3. Analyzable Multi-Way Conditional Control Flow

	6. Within a class file’s method representation, try clauses are identified by the exception_table...
	7. As described in Reference 9, a natural loop is defined as follows:
	a. A basic block is a sequence of consecutive byte-code instructions into which control enters at...
	b. A flow graph is a collection of nodes representing basic blocks of a computer program which ar...
	i. There is a conditional or unconditional jump from the last instruction in the basic block repr...
	ii. The basic block represented by node B2 immediately follows the basic block represented by nod...
	c. We say that node d of a flow graph dominates node n if every path from the initial node of the...
	d. A back edge is a directed edge of a flow graph whose head dominates its tail. (Given a directe...
	e. Given a back edge nmd, the natural loop of that edge is the node d plus all nodes that can rea...
	a. We characterize a departure edge of natural loop N to be a directed edge for which the head is...
	b. For each departure edge, we call the node that represents the departure edge’s tail a departur...
	a. Every path within the flow graph from the loop header back to the loop header is execution-tim...
	b. There exists at least one departure node for the loop that exhibits the following properties:
	i. The departure node dominates each node within the loop that has a back edge to the loop’s head...
	ii. The condition upon which the departure node decides whether to depart from the loop is a simp...
	iii. Within the loop, there is only one assignment to the variable j. This assignment must be con...
	iv. There is only one definition of the variable j which reaches the header of the loop (See reac...

	3.14.1 Analyzability of Core Source Code
	1. A straight-line body of Core Source Code shall be translated by the Core Compiler into executi...
	2. A throw statement shall be translated by the Core Compiler into execution-time analyzable byte...
	3. An invocation of a static or final method shall be translated by the Core Compiler into execut...
	4. The Core Compiler shall translate if statements and if-else statements to execution- time anal...
	5. The Core Compiler shall translate switch statements to execution-time analyzable byte code if ...
	6. The Core Compiler shall translate for statements to execution-time analyzable byte code if the...

	3.14.2 Predictability of the Core Execution Environment
	1. The time required to execute all virtual machine instructions is constant, except for the foll...
	a. The time required to execute new, newarray, anewarray, and multianewarray instructions is impl...
	b. The maximum time required to execute the aastore, checkcast, and instanceof instructions shall...
	c. The maximum time required to execute an athrow instruction is proportional to the depth of the...
	d. The time required to execute an invokeinterface instruction is implementation- defined and nee...

	2. The CPU time and dynamic memory impact of each of the official Core API libraries, including C...
	TABLE 1. Predictability Requirements for Core API Libraries

	3. The CPU time and dynamic memory impact of the C/Native API libraries described in Section 3.16...
	TABLE 2. Predictability Requirements for the C/Native API

	4. The CPU time and dynamic memory impact of the Baseline API libraries described in Section 4.0 ...
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	length()
	atGet()
	atPut()
	3.17.8 The AllocationContext Class
	1. If this is an ISR_Task or SporadicTask, the task is not considered to have “completed” executi...
	2. Otherwise, this must be a CoreTask. There are several ways for a CoreTask (which is not one of...
	a. It may return from its work() method.
	b. It may throw an uncaught exception, including the special exception returned from its abortWor...
	c. The task’s stop() method may be invoked, in which case the task is considered to have complete...



	AllocationContext Constructors
	1. The first shall take no arguments and shall create an AllocationContext object that is configu...
	2. The second constructor shall take an argument identifying the maximum total number of bytes au...
	3. The third constructor shall take an argument identifying the maximum total number of bytes aut...

	AllocationContext.available()
	AllocationContext.allocated()
	AllocationContext.release()
	3.17.9 The SpecialAllocation Class

	SpecialAllocation.context()
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	SpecialAllocation.execute()
	3.17.10 The PCP Interface
	1. If some task running at a priority higher than a particular PCP object’s ceiling priority atte...
	2. For any class that implements the PCP interface, it is improper to invoke the wait(), notify()...
	3. Obtaining a synchronization lock (whether it is a PCP object or a priority inheritance object)...
	4. When a task is executing with possession of a PCP object’s synchronization lock, the Core task...
	5. No queues shall be used in the implementation of a priority ceiling lock.
	6. PCP synchronization shall not cause the currently running task to block.
	7. No time slicing of tasks at equal or lower priority shall be allowed while the running task ho...
	8. Blocking I/O and synchronizing operations shall not be permitted while the current task holds ...
	9. Static and dynamic nesting of priority ceiling locks shall be permitted. However, entry into a...
	10. For PCP objects, third-party synchronization shall be prohibited. In other words, the code fr...
	11. The Core Execution Environment shall give special handling to the construction of objects tha...


	PCP.ceilingPriority()
	3.17.11 The Atomic Interface
	1. Only objects that implement the Atomic interface shall be allowed to set their priority ceilin...
	2. Each of the bodies of code that comprise the synchronized statements associated with an Atomic...
	3. If a task is executing synchronized code of an Atomic object (“Atomic synchronized code”) when...
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	3. Any profile whose name ends with the special character “-” shall disable certain capabilities ...
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	3.17.23 The CoreTask Class

	CoreTask Constructor
	1. Whether or not asynchronous event handling other than abort() and stop() is enabled for this c...
	2. The size of this task’s run-time stack.
	3. The size and type of the default allocation context for this CoreTask.
	4. The task’s Base Priority.

	Static Methods
	CoreTask.currentTask()
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	3.17.24 The ISR_Task Class

	ISR_Task Constructor
	1. The size of this task’s run-time stack.
	2. The size and type of the default allocation context for this CoreTask.
	3. The task’s Base Priority.
	4. The number of the interrupt that is to trigger execution of this ISR_Task.

	ISR_Task.serviced()
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	3.17.25 The SporadicTask Class

	SporadicTask Constructor
	1. Whether or not asynchronous event handling other than abort() and stop() is enabled for this c...
	2. The size of this task’s run-time stack.
	3. The size and type of the default allocation context for this CoreTask.
	4. The task’s Base Priority.
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	1. CoreThrowable: org.rtjwg.CoreThrowable extends org.rtjwg.CoreObject. Within the Core Execution...
	2. CoreException: org.rtjwg.CoreException extends org.rtjwg.CoreThrowable. Within the Core Execut...
	3. CoreRuntimeException: org.rtjwg.CoreRuntimeException extends org.rtjwg.CoreThrowable. Within t...
	4. ScopedException: org.rtjwg.ScopedException extends org.rtjwg.CoreException. A ScopedException ...
	a. A routine that anticipates the need to establish a special asynchronous event handler which wi...
	b. When the asynchronous ATCEventHandler is signaled, its handleATCEvent() method throws the prev...
	c. In processing this thrown exception, the Core Execution Environment does not allow any interve...
	d. If an ATCEventHandler attempts to throw a ScopedException that has been disabled, the effect i...
	e. The activation frame from within which a ScopedException is enabled represents the only scope ...
	f. When a ScopedException is instantiated, it is automatically enabled in the context from within...
	g. Whenever a method’s activation frame is removed from the run-time stack, all of the ScopedExce...
	TABLE 4. Core CoreThrowable Classes
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	Annex A History
	A.1 Revision 1.0.14
	1. Removed the word Java from the title and from many of the notational terms used throughout the...
	2. Various small changes to correct misspellings, cut-and-paste errors, and to improve clarity. T...
	3. Reordered the document to move the edit history, requirements, rationale, and implementation s...
	4. Removed the notion of Syntactic Core extensions from the Core specification. The use of baseli...
	5. Revised the discussion of conformity assessment (Section 3.1 (starting on page 6)) to make con...
	6. Removed the entire “I/O Subsystem” section from the Core specification. This material was redu...
	7. Replaced CoreError with CoreRuntimeException and CoreBaselineError with CoreBaselineRuntimeExc...
	8. Added Section 3.9 (starting on page 24), which clarifies the required scheduling behavior for ...
	9. Added Section 3.10 (starting on page 24), which discusses briefly the need to clarify the Core...
	10. Added discussion of predictability requirements for the C/Native API and for the Baseline API...
	11. Replaced the C library function corePriorityInterleave() with corePriorityMap() in Section 3....

	A.2 Revision 1.0.13
	1. To remove unnecessary reference and dependency on the Baseline specification, and
	2. To further unify the Core specification with the evolving specification for the Real- Time Dat...
	1. Add a OneShotEvent class that is similar to PeriodicEvent class except that execution of the c...
	a. It shall be implementation-defined when a OneShotEvent handler’s work() method is invoked rela...

	2. For all kinds of events (PeriodicEvent, OneShotEvent, SporadicEvent, and InterruptEvent), any ...
	3. There are a number of contemplated changes regarding queueing and buffer overrun:
	a. For all kinds of events (PeriodicEvent, OneShotEvent, SporadicEvent, and InterruptEvent), add ...
	b. The meaning of Event.disable() is to prevent new events from being queued.
	c. For all kinds of events, the enable() and disable() methods may involve interaction with the o...
	d. The meaning of Event.disableQueue() is also to prevent new events from being queued. Additiona...
	e. Add an onError() method to each of the EventHandler classes.
	f. Add an error() method to each kind of event. This method returns an integer code representing ...
	g. If the work() method of an event handler is still running and the one of the Events that this ...
	h. Eliminate the numberOverruns() method from PeriodicTask.

	4. Add an IODescription class patterned after the class by the same name in the Real- Time Data A...
	5. Add an enumerate() method to IONodeLeaf, which returns an array of IODescription objects repre...
	6. Add an event handler to the IOChannel proxy objects. Specify this as an argument to the create...
	7. Add a Version class, which has the following final fields:
	8. Add an IOEventHandler class from which PeriodicTask, InterruptTask, and SporadicTask derive. T...
	a. Tentatively, add a reference to SymbolTable as an argument to the various createXX() methods. ...

	9. Move pendingCount() to EventHandler class and remove this method from Event classes.
	10. Give the IONode constructor an argument named driver_name, of type CoreString, which represen...
	11. A change is proposed to the range checking associated with the IONodeLeaf.createIO() method, ...

	A.3 Revision 1.0.12
	A.4 Revision 1.0.11
	1. In Section C.15 (starting on page 145), the sample code did not compile. We found it necessary...
	2. In Section C.17 (starting on page 146), we modified the sample timeout code and the descriptio...
	3. In Section 3.5 (starting on page 15), paragraph 20, removed mention of the Atomic interface. T...
	4. In the PeriodicEvent class description (since removed from this document), remove the numberOv...
	5. In the IONodeLeaf class description (since removed from this document), remove the readable an...
	6. In Section 4.2 (starting on page 105), we clarified that the constructor triggered by executio...
	7. A number of minor typographic errors were corrected.

	A.5 Revision 1.0.10
	A.6 Revision 1.0.9
	1. Allow nesting of PCP synchronization locks. This change is reflected in Section 3.17.10 (start...
	2. Removed the prohibition on invocation of methods from within finally clauses. This change is r...

	A.7 Revision 1.0.8
	1. Remove “draft” from the title of Section 3.0 (starting on page 6). Also, replace a number of o...
	2. Add IOEventInterface.PeriodicEventCode to the list of special cases associated with invocation...
	3. Replace IONodeLeaf.createIOxxx() with IONodeLeaf.createIO??(). This change is reflected in the...
	4. Add to description of IONodeLeaf.createIO??() that if the IOChannel object is created with imp...
	5. In the description of the IODeviceDescription class, which was removed from a subsequent revis...
	6. For IODeviceDescription objects that represent I/O channels, replace the “range” attribute wit...
	7. In the description of IOInterface.mode() (subsequently changed to IODescription.mode()), expla...
	8. Add a “Scope” section, as Section 1.0 (starting on page 1).
	9. A few typographic errors were corrected.

	A.8 Revision 1.0.7
	1. Add to IOEventHandlerInterface and to the classes that implement this interface a method named...
	2. Remove the explicit constructor from the InterruptEvent class. This change is reflected in the...
	3. Change the constructor for IONodeLeaf to take a single integer interrupt number rather than a ...
	4. Add an exchangeInterruptNumber() method to IONodeLeaf. This has the effect of replacing the va...
	5. Remove the length argument of the IONodeLeaf.createIOxxx() method. Instead, compute the length...
	6. When creating an I/O channel using the createIOxxx() method, clarify the meaning of a special ...
	7. Throughout the document, use the phrase “memory-mapped access” to describe access to memory-ma...
	8. Analogous to the “timer” attribute for IONodeLeaf.createPeriodic() and the “trigger” attribute...
	9. Add the IOImplicit and IOExclusive symbolic constants back into the definition of the IOInterf...
	10. Add enable() and isEnabled() methods to IOInterface and the classes that implement this inter...
	11. Add a constructor to allow new IODeviceDescription objects to be created and added to the sys...
	12. Add clarification re: address arithmetic for IOChannel nodes. In particular, base memory and ...
	13. Add clarification re: endian behavior of I/O operations. In particular, all multi-byte values...
	14. On the cover page, removed “draft” from the title and other cover material, and added tradema...
	15. Throughout the document, changed the footer to say Copyright 1999, 2000 on all even-numbered ...
	16. Renamed the readDevice() method to update(). Renamed the writeDevice() method to flush().
	17. Assorted typographic errors were corrected.

	A.9 Revision 1.0.6
	1. Clarify that the IOEventHandlerInterface.setEvent() method is called automatically before call...
	2. Do not require that 1-bit IOChannel objects be implemented using implicit reading and writing....
	3. Create new IOChannel sub-classes to represent block-transfer I/O operations, as an addition (n...
	4. For the various I/O proxy classes (IOChannel and all of its descendants), rename the existing ...
	a. read(): has effect of atomically performing a readDevice() operation followed by a value() ope...
	b. read(offset): has effect of atomically performing a readDevice(offset) operation followed by a...
	c. write(value): has effect of performing a value(val) operation followed by a writeDevice() oper...
	d. write(value, offset): has effect of performing a value(val) operation followed by a writeDevic...

	5. Establish better consistency between the use of interfaces and the use of classes. Note that w...
	6. Add a disable() method to IOInterface and IOChannel. This change is reflected in the sections ...
	7. Use a special subclass of IONode named IONodeLeaf to represent leaf nodes within the IONode hi...
	a. Only leaf nodes have an associated IODeviceDescription object.
	b. Only leaf nodes keep track of which interrupt numbers are associated with the node. Since mult...
	c. When leaf nodes are constructed, they do not need to specify mem_range and io_range arguments....
	d. Only leaf nodes are allowed to create IOChannel proxies (instantiate subclasses of IOChannel).

	8. Replace the IONodeLeaf.createIO() method with multiple methods, each one returning an instance...
	a. Whether readDevice() and writeDevice() operations on the IOChannel object are implicit or expl...
	b. Whether the IOChannel object represents read permission.
	c. Whether the IOChannel object represents write permission.
	d. Whether the IOChannel object represents exclusive access to the given channel.

	9. Fix the descriptions of IONode.createIOxxx() and IONode.createInterrupt(). The current revisio...
	10. For all of the IONodeLeaf.createIOxxx() operations, use the entry-name within the correspondi...
	11. Add a new constructor for IONode and IONodeLeaf which does not include arguments to specify t...
	12. Add an IONodeLeaf.createPeriodic() method. Among its arguments is an entry name. The named en...
	13. Add an IONode.createSporadic() method. Among its arguments is an entry name. The named entry ...
	14. Change the conventions for representation of information within IODeviceDescription.
	a. For entries that represent I/O proxies, there shall be no required attribute named “address”. ...
	b. For entries that represent I/O proxies, the “mode” attribute shall encode only the values of t...
	c. If a particular entry represents an interrupt vector, it must have an attribute named “type” w...

	15. IODeviceDescription should specify the range of memory and I/O addresses relative to the pare...
	16. Make the Core Verifier be required in any conforming implementation of the Core development e...
	17. Change the behavior of CoreTask.setPriority(). If the task for which setPriority() is invoked...
	18. The previous revision of the specification states that time slicing shall be inhibited while ...
	19. The constructor for InterruptTask should not take an ATCEventHandler argument, since the Inte...
	20. Change ScopedException to extend CoreException instead of CoreError. This change is reflected...
	21. Add enable() and disable() methods to ScopedException. These have the following semantics:
	a. If an ATCEventHandler attempts to throw a ScopedException that has been disabled, the effect i...
	b. The activation frame from within which a ScopedException is enabled represents the only scope ...
	c. When a ScopedException is instantiated, it is automatically enabled in the context from within...
	d. Whenever a method’s activation frame is removed from the run-time stack, all of the ScopedExce...

	22. Update Table�1 on page�35 to represent all of the methods of all classes in the Core API libr...
	23. Several typographic errors were corrected.

	A.10 Revision 1.0.5
	1. The core NIST requirements state that the core specification must identify the resource requir...
	2. Exchange the definitions of CoreTask.stackSize() and CoreTask.stackDepth(). This change is ref...
	3. Add a sizeof() method to CoreObject. This change is reflected in Section 3.17.1 (starting on p...
	4. Add an allocated() method to AllocationContext. This change is reflected in Section 3.17.8 (st...
	5. Change the signature of AllocationContext.available() to return long. This change is reflected...
	6. Clarify description of constructor for ATCEventHandler. This change is reflected in Section 3....
	7. Clarify description of constructor for ATCEvent. This change is reflected in Section 3.17.15 (...
	8. Modify behavior of CoreRegistry.publish() to assure that the memory used to represent CoreRegi...
	9. Make PeriodicTask implement the IOEventHandlerInterface. Remove its executionPeriod() and numb...
	10. Add the numberOverruns() method to PeriodicEvent. In the same class, modify the return type o...
	11. In IOEventInterface, rename SoftwareEventCode to be SporadicEventCode. Rename TimerEventCode ...
	12. Add a getType() method to IOEventHandlerInterface. Define symbolic constants in this same cla...
	13. Correct the description of IOChannel.mode() to properly identify that 7 bits are required to ...
	14. Make clear in the description of CoreTask that the start() and _start() methods do not result...
	15. Change the signature of SporadicEvent.handler() to return SporadicTask. This change is reflec...
	16. Remove the constructors for InterruptEvent and all IOChannel subclasses. These changes are re...
	17. Add createIO() and createInterrupt() methods to the IONode class. These changes are reflected...
	18. Add a symbolic constant named IOExclusive to the IOChannel class. This change is reflected in...
	19. Remove attributeConstants() from the IODeviceDescription class. Add entryNames() and modify t...
	20. Remove armInterrupt() and disarmInterrupt() from the InterruptEvent class. These changes are ...
	21. Remove the value(x) method from all read-only subclasses of IOChannel. Remove the value() met...
	22. Miscellaneous typographic, spelling, and punctuation fixes, along with improvements to indexing.

	A.11 Revision 1.0.4
	1. Remove all references to DeviceRegistry and DeviceCapability as these classes have been remove...
	2. Add cross references to point 34 of Section A.12 (starting on page 122).
	3. Fix a few typographic and formatting errors.

	A.12 Revision 1.0.3
	1. The prohibition on string catenation in Core components is too severe. We need to allow catena...
	2. The requirement that entry into and departure from a synchronized context not allocate memory ...
	3. The prohibition on use of synchronized statements to lock Atomic objects other than this needs...
	4. The discussion of synchronization issues must include the possibility that a blocked task beco...
	5. Introduce the notion of asynchronous transfer of control, as it has been proposed for inclusio...
	6. Mention that a task may become runnable because some other task signals an asynchronous event....
	7. Add a way to timeout a Mutex.lock() invocation. This is handled by introduction of the asynchr...
	8. Add a CoreTask.join() method, along with a way to time it out. This change is reflected in Sec...
	9. Say that when CoreObject.notifyAll() awakens multiple tasks of equal priority, they are awaken...
	10. The special treatment given to thrown CoreError objects during execution of a finally stateme...
	11. Add discussion regarding asynchronous abortion that execution of finally statements is “abort...
	12. Allow for the possibility that some implementations of the Core specification do not support ...
	13. Make clear that if a multi-dimensional array is considered to be stackable, all dimensions ar...
	14. Explain why the inner-class stack-allocation example presented by Aonix is not a valid Core p...
	15. Delete the requirement that “support for the Core specification and all profiles be all or no...
	16. State that all run-time error exceptions that are thrown by official Core API libraries are p...
	17. Specify the Core priority semantics in terms of “Base” and “Active” priorities, as suggested ...
	18. Specify exactly when a CoreTask’s allocation context is released, so that its memory may be r...
	19. Specify for AllocationContext that if the size is specified when the AllocationContext is cre...
	20. For AllocationContext, provide an option to allow programmers to specify the location, in mem...
	21. The priority interleave stuff is too confusing and probably not sufficiently general. Replace...
	22. Make the Core Static Linker reject invocations of unloadClass() and loadClass(). (Developers ...
	23. Throughout the document, replace uses of the word “prototype” with the word “signature” in al...
	24. Get rid of OngoingTask. Use CoreTask to implement the behavior originally intended for Ongoin...
	25. Define a SporadicTask class, which extends from CoreTask. This is like InterruptTask except i...
	26. Allow the _start() Core Baseline method for PeriodicTask, InterruptTask, and SporadicTask in ...
	27. Remove pendingCount() and clearPendingCount() from Interrupt. Also, remove hardwareInterruptB...
	28. Explain that by default, all interrupts (which are armed at startup) are handled by interrupt...
	29. For the Unsigned class, rename the equal() method as eq(). Add ge(), le() and neq() methods t...
	30. Be more explicit in describing overflow conditions for the Unsigned class’s toByte(), toShort...
	31. For interrupt handlers, support an atomic exchangeHandler() method to allow atomic changing o...
	32. Create a new CoreTask constructor that allows the option of specifying the size of the defaul...
	33. For Core profiles, specify that official J Consortium profiles are named using the org.j-cons...
	34. Refine the definition of the IOChannel system for improved compatibility with the Real-Time A...

	A.13 Revision 1.0.2

	Annex B Requirements for the Core Specification
	B.1 The Working Principles of the Real-Time Java Working Group
	1. Real-time Java programs written in Core notations must support limited cooperation with progra...
	2. Programs written for the Core extensions must support limited cooperation with programs writte...
	3. Core extensions offer “minimal latency”, where latency means the least upper bound on the time...
	4. Core real-time extensions shall offer “maximal throughput”. Support for maximal throughput mea...
	5. Real-time Java programs that are written using Core extensions need not incur the run-time ove...
	6. Baseline components and components written for yet-to-be-defined higher-level real-time profil...
	7. In the Core domain, it might not be possible for the programming language compiler or run-time...
	8. Components written for execution in the Core environment shall run on a wide variety of differ...
	9. Program components written for execution in the Core Execution Environment can be dynamically ...

	B.2 Additional Requirements
	1. The Core specification shall support the ability to perform stack allocation of dynamic object...
	2. The Core specification shall be designed to support a small footprint, requiring no more than ...
	3. The Core specification shall enable the creation of profiles which expand or subtract from the...
	a. The description of each profile must clearly identify whether it resides in the Core Execution...
	b. The Core specification shall provide support both for profiles officially supported by the J C...
	c. Profiles shall be named using reverse domain name conventions (e.g. com.aonix.high_integrity).
	d. There shall be an API available to Baseline programmers to allow Baseline components to determ...
	e. There shall be an API available to Core programmers to allow Core components to determine whic...
	f. If a particular Core Execution Environment claims to conform to the Core specification, it sha...
	g. Each profile may add to or disable certain specified capabilities of either or both of the Cor...
	h. A cursory review (perhaps the registration authority provides a registry of which profiles are...

	4. The requirements for Core dynamic class loading facilities are as follows:
	a. Support for dynamic class loading in a Core Execution Environment shall be optional.
	b. The dynamic class loader for the Core Execution Environment shall be implemented as a Baseline...
	c. The Core APIs for dynamic class loading shall support flexibility regarding where and how dyna...
	d. The Core dynamic class loader need not be as sophisticated or general as the Baseline class lo...
	e. All Core classes shall be fully resolved and initialized at the time they are dynamically loaded.

	5. Requirements for Core asynchronous transfer of control are as follows:
	a. Asynchronous transfer of control shall apply only when the affected code permits asynchronous ...
	b. There shall be a mechanism to allow Core application programmers to establish syntactic contex...
	c. The asynchronous transfer of control mechanism shall support common programming idioms, such a...
	d. The asynchronous transfer of control mechanism shall prevent unintended catches of any excepti...
	e. The asynchronous transfer of control mechanism must address the question of whether nested tim...
	f. The asynchronous transfer of control mechanism shall be easy for Core programmers to use and u...
	g. The run-time implementation costs of asynchronous transfer of control shall be paid primarily ...
	h. The asynchronous transfer of control mechanism shall provide a way to protect against stack ov...
	i. The asynchronous transfer of control mechanism shall provide a way for Core application progra...
	j. It is required that the asynchronous transfer of control mechanism support abortion of the cur...



	Annex C Background and Rationale
	C.1 Historical Background
	C.1.1 NIST Requirements for the Real-Time Core
	1. The real-time core shall provide services of the sort that are typically provided by commercia...
	2. The real-time core shall be simpler to implement than the full range of capabilities that are ...
	3. The real-time core shall provide a foundation upon which more sophisticated higher level real-...


	C.2 NCITS Principles for Real-Time Core
	1. There was a question of whether it would be possible to create a specification for real-time C...
	2. Concern was raised that if it were possible to create a real-time Core specification that does...
	3. Concern was raised that Java standardization work carried out within NCITS might fragment the ...
	1. Regarding guiding principle number 1, we emphasize that neither the semantics nor the typical ...
	2. Though the J Consortium has not yet defined the services to be provided by each of the higher ...
	3. As originally introduced to the NIST requirements group, the intent of Core extensions is to p...
	4. This objective, like the one that precedes it, is motivated by the intent to address the deman...
	5. A decision made by the Real-Time Java Working Group was that programs written using Core exten...
	a. Portable binary code representations
	b. Ability to leverage widely available off-the-shelf Java development environments
	c. Good object-oriented programming language features facilitate maintenance and reuse of software
	d. Strong compile- and load-time type checking
	e. Familiar syntax and development environments to the many developers who have already developed...
	f. Straightforward integration and access to all of the APIs of the Baseline platform (though the...
	g. Support for secure dynamic loading
	a. The existing Baseline API definitions and implementations are not “real-time ready”. You canno...
	b. Almost all of the Baseline libraries assume the presence of a garbage collector. (Though a dev...
	c. One of the requirements for the Core extensions is that the resource requirements of each “ser...
	d. Given that one of the objectives of the Core extensions is to provide maximal throughput, it i...
	e. Another benefit of partitioning the APIs involves the ability to shrink memory footprints of e...

	6. Given the desire to support limited cooperation between Baseline components and Core component...
	7. Writing Core applications is like writing device drivers for an operating system kernel. Consi...
	8. The intent is that there shall be a documented way for Baseline software components to cause C...
	9. Note that the security requirements of Core components may be different than the security requ...

	C.3 Rationale for Partitioning of Memory
	C.4 Comments Regarding the Core Verifier
	1. Interrupts might remain disabled for too long
	2. Memory leaks might result from temporary object allocation in Core tasks
	3. Objects might be reclaimed by the garbage collector while a Core or Baseline task is still loo...
	4. The garbage collector might become confused because of premature deallocation of objects, resu...
	5. A request to abort a task doesn’t really abort the task, because the task does not cooperate w...

	C.5 Comments on Syntactic Core Extensions
	Figure 4. Overview of Real-Time Core Development Architecture
	1. Syntactic Core Source Files: Syntactic Core Source Files are Java 1.1 source files written to ...
	2. Core Preprocessor: A Core Preprocessor transforms Syntactic Core Source Files to Java 1.1 sour...
	3. Core Compiler: The Core Compiler translates Syntactic Core Source Files to real- time Core Cla...
	Special Notations for Syntactic Core Source Code
	1. For each class file produced by this special compiler, the Core Compiler shall insert an invoc...
	2. The Core Compiler shall allow the special baseline keyword as an attribute for method definiti...
	3. The Core Compiler shall allow the special stackable keyword as an attribute for local variable...
	4. For any class that fails to identify which class it extends, the Core Compiler generates code ...
	5. All throw statements, catch statements, and method declarations from which exceptions are thro...
	6. All string constants are treated as CoreString objects for purposes of type consistency checki...
	7. Each variable that is declared to be of type array is treated as a variable of type CoreArray ...
	8. Except for the specific exceptions described above, the Core Compiler shall enforce all of the...
	9. The Core Compiler shall ensure that the translated Core Class Files that it produces conform w...


	C.6 Clarification and Rationale re: Stack Allocation
	1. MyTask is a “member class” of class C.
	2. When C.foo() creates a new MyTask, the Baseline Compiler silently inserts code at the construc...
	3. MyTask’s constructor silently saves its copy of the intarray reference in a hidden member fiel...

	C.7 Motivation for Special Class Loading Semantics
	C.8 Clarifications re: Execution Time Analyzability
	C.9 Rationale for Core Class Loading Requirements
	C.10 Comments on Run-Time Differentiation between Core and Baseline Tasks
	C.11 Comments re: the PCP Interface
	C.12 Rationale for the CoreString and DynamicCoreString Specifications
	C.13 Rationale for Semaphores to Complement Built-In Java Primitives
	C.14 Rationale for the Mutex Class
	C.15 Comments on Loading and Starting Core Tasks from Baseline Domain
	C.16 Comments on Explicit Memory Management
	1. Keep all references to objects allocated by your task local to your task, or
	2. Make sure that your task runs forever, so its memory will never be released, or
	3. Whenever it is necessary to allocate objects that must be visible to other tasks, allocate tho...

	C.17 Rationale and Discussion Regarding Asynchronous Transfer of Control
	1. A telephone rings and we suspend whatever we are doing to answer it. Following completion of t...
	2. A fire alarm sounds at work. In response, we abort the task on which we are currently working,...
	3. While we are driving a car, we hear a siren. In response, we check rear view mirror and scan t...
	4. A student is taking a timed college entrance examination. She is notified that only five minut...
	5. While we are driving a car, we hear a siren. In response, we check the rear view mirror and sc...
	6. A researcher is working on a 3-year federally funded project. Two years into the project, his ...
	7. In a crowded meeting room, a cell phone rings. Five different people check to see if it is the...
	8. A team of five developers is working on a six-month engineering project. Two months into the p...
	1. Against adding asynchronous transfer of control:
	a. This would complicate the implementation of the Core Execution Environment, especially the imp...
	b. This would represent a significant change to the Core specification, delaying publication of t...

	2. In favor of adding asynchronous transfer of control:
	a. The Core specification as originally drafted already required that blocking operating system s...
	b. The group felt it would be better to have a stronger specification later than a weaker specifi...
	c. Having fully general asynchronous transfer of control increases the relevance of the Core spec...
	d. Using asynchronous transfer of control in place of explicit timeout arguments for particular m...

	1. Why defer asynchronous event handling during execution of finally statements? The main observa...
	a. We could immediately interrupt the finally statement to execute the event handler, and resume ...
	b. We could defer execution of the event handler until after the finally statement completes its ...

	2. Why not defer asynchronous event handling during execution of all synchronized contexts? Progr...
	Abortion of a task
	Timing out a sequence of code
	Nested timeouts
	1. If the inner-nested timeout occurs first, the inner TimeoutEvent object will be signaled to th...
	2. If the outer-nested timeout occurs first, the outer TimeoutEvent object will be signaled to th...
	3. Suppose the inner timeout occurs first, and then the outer timeout occurs while we are still “...
	a. If the defaultAction() method has already thrown its exception object, handling of the outer n...
	b. If the defaultAction() method has not yet thrown its exception object, the outer timeout’s eve...

	4. Suppose the outer timeout occurs first, and then the inner timeout occurs while we are still “...
	a. If the outer timeout’s defaultAction() method has already thrown its exception object, handlin...
	b. If the outer timeout’s defaultAction() method has not yet thrown its exception object, the inn...


	Software interrupts
	System mode changes
	1. Each task is required to periodically poll a system state variable which reports when the syst...
	2. When a mode change is required, a supervisor activity signals this requirement by delivering a...


	C.18 Comments re: low-level I/O Services
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