INTERNATIONAL J CONSORTIUM SPECIFICATION
Real-Time Core Extensions

...1"“.. P.O. Box 1565
(]
= '= Cupertino, CA 95015-1565
. s USA
'-. »
seec® WWW.j-consor tium.org
CONSORTIUM

Copyright J Consortium 1999, 2000

Permission is granted by the J Consortium to reproduce this International Spec-
ification for the purpose of review and comment, provided this notice is
included. All other rights are reserved.

THIS SPECIFICATION IS BEING OFFERED WITHOUT ANY WARRANTY WHATSO-
EVER, AND IN PARTICULAR, ANY WARRANTY OF NON-INFRINGEMENT IS
EXPRESSLY DISCLAIMED. ANY IMPLEMENTATION OF THIS SPECIFICATION
SHALL BE MADE ENTIRELY AT THE IMPLEMENTER'S OWN RISK, AND NEITHER
THE J CONSORTIUM, NOR ANY OF ITS MEMBERS OR SUBMITTERS, SHALL
HAVE ANY LIABILITY WHATSOEVER TO ANY IMPLEMENTER OR THIRD PARTY
FOR ANY DAMAGES OF ANY NATURE WHATSOEVER DIRECTLY OR INDIRECTLY
ARISING FROM THE IMPLEMENTATION OF THIS SPECIFICATION.

Table of Contents

20 Terminology Conventionscouiiiiinennnnnnnnnn.
2.1 Normative Terms
Shall
Shall not
May
May not
Should
Should not
Can
I mplementation-defined
Unspecified behavior
Undefined behavior
2.2 Program Language and Technical Terminology
Static properties
Dynamic properties
Java
Baseline
Core
Extended Baseline Virtual Machine
Core Components
Core Methods
Core-Baseline Methods
Allocation Context
Asynchronous Transfer of Control (ATC)
Green Threads
RTOS
Base Priority
Active Priority
Never-Scheduled Priority
[/O Channel, Memory-Mapped Access, and 1/O-Space Access
2.3 Architectural Components
2.4 Notational Shorthand

3.0 TheSpecification........ ...t
3.1 Conformity Assessment
3.1.1 A Conforming CoreClassFile
3.1.2 A Conforming Static Core Application
3.1.3 A Conforming Dynamic Core Application
3.1.4 A Conforming Core Verifier
3.1.5 A Conforming Static Core Development Environment
3.1.6 A Conforming Static Core Executable Load Image

ORRDPMDRMDRANPRPWWWWWWWWWNNNNNNNNNNERPREPERPERPRERPRERPR

~NO OO OO OO O

i of iX Copyright 1999, 2000 J Consortium, All Rights Reserved

Table of Contents

3.1.7
3.18
3.1.9
3.2
3.3
331
3.3.2
3.4

3.5
3.51
3.5.2
3.6
3.7
3.8
3.9
3.10
3.11
3.11.1
3.12
3.13
3.14

3.14.1
3.14.2

A Conforming Dynamic Core Development Environment
A Conforming Static Core Linker
A Conforming Core Native Interface Compiler
Core Objects
Partitioning of Memory
Partitioning Protocol from Core programmer’s perspective
Partitioning Protocol from the Baseline programmer’s perspective
Architectural Overview of the Core Development Architecture
Core Source Files
Stylized Core Source Files
Core Class Files
Baseline Compiler
Figure 1: Overview of Real-Time Core Development Architecture
Core Verifier
Core Native Compiler
Native-Targeted Core Class Files
Core Class Libraries
Core Execution Environment
Static Core Execution Environment
Static Core Executable Load Image
Core Static Linker
Dynamic Core Execution Environment
Core Class Loader
Core Class Files
The Core Verifier
The Core Class Loader
Special Notations for Stylized Core Source Code
Core Priorities
Synchronization Issues
Task Execution Model for Execution of Core-Baseline Methods
The Core Memory Model

Abort Mechanism and Asynchronous Transfer of Control in General

Asynchronous Transfer of Control
Stack Allocation of Dynamic Objects
Initialization and Class Loading
Execution-Time Analyzable Code
Figure 2: Analyzable Conditional Control Flow
Figure 3: Analyzable Multi-Way Conditional Control Flow
Analyzability of Core Source Code
Predictability of the Core Execution Environment
Table 1: Predictability Requirements for Core API Libraries
Table 2: Predictability Requirements for the C/Native API

O 0000~

11
12
12
12
12
12
13
13
14
14
14
14
14
14
14
15
15
15
15
18
18
20
21
21
24
24
25
26
27
29
29
30
31
33
34
35
56

Real-Time Core Extensions

ii of iX

Table of Contents

3.15
3.16
3.16.1

3.16.2

3.16.3

3.17
3.17.1

3.17.2

3.17.3

3.17.4

3.17.5

3.17.6

Core Class Loading API Overview
C/Native API
Obtaining Access to Core Objects
coreRegistryLookup()

Understanding Core Resource Needs and Contention

maxCorePriority()
minCorePriority()
corePriorityMap()
maxBaselinePriority()
minBaselinePriority()
corelnterruptLevel ()

Synchronizing and Coordinating with the Baseline Domain

semaphoreP()
semaphoreV()
semaphoreVall()
enterSynchronized()
exitSynchronized()

The Core API

The CoreObject Class
CoreObject Constructor
CoreObject.clong()
CoreObject.equals()
CoreObject.getClass()
CoreObject.hashCode()
CoreObject.notify()
CoreObject.notifyAll()
CoreObject.toString()
CoreObject.wait()
CoreObject.arrayAddress()
CoreObject.sizeof()

The CoreThrowable Class
CoreThrowable Constructors
CoreThrowable.getM essage()
The CoreRuntimeException Class
CoreRuntimeException Constructors
The CoreException Class
CoreException Constructors
The ScopedException Class
ScopedException Constructors
ScopedException.enable()
ScopedException.disable()
The CoreClass Class

57
57
57
57
57
57
58
58
58
58
58
58
58
59
59
59
60
60
60
61
61
61
61
61
61
62
62
62
62
62
63
63
63
63
63
63
64

64

65

iii of ix

Copyright 1999, 2000 J Consortium, All Rights Reserved

Table of Contents

3.17.7

3.17.8

3.17.9

3.17.10

3.17.11
3.17.12

3.17.13

CoreClass.forName()
CoreClass.getComponentType()
CoreClass.isArray()
CoreClass.isAssignableFrom()
CoreClass.islnstance()
CoreClass.isInterface()
CoreClass.isPrimitive()
CoreClass.newlnstance()
CoreClass.toString()
CoreClass.verification()
CoreClass.|oadClass()
CoreClass.unloadClass()

The CoreArray Class

Table 3. Core Array Representation Within Baseline Domain

length()

atGet()

atPut()

The AllocationContext Class
AllocationContext Constructors
AllocationContext.available()
AllocationContext.allocated()
AllocationContext.rel ease()

The SpecialAllocation Class
SpecialAllocation.context()
SpecialAllocation.run()
SpecialAllocation.execute()

The PCP Interface
PCP.ceilingPriority()

The Atomic Interface

The CoreString Class

CoreString Constructors
CoreString.charAt()
CoreString.hashCode()
CoreString.equals()
CoreString.length()

The DynamicCoreString Class
DynamicCoreString Constructors
DynamicCoreString.concat()
DynamicCoreString.getChars()
DynamicCoreString.substring()
DynamicCoreString.toCharArray()
DynamicCoreString.toL owerCase()

65
65
65
65
65
65
65
65
66
66
66
66
66
67
68
68
68
68
69
70
70
70
70
70
70
71
71
72
72
73
73
73
73
73
74
74
74
74
74
75
75
75

Real-Time Core Extensions

iV of iX

Table of Contents

3.17.14

3.17.15

3.17.16

3.17.17

3.17.18

3.17.19

3.17.20

3.17.21

DynamicCoreString.toUpperCase()
The ATCEventHandler class
ATCEventHandler Constructor

ATCEventHandler.handleATCEvent()

The ATCEvent class

ATCEvent Constructor
ATCEvent.defaultAction()

The CoreRegistry class
CoreRegistry.stackAllocation()
CoreRegistry.registerStackable()
CoreRegistry.registerBaseling()
CoreRegistry.registerCoreClass()
CoreRegistry.coerce()
CoreRegistry.profiles()
CoreRegistry.publish()
CoreRegistry.unpublish()

The SignalingSemaphore Class
SignalingSemaphore.P()
SignalingSemaphore.V ()
SignalingSemaphore.Vall()
SignalingSemaphore.numWaiters()
The CountingSemaphore Class
CountingSemaphore.P()
CountingSemaphore.V ()
CountingSemaphore.numWaiters()
CountingSemaphore.count()

The Mutex Class

Mutex Constructors
Mutex.lock()

Mutex.unlock()

The Configuration Class
Configuration.tick_duration
Configuration.ticks per_slice
Configuration.uptime_precision
Configuration.default_stack size

Configuration.stack_overflow_checking

Configuration.min_core_priority
Configuration.system_priority _map
Configuration.little_endian

The Time Class
Time.tickDuration()
Time.uptimePrecision()

75
75
76
76
76
76
76
76
76
77
77
77
77
78
78
78
79
79
79
79
79
80
80
80
80
80
81
81
81
81
81
82
82
82
82
82
82
82
83
83
83
83

V of iX

Copyright 1999, 2000 J Consortium, All Rights Reserved

Table of Contents

3.17.22

3.17.23

Time.day()

Time.h()

Time.hertz()

Time.m()

Time.ms()

Time.ns()

Time.s()

Time.toString()

Time.uptime()

Time.us()

The Unsigned class
Unsigned.compare()
Unsigned.ge()

Unsigned.gt()

Unsigned.lg()

Unsigned.It()

Unsigned.eq()

Unsigned.neq()
Unsigned.toByte()
Unsigned.toShort()
Unsigned.tol nt()

Unsigned.toL ong()
Unsigned.toString()
Unsigned.toHexString()

The CoreTask Class

CoreTask Constructor

Static Methods
CoreTask.currentTask()
CoreTask.defaultStackSize()
CoreTask.maxBasdlinePriority()
CoreTask.maxCorePriority()
CoreTask.maxSystemPriority()
CoreTask.minBaselinePriority()
CoreTask.minCorePriority()
CoreTask.minSystemPriority()
CoreTask.numlnterruptPriorities()
CoreTask.stackOverflowChecking()
CoreTask.systemPriorityMap()
CoreTask.ticksPerSlice()
Instance M ethods
CoreTask.abort()
CoreTask.abortWorkException()

83
83
84
84
84
84

85
85
85
85
85
85
86
86
86
86
87
87
87
87
87
88
88
88
89
89
89
89
89
90
90
90
90
90
90
90
91
91
91
91

Real-Time Core Extensions

Vi of iX

Table of Contents

3.17.24

3.17.25

3.17.26

3.17.27

CoreTask.asyncHandler()
CoreTask.join()
CoreTask.resume()
CoreTask.setPriority()
CoreTask.signalAsync()
CoreTask.sleegp()
CoreTask.sleepuntil()
CoreTask.stackDepth()
CoreTask.stackSize()
CoreTask.start()
CoreTask._start()
CoreTask.stop()
CoreTask.suspend()
CoreTask.systemPriority()
CoreTask.work()
CoreTask.yield()
TheISR_Task Class
ISR_Task Constructor

ISR _Task.serviced()

ISR _Task.trigger()
ISR_Task.work()
ISR_Task.ceilingPriority()
ISR _Task.arm()
ISR_Task.disarm()

The SporadicTask Class
SporadicTask Constructor
SporadicTask.trigger()
SporadicTask.work()
SporadicTask.pendingCount()
SporadicTask.clearPending()
The 1OPort class

| OPort.createl OPort()

| OPort.readByte()
|OPort.writeByte()

| OPort.readShort()

| OPort.writeShort()

| OPort.readint()

| OPort.writelnt()

| OPort.readL.ong()

| OPort.writeLong()

Core Throwable Types

Table 4: Core CoreThrowable Classes

91
91
92
92
92
93
93
93
93
93
93
93
94
94
94
94
94
95
95
96
96
96
96
97
97
97
98
98
98
98
98
99
99
99
99
99
100
100
100
100
100
102

Vii of ix

Copyright 1999, 2000 J Consortium, All Rights Reserved

Table of Contents

40 Baseline APl 103
Semaphore Operations 104
CoreTask Operations 104
Core Execution Profiles 104
Starting Up a Core Execution Environment 104
4.1 The BasealineCoreClassLoader Class 104
BaselineCoreClassL oader Constructors 104
BaselineCoreClassL oader semantics 104
4.2 The CoreDomain Class 105
CoreDomain.lookup() 105
CoreDomain.defineClass() 105
CoreDomain.loadClass() 105
CoreDomain.instantiate() 106
CoreDomain.profiles() 106
4.3 The ObjectNotFoundException Class 106
4.4 The CoreBaselineThrowable Class 106
CoreBaselineThrowable Constructors 106
CoreBaselineThrowable.getCoreThrowabl e() 106
4.5 The CoreBasdlineRuntimeException Class 107
CoreBaselineRuntimeException Constructor 107
CoreBaselineRuntimeException.getCoreException() 107
4.6 The CoreBaselineException Class 107
CoreBaselineException Constructors 107
CoreBaselineException.getCoreException() 107
50 Acknowledgments. 108
6.0 InformativeReferences............. i, 108
ANNEX A HiStOry. .. 109
A.1l Revision10.14 109
A.2 Revision1.0.13 110
A.3 Revision1.0.12 111
A.4 Revision 1.0.11 112
A5 Revision 1.0.10 112
A6 Revision1.0.9 112
A.7 Revision1.0.8 113
A.8 Revision1.0.7 114
A9 Revision 1.0.6 116
A.10 Revision1.0.5 120
A.1l Revision1.04 122
A.12 Revision1.0.3 122
A.13 Revision1.0.2 125
Real-Time Core Extensions viii of ix

Table of Contents

Annex B Requirements for the Core Specification.....................

B.1
B.2

The Working Principles of the Real-Time Java Working Group
Additional Requirements

Annex C Background and Rationale. L,

C1l
Cl1
C2
C3
Cc4
C5

C.6
C.7
C.38
C9
C.10
clu
C.12
C.13
C.14
C.15
C.16
C.17

C.18

Annex D

D.1
D.2
D.3

Historical Background
NIST Requirements for the Real-Time Core
NCITS Principles for Real-Time Core
Rationale for Partitioning of Memory
Comments Regarding the Core Verifier
Comments on Syntactic Core Extensions
Figure 4. Overview of Real-Time Core Development Architecture
Special Notations for Syntactic Core Source Code
Clarification and Rationale re: Stack Allocation
Motivation for Special Class Loading Semantics
Clarifications re: Execution Time Analyzability
Rationale for Core Class Loading Requirements
Comments on Run-Time Differentiation between Core and Baseline Tasks
Commentsre: the PCP Interface
Rationale for the CoreString and DynamicCoreString Specifications
Rationale for Semaphores to Complement Built-In Java Primitives
Rationale for the Mutex Class
Comments on Loading and Starting Core Tasks from Baseline Domain
Comments on Explicit Memory Management
Rationale and Discussion Regarding Asynchronous Transfer of Control
Abortion of atask
Timing out a sequence of code
Nested timeouts
Software interrupts
System mode changes
Commentsre: low-level 1/0 Services

Implementation Suggestions i
Comments on the Implementation of Partitioned Heaps (Section 3.3)
Comments on Implementation of Multiple Method Tables (Section 3.3)
Comments on Implementation of Stack Allocation

Dynamic stack allocation
Static stack allocation
Figure 5: Method Tables for Core Objects

iX of iX

Copyright 1999, 2000 J Consortium, All Rights Reserved

Revision 1.0.14
September 2, 2000

Real-Time Core Extensions

This document represents a draft revision to the specification for Real-Time
Core Extensions for the Javal Platform, based on the collective work of the
members of the J Consortium’s Real-Time Java Working Group. Included in

this document is discussion of requirements, historical perspectives and
rationale, and suggestions for implementation of the specification.

Send comments to rtcore@j-consortium.org.

1. Javaisaregistered trademark of Sun Microsystems, Inc. in the United States and other coun-
tries.

1.0

Scope

2.0

This International Specification describes the form and meaning of programs written to

make use of Real-Time Core Extensions, known throughout this document as simply

“Core”, on single-processor computers. The document’s purpose is to promote the port-
ability of Core application software and to ensure compatibility between implementa-
tions of Core development tools and run-time environments.

Terminology Conventions

21

Normative Terms
Throughout this document, the following terms shall have the meanings defined herein:

Shall. This identifies a conformance requirement.

Shall not. This identifies a prohibited feature or behavior.

May. This identifies an optional feature or behavior.

May not. This means the same as “need not”".

Should. This identifies a recommended practice, but is not required.

Should not. This identifies a practice that is not recommended, but is not prohibited.

Copyright 1999, 2000 J Consortium, All Rights Reserved 1

Terminology Conventions

2.2

Can. Thisidentifies features or behavior that are available to an application. Implemen-
tations shall support such features and behaviors as conformance requirements.

Implementation-defined. This identifies behavior for a correct program construct and
correct data that depends on the characteristics of the implementation, and shall be doc-
umented for each implementation. Example: the content of arequired diagnostic mes-

sage.

Unspecified behavior. Thisidentifies behavior for a correct program construct and cor-
rect data, for which the specification explicitly imposes no requirements. Example: the
order in which the arguments to a function are eval uated.

Undefined behavior. Thisidentifies behavior upon the use of a non-portable or erroneous
program construct, erroneous data, or indeterminately valued objects, for which this
specification imposes no requirements.

Program Language and Technical Terminology

Static properties. With regard to computer programming languages, a static property is

an attribute of acomputer program that is determined at compile or link time rather than

run time. Attributes that cannot be determined at compile time are called dynamic prop-
erties. Static linking describes the process of linking software components together prior

to run time. Static memory management describes a mechanism in which the compiler
determines that particular memory cells are required for execution of the program (or
program component) and sets that memory aside at the moment the program begins to
execute and doesn't reclaim that memory until the program (or program component)
finishes its execution.

Dynamic properties. With regard to computer programming languages, a dynamic prop-
erty is an attribute of a computer program that cannot be determined at compile time,
but must instead be determined at run time. Attributes that can be determined at compile
time are called static properties. Dynamic linking describes the process of linking soft-
ware components together on the fly, while programs are running. Dynamic memory
management describes a mechanism in which the program issues requests for allocation
of new memory while it is running, and in which particular previously allocated objects
are released by the application and reclaimed while the program continues to run.

Java. Throughout this document, the word “Java” is a trademark of Sun Microsystems

in the U.S. and other countries. In this document, “Java” is used to describe the Java
programming language and programming platforms as these were originally described
by Sun Microsystems in references 5 and 8, including the many variants that have come
into existence since the original specifications were published.

Baseline. A Core Execution Environment may, but need not, be combined with a tradi-
tional Java virtual machine, as illustrated in Figure 1 on page 13. When combined in
this manner, the traditional (non-real-time) Java virtual machine and the programming
language that is used to develop applications for execution within the traditional Java
virtual machine are known as Baseline components. This specification imposes no con-
straints on which version of Java is implemented by the Baseline component except to

Copyright 1999, 2000 J Consortium, All Rights Reserved

Terminology Conventions

require that the Baseline component implement the Java services described in Section
4.0.

Core. To emphasi ze the distinction between non-real -time Java technologies, and the

special real-time variant of the Java programming language that is described in this doc-

ument, we use the word “Core” to describe software components designed to run in the
Core Execution Environment, as it is described in this document.

Extended Baseline Virtual Machine. A Core Execution Environment may, but need not,

be combined with a Baseline virtual machine. The combination of a Core Execution
Environment with a Baseline virtual machine is known as an Extended Baseline Virtual
Machine.

Core Components. A Core Component is a software component written as a Core
Source File, designed to run within the Core Execution Environment.

Core Methods. A Core Method is a method of a Core Component which is only visible
to other Core Components. Contrast this with Core-Baseline methods.

Core-Baseline Methods. A Core-Baseline method is a method of a Core Component that
is only visible to Baseline components and from within other Core-Baseline methods.
Contrast this with Core Methods.

Allocation Context. An Allocation Context is an abstraction that serves to logically
group a number of allocated Core objects. When an Allocation Context is released, all
of the memory required to represent the Core objects that were allocated within that
Allocation Context immediately becomes eligible to be reclaimed and recycled by an
appropriate garbage collector.

Asynchronous Transfer of Control (ATC). The normal flow of control within a Core pro-

gram is sequential execution of statements. The normal sequential control flow is modi-
fied by branching statements, includimljle loops,for loops,switch statements, ariti

else statements. These forms of program-controlled control flow are knosyméiso-

nous transfer of control. When control flow is modified by some event that is not under
the control of the currently executing thread, this is knowesaschronous transfer of

contral.

Green Threads. Both Baseline and Core programming languages provide built-in sup-
port for multiple threads (tasks). In both cases, certain aspects of the implementation of
multiple tasks are not constrained by the specification. In particular, the Baseline and
Core specifications do not require that programming language threads be mapped one-
to-one to operating system tasks. One way to implement the programming language
run-time is to dedicate one operating system task to the run-time, and to implement mul-
tiple tasks and task dispatching using a small kernel that is part of the implementation of
the programming language run-time. We use the term “green threads”, a phrase appar-
ently coined by Sun Microsystems, to describe such an implementation.

RTOS. RTOS is an acronym representing “Real-Time Operating System”. Though each
real-time operating systems has been designed to satisfy a particular audience’s special
needs, most real-time operating systems share the objectives of enabling the creation of

Real-Time Core Extensions 3

Terminology Conventions

2.3

small, highly efficient, highly predictable applications. For real-time applications, pre-
dictability refersto the ability to predict when the application will perform certain
actions. Highly predictable real-time systems allow prediction of activities within toler-
ances measured in tens of microseconds with very high degrees of confidence. For less
predictabl e real-time systems, the tolerances are much higher (measured, for example,
in tens of milliseconds) and the degree of confidence may be much lower.

Base Priority. The Base Priority of aCore task isthe priority initially specified when the
task is constructed and possibly modified by invocation of the tsetRi$ority() method.
See Section 3.7 (starting on page 21).

Active Priority. The Active Priority of a Core task is the priority at which the task is cur-
rently being dispatched. Note that the Active Priority shall be higher than the Base Pri-
ority if the task has inherited priority from a higher priority task while it is accessing a
particular shared data structure. The Active Priority shall also be higher than the Base
Priority if the task is executingsgnchronized method of a Core component that imple-
ments thePCP interface, and the object’s ceiling priority is higher than this task’s Base
Priority. The Active Priority shall be lower than the Base Priority if the task has been
suspended and has not otherwise inherited priority higher than the Never-Scheduled Pri-
ority level. See Section 3.7 (starting on page 21).

Never-Scheduled Priority. The Never-Scheduled Priority is a special priority level that is
used to identify tasks that shall not be dispatched for execution unless execution is
required by a priority inversion avoidance mechanism. See Section 3.7 (starting on page
21).

I/0 Channel, Memory-Mapped Access, and 1/0-Space Access. Throughout this docu-

ment, we use the phrase “memory-mapped access” to describe access to memory-
mapped I/O channels, and the phrase “I/O-space access” to describe access to 1/O ports
residing in I/O space. We use the term “I/O channel” to represent either or both.

Architectural Components

A number of additional terms are defined in Section 3.4 as part of the Architectural
Overview of the Core Implementation. Included among the terms described there are:

* Core Source Files (See page 12)

* Stylized Core Source Files (See page 12)

* Core Class Files (See page 12)

* Baseline Compiler (See page 13)

* Core Verifier (See page 14)

e Core Native Compiler (See page 14)

* Native-Targeted Core Class Files (See page 14)

e Core Class Libraries (See page 12)

e Core Execution Environment (See page 14)

e Static Core Execution Environment (See page 14)
* Static Core Executable Load |mage (See page 14)

Copyright 1999, 2000 J Consortium, All Rights Reserved

Terminology Conventions

2.4

e Core Static Linker (See page 15)
e Dynamic Core Execution Environment (See page 15)
e Core Class Loader (See page 15)

Notational Shorthand

Throughout this document, we use two shorthand notations to describe the signatures of
particular Core APl methods. These shorthands consist of the baseline keyword used to
identify a method as Core-Baseline methods (see “Core-Baseline Methods” on page 3)
and thestackable keyword to identify method arguments that are designed to refer to
stack-allocated objects (see “Stack Allocation of Dynamic Objects” on page 27).

In particular, we use theaseline keyword in the list of attributes that comprises the sig-
nature of each Core-Baseline method, as in the following:

public baseline void foo(int i, float x) {

}

This notation is short-hand for the representative invocatidoreRegistry.registerBase-
line(*foo(IF)V"), as described in “CoreRegistry.registerBaseline()” on page 77. If multiple
methods for a given class are declared wittb#iseline attribute in their signatures, this
notation is equivalent to a single invocatiorCofeRegistry.registerBaseline() in the

class’s static initializer with the string argument created by catenating together each
Core-Baseline method’s name and signature, each separated from each of its neigbhors
by a semicolon.

Similarly, we use thetackable keyword as an attribute of a parameter which is declared
to honor all of the protocols required for reference variables that may refer to stack-allo-
cated objects. To use thiackable attribute in the declaration of a method signature is
short-hand for the equivalent invocationGuireRegistry.registerStackable() (see “Core-
Registry.registerStackable()” on page 77). For example, the method signhature:

public stackable org.rtjwg.CoreObject foo(int i, stackable org.rtjwg.CoreObject x);
is shorthand for the Core method whose implementation begins weiisterStackable()

invocation which identifiethis andx as references to stack-allocatable objects, as repre-
sented by the following example implementation.

public java.lang.Object foo(int i, java.lang.Object x) {
CoreRegistry.registerStackable(“x;this");

Real-Time Core Extensions 5

The Specification

3.0 The Specification
3.1 Conformity Assessment

Real-time core extensions comprise devel opment tools, run-time environments,

required libraries, and specific constraints on the way a Core application is represented.

This section describes what it meansto conform to the specification for Real-Time Core

Extensions for the Java platform.

3.1.1 A Conforming Core Class File

1. Usesthe sameformat as Java 1.1 classfiles, as described in reference 3.

2. Adheresto amore stringent set of programming constraints, as described in Section
3.5 (starting on page 15).

3.1.2 A Conforming Static Core Application
1. Isrepresented as one or more Java Virtual Machine class files, according to the
classfile format that is described in reference 3.
Adheresto all of the special restrictionsidentified in section 3.5 of this document.
Does not contain any invocations of the CoreClass.loadClass() or CoreClass.unload-
Class() methods (see “CoreClass.loadClass()” on page 66 and “CoreClass.unload-
Class()” on page 66)
3.1.3 A Conforming Dynamic Core Application

1. Is represented as one or more Java Virtual Machine class files, according to the
class file format that is described in reference 3.

Adheres to all of the special restrictions identified in section 3.5 of this document.
Contains at least one invocation of tweClass.loadClass() or CoreClass.unload-
Class() methods (see “CoreClass.loadClass()” on page 66 and “CoreClass.unload-
Class()” on page 66)

3.1.4 A Conforming Core Verifier

1. Accepts as input a Core class file and verifies that the Core class file is of the proper
format by enforcing all of the byte-code verification requirements described in ref-
erence 3 as supplemented by the additional rules described in “Core Class Files” on
page 15 of this document).

2. The Core verifier may be packaged either as part of the Core Execution Environ-
ment or as a dedicated tool that verifies that class files contain code that conforms
with the constraints of the Core specification.

3.1.5 A Conforming Static Core Development Environment

1.

Includes Core class file implementations of all of the class libraries described in
Section 3.17 (starting on page 60) (the Core API) of this document. All of the class
file implementations shall conform to the descriptions and requirements provided
in Section 3.17 except that t@ereClass.loadClass() andCoreClass.unloadClass()

methods need not be implemented.

Includes a conforming Core Verifier.

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.1.6

3.1.7

3.1.8

Includes a conforming Static Core Linker and whatever native components (also
known as Static Core Execution Environment) are required to be linked together
with the Core class file implementations of the Core API and with the Core class
file representations of any conforming static Core application in order to produce a
conforming static Core Executable L oad Image. The native components repre-
sented by the Static Core Execution Environment shall include the C/Native APl as
described in Section 3.16 (starting on page 57),

Does not necessarily implement support for stack allocation of local variables, but
does implement the CoreRegistry.registerStackable() method.

May, but need not, include a Core Native Compiler.

May, but need not, include support for integration of native methods within Core
applications. Native method support, if provided, shall be implementation-defined.

A Conforming Static Core Executable Load Image

1.

I's an executable program comprised of a Core application bound to the subset of
Core AP libraries required for execution of that particular Core application and
bound to whatever native components are required for execution of that Core appli-
cation.

A Conforming Dynamic Core Development Environment

1.

Includes Core class file implementations of all of the classlibraries described in
Section 3.17 (starting on page 60) (the Core API) of this document. All of the class
file implementations shall conform to the descriptions and requirements provided
in Section 3.17 except that the CoreClass.loadClass() and CoreClass.unloadClass()
methods need not be implemented.

Includes a conforming Core Verifier.

Includes a Dynamic Core Java Execution Environment which includes implemen-
tations of the Baseline API as described in Section 4.0 (starting on page 103), the C/
Native API as described in Section 3.16 (starting on page 57), and whatever addi-
tional native components are required to enable the Dynamic Core Java Execution
Environment to dynamically load and execute any conforming dynamic Core appli-
cation.

Does not necessarily implement support for stack allocation of local variables, but
does implement the CoreRegistry.registerStackable() method.

May, but need not, include a Core Native Compiler.

May, but need not, include support for integration of native methods within Core
applications. Native method support, if provided, shall be implementation-defined.

A Conforming Static Core Linker

1.

Must be able to process any collection of conforming Core class files, producing as
output an executable image that implements the semantics of those core class files
linked together.

May, but need not, provide the capability of linking native method implementations
into the resulting Static Core Executable Load Image. It isimplementation-defined
whether native method programming is supported by an implementation of the

Real-Time Core Extensions 7

The Specification

3.1.9

3.2

Core extensions. If native method programming is supported, it isimplementation-
defined how to link native methods into the Static Core Executable L oad Image.

3. May, but need not, include support for integration of native methods within Core
applications. Native method support, if provided, shall be implementation-defined.

A Conforming Core Native Interface Compiler

1. Shall process any conforming Core class file and produce as output a C header file
which identifies the internal organization, providing at minimum, the ability to
access all Core-declared fieldsin the corresponding real-time Core objects. The
form of the information provided in the C header file isimplementation-defined.

Core Objects

Objects alocated within the Core Execution Environment shall exhibit special charac-
teristics that are (or may be) different than objects allocated within a Baseline virtual
machine. In particular:

1. Core objects shall not be relocated. Once the location of a Core object has been
determined, that object’s location in memory shall not change.

2. There are two ways for software developers to author Core class files. Either they
use a traditional Baseline Compiler and a special Core Verifier, or they use a spe-
cially designed Core Compiler which integrates the functionality of a traditional
Baseline Compiler with the Core Verifier. This is illustrated in Figure 1 on page 13.
Depending on which set of development tools they prefer to use, Core program-
mers use different syntaxes to describe their intent.

a. Ifthey use a traditional Baseline Compiler and a Core Verifier, they express
core concepts using notations that we characterize in this docuntylizzs
Core source. This is described more completely in Section 3.6 (starting on
page 20).

b. If they use a Core Compiler, they express concepts using notations that we
characterize in this document@>actic Core source. This is described more
completely in Section C.5 (starting on page 138).

In either case, the contents of the Core class file is the same. The Core Compiler
translates Syntactic Core source code into a Core class file that looks as if it had
been translated by a Baseline Compiler from the equivalent Stylized Core source
code.

3. When a Core task does a new memory allocation, this never blocks or causes gar-
bage collection to run. If memory is not availaley() immediately throws a pre-
viously allocated instance &breOutOfMemoryException. A memory allocation
request may fail either because there is not sufficient free memory available, or
because whatever free memory is available has become fragmented.

4. Core tasks are only allowed to allocate instancesgafiwg.CoreObject and its sub-
classes.

5. Except for the special Core-Baseline methods described in paragraph 3 of Section
3.3, only Core tasks are allowed to execute the methods of Core objects. We call
these methods which are only executable by Core tasks “Core methods”.

6. Inthe Core methods, programmers shall not perform string catenation except for
catenation of string literals (compile-time constants) for which the source-language

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

compiler replaces the string-catenate expression with a single string literal. This
restriction shall be enforced by the Core Verifier.

Every Core object is allocated within aparticular Allocation Context. Each Core
task has a default Allocation Context. Within particular dynamic scopes, Core
objects are allocated from programmer specified Allocation Contexts.

A Core application may invoke the release() method of any Allocation Context to
cause the Core Execution Environment to reclaim the memory used to represent all

of the objects allocated within that Allocation Context. Assuming that the Core
Execution Environment is not bound to a Baseline virtual machine, the Core Exe-
cution Environment shall simply reclaim the memory without performing any
checksto verify that the memory objects to be reclaimed are no longer in use. How-
ever, if the Core Execution Environment is bound to a Baseline virtual machine as

part of an Extended Baseline Virtual Machine, the semantics of the Allocation Con-
text'srelease() method are different, as described in paragraph 11 of Section 3.3.

3.3 Partitioning of Memory

System integrators have the option of combining the Core Execution Environment with
a Baseline virtual machine. The combination of these two components is known as an
Extended Baseline Virtual Machine. An Extended Baseline Virtual Machine shall sup-
port two logical heaps. One heap holds Core objects. The other holds Baseline objects.
The idea is that objects within the Baseline heap are managed by way of automatic gar-
bage collection. The memory for objects residing within the Core heap is managed
under explicit programmer control.

Key differentiating characteristics of the Core objects are listed below:

1.

Core classes are identified by the way they are loaded. There is no syntax to distin-
guish Core classes. Instead, a special Baseline service allows Baseline components
to cause particular classes to be loaded and executed within the Core Execution
Environment. This service is described in Section 4.0. Alternatively, system inte-
grators can identify certain Java class files as Core classes by requesting that they
be linked into a Core Executable Image by identifying those classes as inputs to the
Core Static Linker. All classes dynamically loaded into a Dynamic Core Execution
Environment or statically linked into a Static Core Executable Image are known as
Core classes. All instances of these Core classes are known as Core objects. All
Core objects reside in the Core heap.

Core methods shall not invoke methods of Baseline objects. Further, Core-Baseline
methods shall not invoke methods of Baseline objects. Baseline threads shall not
invoke Core methods.

A special protocol is available to allow developers of Core components to identify
the set of methods that are visible to the Baseline world. We call these methods
Core-Baseline methods. Core tasks shall not invoke Core-Baseline methods. Fur-
ther, Core-Baseline methods shall not invoke Baseline methods. Core programmers
identify the Core-Baseline methods of a Core class by concatenating the method
names and signatures of the Core-Baseline methods together, separated by semico-
lons, into a single Core string and passes this string to theGtegiRegistry.register-
Baseline() method, as described in “CoreRegistry.registerBaseline()” on page 77.

Real-Time Core Extensions 9

The Specification

4. Notein Figure 1 on page 13 that there are several pathsfor deploying Core pro-
grams. Either the Core class file can be loaded dynamically into a Dynamic Core
Execution Environment, or the Core class file can be compiled to native machine
language by a Core Native Compiler and then dynamically loaded into a Dynamic
Core Execution Environment, or the Core class can be statically linked by a Core
Static Linker, either in byte code or native code form, with an appropriate collection
of run-time services known as the Static Core Execution Environment.

5. A gpecial registry shall allow Core Components to publish particular core objects
so they may be seen by Baseline components. To make a Core object visible to the
Baseline domain, the Core component invokes:

CoreRegistry.publish(CoreString, CoreObject);

passing as a first argument the CoreString representation of the symbolic name by
which the Core object is to be known within the CoreRegistry dictionary, and pass-
ing areference to the Core object as its second argument.

At some later time, the Core component may decide to remove the object from the
CoreRegistry dictionary. It does so by invoking:

CoreRegistry.unpublish(CoreString);

passing as its sole argument a CoreString object which matches the name (same
sequence of characters) by which the particular object was originally published.

Note that removing a particular object from the CoreRegistry dictionary does not
necessarily cause that object's memory to be reclaimed, even if the Core domain
has already released the object’s Allocation Context. This is because the Core
object may still be reachable from the Baseline domain, either directly or indirectly.

A more detailed description of ti@reRegistry class is provided in Section 3.17.16.

Given that a Core object has been installed int@theRegistry dictionary, a Base-
line component can obtain a reference to the object by invoking:

core_object_reference = CoreDomain.lookup(String);

passing as the argument to ttakup() method gava.lang.String() object that has the
same sequence of characters as the symbolic name by which the object is identified
in the CoreRegistry dictionary.

A more detailed description of ti@reDomain class is provided in Section 4.2.

6. Since Core objects may become visible to the Baseline world (throughbtisk()
service of theCoreRegistry class), each Core object needs to support two APIs. In
particular, the Core API derives froorg.rtjwg.CoreObject and includes the Core
methods of all classes on the inheritance hierarchy betovgéjwg.CoreObject and
the class. The Baseline API derives frama.lang.Object, and includes the Baseline
methods ofava.lang.Object, plus the Core-Baseline methods on the inheritance hier-
archy fromorg.rtjwg.Object to the class. Note that within the Baseline world,
org.rjwg.Object extendgava.lang.Object.

To reduce the memory required to implement certain Core objects, an optimizing
Core Execution Environment need not support the Baseline API for objects for
which it can demonstrate through program analysis that they are not visible to the
Baseline domain.

7. Style guidelines prohibit Baseline threads from direct access to the instance and
class variables of Core objects. The Core Verifier shall enforce this restriction.

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

10.

11.

Style guidelines prohibit the Core-Baseline methods from modifying the pointer
instance and pointer class variables of Core objects. The Core Verifier shall enforce
this restriction.

No code within Core-Baseline methods is allowed to make any reference to Base-
line objects. Note that this restriction prohibits the passing of argumentsto Core-
Baseline methods which are references to Baseline objects. Thisrestriction shall be
enforced by the Core Verifier.

Baseline threads are not allowed to alocate instances of org.rtjwg.CoreObject and its
subclasses. Any attempt by a Baseline thread to allocate a new instance of
org.rtjwg.CoreObject or one of its derivatives shall fail by throwing an UnsatisfiedLink-
Error exception.

When the Core Execution Environment is bound to a Baseline virtual machine as

part of an Extended Baseline Virtual Machine, a Core application may invoke the

release() method of any Allocation Context to release the Core Execution Environ-

ment’s claim to the memory used to represent all of the objects contained within
that Allocation Context. The Core Execution Environment shall reclaim the mem-
ory of these objects only after it has verified that the objects are not reachable from
the Baseline virtual machine.

Reachability of Core objects is defined in the traditional garbage collection sense.
If there exists some chain of Baseline-visible pointers starting with a live variable
residing within the Baseline domain which terminates with a pointer to Core object
X, we say that object is reachable. Therefore, the memory for objecannot be
reclaimed.

A reference field contained within a Baseline object is a Baseline-visible pointer. If
the Baseline virtual machine has a reference to Core dhjeateference field con-
tained within object is Baseline-visible if objedi has a Core-Baseline method

which returns the value of this reference field. If it is possible for the Baseline vir-
tual machine to obtain a reference to Core objgtty, for example, invoking a
Core-Baseline method on a Core object that is already referenced from the Baseline
virtual machine), a reference contained within objéid Baseline-visible if object

V has a Core-Baseline method which returns the value of this reference field.

3.3.1 Partitioning Protocol from Core programmer’s perspective

When developing applications that involve cooperation between Core components and
Baseline components, it is necessary for the devel opers of each component to honor an
appropriate sharing protocol. The developer of Core components sees the object parti-
tioning protocol as follows:

1.

It is my responsibility to make sure I'm done with objgdtefore | release the
Allocation Context to which objeat belongs. Once I've released the Allocation
Context, it is an error for the Core tasks to access any of the objects belonging to
that Allocation Context or to assign any of those the objects’ addresses to any field
of a Core object. By deferring the release of an Allocation Context until after all of
the objects allocated within that Allocation Context are no longer in use, the Core
programmer prevents premature reclamation of the Core objects.

It is my responsibility to make sure | release the Allocation Context for okject

when | am certain that | am done using objand all other objects that were allo-
cated within that Allocation Context. By taking responsibility to release each Allo-

Real-Time Core Extensions 11

The Specification

3.3.2

3.4

cation Context as soon asiit is known that the objects allocated within that
Allocation Context are no longer in use, the Core programmer prevents memory
leaks.

3. Once I've released the Allocation Context for obpect have no need to worry
about objecK becoming visible to me again by any means. (In other words, | can
be assured that references to objeutill not “hide out” in the Baseline world and
then at some later time find their way back into the domain of the Core compo-
nents.)

4. | realize that objecX may be useful to other components in the system, and | have
no assurance of how long it will be before those components allow the memory
dedicated to object to be reallocated to other purposes (unless I've entered into
some sort of “contract” with those other components that governs the sharing of
information between our two worlds).

Partitioning Protocol from the Baseline programmer’s perspective

When developing applications that involve cooperation between Core components and

Baseline components, it is necessary for the devel opers of each component to honor an

appropriate sharing protocol. The developer of Baseline components sees the object par-
titioning protocol as follows:

1. From my perspective, Core objects are garbage collected just the same as other
objects.

2. | canonly access or modify Core objects by way of Core-Baseline methods.
3. | am not alowed to modify the pointer (reference) fields of Core objects.

Architectural Overview of the Core Development Architecture

The Core specification comprises devel opment tools, run-time environments, officially
defined libraries, and application code. This section provides an overview of how the
various components fit together. Figure 1 on page 13 illustratesthe relationship between
the various components.

Core Source Files. Core source files are authored by Core application developers and

system integrators. There are two distinct conventions for representing Core Source

Files, known as Syntactic Core Source Files and Stylized Core Source Files. Through-

out this document, we use the phrase “Core Source Files” to indicate that our comments
apply to both conventions.

Stylized Core Source Files. Stylized Core Source Files are Core Source Files written to

use Baseline syntax without any special Core syntaxes. Rather than use special syn-
taxes, the Core programmer adheres to specific style conventions and invokes particular
Core API methods to describe special real-time behaviors.

Core Class Files. Core class files use the same format as Java 1.1 class files, as described
in reference 3, except the code represented in Core class files must adhere to a more
stringent set of programming constraints, as described in Section 3.5 (starting on page
15).

12

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

Figure 1. Overview of Real-Time Core Development Architecture

Stylized
Core
Source

Files _
Baseline

Compiler
(e.g. javac)

Verifier
Core \I

Class
Files

Static Core
Execution
Environment

Core
Class
Libraries

. Stat_ick Core
ore Linker Native Compiler

Dynamic Core
Execution
Environment

Baseline

Virtual
Static Machine
Core
Executable Native-Targeted
Load Image Core
Class Files

Baseline Compiler. Core source files can be compiled using a Baseline Compiler aslong
asthe author of the source code follows the particular style guidelinesthat are identified
in Section 3.6.

Real-Time Core Extensions 13

The Specification

Core Verifier. The Core Verifier examines the contents of Core Class Files and ensures
that the code contained therein has adhered to the stringent Core programming guide-
lines. Figure 1 on page 13 shows the Core verifier running as a distinct development
pass. Alternatively, the Core verifier may be integrated into the Core Static Linker, the
dynamic Core class loader, and/or the Core Compiler.

Core Native Compiler. A Core Native Compiler processes the contents of a Core Class
Filein order to provide a dynamically |oadable native trandlation of the contents of the
Core ClassFile. This specification for Real-Time Core Extensions for the Java Platform
does not specify the behavior of the Core Native Compiler. Nor doesit specify the inter-
nal organization of Native-Targeted Core Class Files. The significance of including
these components in the architecture overview is to emphasize that the Core specifica-
tion shall enable the creation of productsthat play the rolesidentified in this architec-
tura overview, without constraining how the products function.

Native-Targeted Core Class Files. A Native-Targeted Core Class File includes an Imple-
mentation Defined representation of a Core Class File’s translation to a particular com-
puter’s native machine language.

Core Class Libraries. The Core Class Libraries comprise all of the class libraries
described in this document, all of which descend foaymtjwg.CoreObject. The Core
Class Libraries are examples of Core Class Files.

Core Execution Environment. A Core Execution Environment is a run-time environment
within which Core programs are executed. There are two kinds of Core Execution Envi-
ronments: Dynamic and Static. Throughout this document, we use the phrase “Core
Execution Environment” when our comments apply equally to both dynamic and static
systems.

Static Core Execution Environment. The Static Core Execution Environment consists of
object-file executables to be linked by the Core Static Linker with the Core Class
Libraries and application programs in the form of Core class files. The Static Core Exe-
cution Environment takes responsibility for task dispatching, maintenance of priority
gueues, implementation of priority inheritance and priority ceiling protocols, and inter-
face to interrupt handling hardware. Depending on a vendor’s implementation, the static
Core Execution Environment may also include a byte-code interpreter and an interface
to the target's operating system. (However, if the vendor chooses to use the Core Static
Linker to translate all byte codes to native code, then the Static Core Execution Environ-
ment need not include a byte code interpreter.) Included within the Static Core Execu-
tion Environment is a porting/integration layer that glues the run-time environment to
the host operating system.

Static Core Executable Load Image. A Static Core Executable Load Image is a com-
pletely linked executable program which includes the following components:

1. That subset of the Core Class Files that the Core Static Linker determines to be nec-
essary for execution of the selected Core Components, from which certain methods
and variables may have been pruned because the Core Static Linker determined
through analysis of the application that those methods and variables are not useful
to the application.

14

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.5

2. That subset of the Core Class Libraries that the Core Static Linker determines to be
necessary for execution of the selected Core Components, from which certain
methods and variables may have been pruned because the Core Static Linker deter-
mined through analysis of the application that those methods and variables are not
useful to the application.

3. That subset of the Static Core Execution Environment that the Core Static Linker
determines to be necessary for execution of the selected Core Components.

Within the Static Core Executable L oad Image, it is implementation-defined which, if
any, of the Core Class Files and Core Class Libraries have been translated to native
machine language.

Core Static Linker. The Core Static Linker takes responsibility for linking together the
various components of the Core application into an executable load image. Optionally,
the Core Static Linker may verify that al Core class files adhere to appropriate style
guidelines. Another option is for the Core Static Linker to translate byte codes to native
machine language.

Dynamic Core Execution Environment. The Dynamic Core Execution Environment pro-
vides al of the same services as the Static Core Execution Environment. Additionally,
the Dynamic Core Execution Environment includes support for dynamic class loading.
Itisillustrated in Figure 1 on page 13 in combination with a Baseline virtual machineto
emphasize that the Core dynamic class loader depends on support from certain compo-
nents that run only in the Baseline virtual machine environment. (Static Core applica-
tions may also be deployed in concert with Baseline components. Since the Baseline
support is optional for static Core applications, the executable load image produced by
the Core Static Linker is not shown to be bound to a Baseline virtual machine.)

Core Class Loader. Within the Dynamic Core Execution Environment, the Core Class

L oader is responsible for dynamically loading Core Class Files and Native-Targeted
Core Class Filesinto the Dynamic Core Execution Environment. Within the Core Static
Linker, the Core Class Loader is responsible for finding Core Class Files and Native-
Targeted Core Class Files and processing their contentsin order to link the various Core
Componentsinto a single Static Core Executable Load Image.

Core Class Files

Therequirements that characterize valid Core Class Files are different from the require-
mentsthat are imposed upon Baseline classfiles. For purposes of this discussion, a Core
object is an instance of aclass that isloaded by the Core Class Loader. The key differ-
ences between Core Class Files and Baseline class files are as follows:

1. Every Core class must extend from org.rtjwg.CoreObject.

2. Every Core class must include a static initializer which contains, asitsfirst line of
executable code, an invocation of CoreRegistry.registerCoreClass(). This indicates to
the class |oader that this classisintended for execution in the Core Execution Envi-
ronment.

3. If theclass contains any Core-Baseline methods, the next line of the class static ini-
tializer following the invocation of CoreRegistry.registerCoreClass() must be an invo-

Real-Time Core Extensions 15

The Specification

10.

11.

cation of CoreRegistry.registerBaseline(). The argument to this method invocationis a
CoreString object identifying the names and signatures of each Core-Baseline
method, as described in “CoreRegistry.registerBaseline()” on page 77.

For each Core method (excluding the Core-Baseline methods) of the class that con-
tains reference variables for which the programmer intends that the referenced
objects be stack allocatable, the first line of the method must be an invocation of
CoreRegistry.registerStackable(), with aCoreString argument which identifies the list

of variables. Additional information on stack allocation of objects is provided in
Section 3.12.

For each reference java.lang.Object from within a Core Class File, it is understood
thatjava.lang.Object is a placeholder which really represeurtsrtjwg.CoreObject. The
Core Class Loader shall replace the reference with a referencgtiwg.CoreOb-

ject when the class is loaded.

For each reference fava.lang.Throwable, it is understood thaava.lang.Throwable is
a placeholder which really represeotsrtjwg.CoreThrowable (See Section 3.17.2).
The Core Class Loader shall replace the reference with a referemgéijieg.Core-
Throwable when the class is loaded.

For each reference java.lang.Exception, it is understood thgdva.lang.Exception is a
placeholder which really representg.rtjwg.CoreException (See Section 3.17.4).
The Core Class Loader shall replace the reference with a referemgéijieg.Core-
Exception when the class is loaded.

For each reference tava.lang.Error, it is understood thagdva.lang.Error is a place-
holder which really representsy.rtjwg.CoreError (See Section 3.17.3). The Core
Class Loader shall replace the reference with a referenecgrtiwg.CoreError when
the class is loaded.

For each occurrence of theewarray andmultianewarray byte-code instructions, it is
understood that the type of the object pushed onto the Core run-time stack by exe-
cution of this byte-code instruction@sreArray (See Section 3.17.7), which extends
from CoreObject. For each variable declared in the Core Class File to be of Array
type, it is understood that the type represented by the variable isGealyray.

The Core class loader shall replace every reference to an array type with an appro-
priate subclass dioreArray. Within the Core Execution EnvironmegreArray

objects behave the same as Baseline arrays behave within the Baseline virtual
machine environment (with respect to subscripting operations, testing for equality,
inquiring as to length, etc.).

If a particular Core Class File defines thg.rtjwg.CoreObject class, that class defini-

tion shall provide implementations of the following method signatures:

public final CoreClass _getClass();
public final void _wait();

public final void _notify();

public final void _notifyAll();

It is understood that these methods repregetfitass(), wait(), notify(), andnotifyAll()
respectively. The Core Class Loader shall overwrite the names of each of these
method definitions when the class is loaded.

Within the class file’s constant pool, any constant of ¥PESTANT _String is
understood to be a placeholder for an equivalereString object (See Section

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

3.17.12). The Core Class L oader shall make an appropriate substitution when the
classisloaded.

After performing the substitutions described in Paragraphs 5 through 11 above, the

Core Verifier shall enforce type consistency of byte-code instructions as described

in Reference 8 under the heading “Verification of Class Files”. Type consistency
checking includes checking of method invocations to make sure that the invoked
methods are available with appropriate signatures in the corresponding objects and/
or classes.

For all methods of Core objects except for the Core-Baseline methods, these meth-
ods shall not invoke any method of an object that is not a Core object, and shall not
invoke any Core-Baseline methods of Core objects.

For all Core-Baseline methods of Core objects, these methods shall not invoke any
method of an object that is not a Core object, and shall not invoke any Core meth-
ods of Core objects. Core-Baseline methods of Core objects are allowed only to
invoke other Core-Baseline methods of other Core objects.

For all Core-Baseline methods of Core objects, the arguments to these methods
shall be either of primitive type or shall be of typertjwg.CoreObject (or descen-

dants thereof). Reference arguments to Core-Baseline methods shall not refer to
Baseline objects. The value returned from a Core-Baseline method may be a refer-
ence to a Core object.

Except for the Core-Baseline methods that have been defined for a particular Core
class, the fields and methods of Core objects shall not be visible to the Baseline
domain.

The code contained within the Core-Baseline methods of Core objects shall not
write to any Core object’s instance or class reference variables.

The code contained within the methods of Core objects shall not include any string
catenation operations. Note that any catenation of string literals that was present in
the Core source code must have been replaced within the Core Class File by the
Baseline Compiler or Core Compiler with the string literal that represents the con-
catentation of the individual string literals.

For eachsynchronized context that occurs within a Core class that is declared to
implement theAtomic interface (See Section 3.17.11), the body of code contained
within thesynchronized context must be execution-time analyzable (See Section
3.14).

The Core Class File shall only include byte-code representations of source code
statements of the form:

synchronized (object) statement
if object is this.

The code contained withiimally statements of Core methods (this restriction does
not apply to Core-Baseline methods) shall not terminate abruptly, and shall not exe-
cutethrow. Abrupt termination means the control jumps out offitialy statement
because of areak, continue, orreturn statement.

For each local and argument variable identifiedt@xable (see Section 3.12), the
variable usage shall conform to the special constraints described in Section 3.12.

For each class that extermg.rtjwg.ISR_Task, the implementation of theork()
method shall be declared to §mchronized.

Real-Time Core Extensions 17

The Specification

351

3.5.2

The Core Verifier

The Core Verifier isatool to assist with the development of Core application code. This
isarequired component of a conforming Core implementation. For Core programs
deployed as part of a Static Core Execution Environment, the Core Verifier shall be
applied to the Core classfiles prior to building of the static executable load image. For
Core programs designed for deployment within a Dynamic Core Execution Environ-
ment, the supplier of a conforming Core class file shall apply the Core Verifier to the
class file before deploying the application.

The Core Verifier isresponsible for verifying that a particular Core Class File adheresto
thevarious restrictions that characterize valid Core Class Files. The Core Verifier can be
packaged either as a stand-alonetool, or bundled within the Core Class Loader or within
the Core Static Linker. The user interface is Implementation Defined.

1. TheCore Verifier shall perform all of the standard checking that is described as
“Class File Verification” for the Java Virtual Machine (See Reference 8), subject to
the conceptual replacement substitutions that are described in Section 3.5.

2. The Core Verifier shall enforce all of the special constraints described in Section
3.5 of this specification.

The Core Class Loader

The Core Class Loader performs a number of special transformations to the class file as
it is loaded. Both before and after making these transformations, the Core Class Loader
performs a number of special checks designed to improve the likelihood that the class
being loaded is properly formatted. The checks done by the Core Class Loader are much
less comprehensive than the checks performed by the Core Verifier.

If invoked from within a Dynamic Core Execution EnvironmedueClass.loadClass()

throws a previously allocate@breClassFormatError exception if any of the checks

described below fail. If invoked from within the Baseline virtual machine environment,
CoreDomain.loadClass() throws aClassFormatError exception if any of the checks

described below fail. If the Core Class Loader is running as part of the Core Static
Linker and one of the checks described below fails, the Core Static Linker shall not pro-
duce a Static Core Executable Load Image. The format and nature of any diagnostic
reporting is implementation-defined.

The Core Class Loader shall perform the following transformations and checks as it is
loading a new class, in the specified order:

1. Check to make sure that this class has a static initializer that contains as its first exe-
cutable code an invocation GbreRegistry.registerCoreClass(). After verifying the
presence of this invocation, remove the invocation from the loaded class.

2. For each reference fava.lang.Object within this class, replace it with a reference to
org.rjwg.CoreObject.

3. For each reference java.lang.Throwable within this class, replace it with a reference
to org.rtjwg.CoreThrowable.

4. For each reference java.lang.Exception, replace it with a reference da.rtjwg.Core-
Exception.

18

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

10.

11.

For each reference to java.lang.RuntimeException, replace it with a referenceto
org.rtjwg.CoreRuntimeException.

If the name of the class being loaded is org.rtjwg.CoreObject, check to make sure the
class provides implementations of the following method signatures:

public final CoreClass _getClass();
public final void _wait();

public final void _notify();

public final void _notifyAll();

Overwrite the names of these methods with getClass, wait, notify, and notifyAll respec-
tively.

For each CONSTANT _String object contained within the constant pool of this class,
replace it with an appropriate instance of a CoreString constant (representing the
same sequence of characters).

Check to see if the next executable code within the static initializer for thisclassis
an invocation of CoreRegistry.registerBaseline(). If so, examine the CoreString argu-
ment of the registerBaseline() invocation and make sure that this class provides
implementations of each of the named methods. Mark each of the named methods
as a Core-Baseline method. Then remove the invocation of CoreRegistry.register-
Baseline() from the static initializer for this class.

For each method of this class except those methods that were marked in step 8

above as Core-Baseline methods, check to see if the first executable code within the
method’s implementation is an invocationGofeRegistry.registerStackable(). If so,
examine theCoreString argument of theegisterStackable() invocation to determine

which local variables are stackable. If this Core Execution Environment claims to
support stack allocation of dynamic objects (by returtrirgfrom CoreRegis-
try.stackAllocation()), then the Core Class Loader shall perform whatever implemen-
tation-defined transformations are necessary in order to ensure that all new memory
allocations which assign their result to a stackable variable shall be allocated on the
run-time stack. Otherwise, the Core Class Loader shall not perform any special pro-
cessing for the stackable variables. In either case, the Core Class Loader shall
remove the invocation dforeRegistry.registerStackable() from the method’s imple-
mentation in the loaded class.

For each invocation d@oreRegistry.coerce() that is found within this class, the Core
Class Loader shall check that the argument derives drortjwg.CoreObject. After
performing this check, the Core Class Loader shall remove the invocatioreof
Registry.coerce(), replacing this invocation with the method’s original argument and
a run-time type checking instruction if the surrounding context requires this run-
time check.

If the class is to be loaded into an Extended Baseline Virtual Machine, for which it
is necessary for Baseline and Core components to coexist and cooperate, the Core
Class Loader shall build an appropriate Baseline API for each of the Core classes
that might become visible to the Baseline domain. The Baseline API describes the
collection of Core-Baseline methods to which instances of this class respond. Fur-
thermore, the Core Class Loader shall cause a Baseline Class representing the
Baseline API of this Core class to be loaded into the corresponding Baseline virtual
machine environment. Whenever the Baseline domain gains access to an instance
of this Core class, the Baseline virtual machine sees this Core object as an instance

Real-Time Core Extensions 19

The Specification

of the Baseline class that represents this object’s Baseline API. In creating the
Baseline API for this class, the Core Class Loader performs the following addi-
tional transformations:

a. |If a particular Core-Baseline method’s argument makes reference to a Core
array type, the signature of this argument within the Baseline ATkédrray
or an appropriate derivative (See Section 3.17.7).

b. If a particular Core-Baseline method thro@meException, the signature of this
method within the Baseline APl indicates that the method th@mneBaseline-
Exception (See Section 4.6).

c. If a particular Core-Baseline method thro@mseRuntimeException, the signa-
ture of this method within the Baseline APl indicates that the method throws
CoreBaselineRuntimeException (See Section 4.5).

d. |If a particular Core-Baseline method thro@meThrowable or some derivative
of CoreThrowable other tharCoreException or CoreRuntimeException or their
descendants, the signature of this method within the Baseline API shall indi-
cate that this method throwereBaselineThrowable (See Section 4.4).

3.6 Special Notations for Stylized Core Source Code

Stylized Core source code is code written for execution in the Core Execution Environ-
ment, which is designed to be compiled by a Baseline Compiler. A special Core Verifier
analyzes the class file to make sure that the class-file translation produced by the Base-
line Compiler adheres to the special constraints that characterize valid Core Class Files.

Following is a list of special notations for the use of developers in creating Core soft-
ware components using Stylized Core programming conventions.

1.

If a Core programmer declares a variable to be of type array (or makes any refer-
ence to an array type), it is understood that this m@aenedrray. CoreArray extends
from CoreObject.

If a Core programmer declares a class to extend jaearang. Throwable, it is
understood that the class really extends f@mmeThrowable (in place of
java.lang.Throwable).

If a Core programmer uses a string constant, it is understood that this is really a
constant of typ€oreString. CoreString extends fronCoreObject.

If a Core programmer fails to indicate the type from which a class extends, it is
understood that the class extends fi@oreObject. All references tgava.lang.Object
within a Core program are understood to be referenceésr¢®bject.

Given that the Core programmer may be dealing with objects that extend from
CoreObject but which look to the Baseline Compiler like they extend from
java.lang.Object, the Core programmer may coerce such objed@sreDbject by
invoking thestatic coerce() method oforg.rtjwg.CoreRegistry.

Typical usage is to further coerce the result returned frorrothee() method to the
type that you really expect this object to be. Consider, as an example, the following
code fragment:

try {
doSomething();

20 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.7

3.8

} catch (java.lang.Exception x) {
MyCoreException cx;
cx = (MyCoreException) CoreRegistry.coerce(x);
cx.handleException();

}

The Core Class L oader gives special treatment to this particular method, in most
cases, replacing dynamic type coercion and checking code with a static check.

Core Priorities

Core priorities are numbered from 1 to 128, with 128 being the most urgent priority. All
of the 128 core priorities are higher than the ten Baseline priorities.

Each Core task shall be represented by the combination of a Base Priority and an Active
Priority. The Base Priority isthe priority initially specified when thetask is constructed

and possibly modified by invocation of the tasdéPriority() method. The Active Prior-

ity is the priority at which the task is currently being dispatched. Note that the Active
Priority shall be higher than the Base Priority if the task has inherited priority from a
higher priority task while it is accessing a particular shared data structure. The Active
Priority shall also be higher than the Base Priority if the task is executimghgonized
method of a Core component that implement$tRinterface, and the object’s ceiling
priority is higher than this task’s Base Priority. The Active Priority shall be lower than
the Base Priority if the task has been suspended and has not otherwise inherited priority
higher than the Never-Scheduled Priority level. The Never-Scheduled Priority is a spe-
cial priority level that is used to identify tasks that shall not be dispatched for execution
unless execution is required by a priority inversion avoidance mechanism.

Synchronization Issues

This section describes specific requirements for the implementation of synchronization
and blocking within the Core Execution Environment.

1. The Core Execution Environment shall run only on single-processor computers. A
future version of the Core specification may address the special issues that are rele-
vant to running the Core Execution Environment on multiprocessor computers.

2. The implementation afynchronized locks within the Core Execution Environment
shall not allocate memory upon entry into or departure frepnchronized context.
Similarly, no memory shall be allocated by execution ofdti€) andunlock() meth-
ods of theMutex class.

3. An attempt to obtain synchronized lock using a source-level construct such as the
following:
synchronized (<object>) statement;

shall abort by throwin@orelllegalMonitorStateException if <object> does not represent
this.

4. Queues fowait/notify monitors Mutex locks, SignalingSemaphore andCountingSema-
phore implementations, and for the implementatiorsysichronized statements in
classes that do not implement #@P interface shall conform to the following:

Real-Time Core Extensions 21

The Specification

a. [Each queue shall be maintained in priority order, with multiple entries of the
same priority maintained in sequential order according to insertion time
(FIFO).

b. |If atask’s priority drops due to loss of inherited priority, and consequently
some other higher priority task becomes ready to run, this task shall be placed
onto the ready queue at the leading position of that portion of the queue that
represents tasks of this task’s new priority.

c. When a running task becomes preempted by a higher-priority task, the pre-
empted task shall be placed onto the ready queue at the leading position of that
portion of the queue that represents tasks of the preempted task’s priority.

d. When a running task’s time slice expires, the preempted task shall be placed
onto the ready queue at the trailing position of that portion of the queue that
represents tasks of the preempted task’s priority.

e. When a blocked task becomes runnable, that previously blocked task shall be
placed on the ready queue at the trailing position of that portion of the queue
that represents tasks of this task’s priority.

f. A running task can explicitly change its own priority or the priority of another
task. If the currently running task’s priority is explicitly increased, the task
shall continue to run. If the currently running task’s priority is explicitly
decreased and it continues to be the highest priority task that is ready to run,
the task shall continue to run. Otherwise, if the priority of some task that is cur-
rently ready to run (but is not running) is explicitly raised such that it becomes
the highest priority ready task, that task shall preempt the currently running
task. In all other cases in which a task’s priority is explicitly changed, the
changed task shall be placed on the appropriate queue (the ready queue if the
task is ready to run, or the appropriate block queue if the task is waiting for a
particular event) at the trailing position of that portion of the queue that repre-
sents tasks of this task’s new priority.

g. When a running task yields by executing @ueeTask.yield() method, the task
shall be placed on the ready queue at the trailing position of that portion of the
gueue that represents tasks of this task’s priority.

h. At no other time shall the position of a task within a task priority queue be
affected.

Note that in the context of the Core Execution Environment, requirement (e) above
says that if a taskis blocked on arg.rtjwg.CoreObject.wait() operation and becomes
runnable either because:

i. ataskthatwas blocked (e.g.oim.rtjwg.CoreObject.wait(), org.rtjwg.Signaling-
Semaphore.P(), org.rtjwg.CountingSemaphore.P(), org.rtjwg.Mutex.lock(), or
org.rtjwg.CoreTask.join()) is awakened by asynchronous event handling, or

ii. because the task was sleeping, and has slept the designated amount of
time, or

iii. because some other task awakens this task by involgmigvg.CoreOb-
ject.notify() or

iv. because some other task awakens this task by involgmijyvg.CoreOb-
ject.notifyAll(),

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

the task T shall be placed at the end of that portion of the ready queue that repre-

sents tasks of this task’s priority. If several tasks having the same priority are awak-
ened by invocation afrg.rtjwg.CoreObject.notifyAll() then all of these awakened tasks
shall be placed at the end of that portion of the ready queue that corresponds to their
respective priorities. If multiple tasks of equal priority are awakened hyotihe

All() invocation, these tasks shall be queued in FIFO order.

5. There shall be no blocking and consequently no queue of waiting tasks in the
implementation ofynchronized contexts for classes that implement B@® inter-
face. Synchronization ¢fCP objects shall be implemented using a priority ceiling
protocol as defined here:

a. On entry into &@CP-synchronized context, the Core Execution Environment
checks to make sure that the priority of the current task is less than or equal to
the ceiling priority associated with tH€P context. Otherwise, entry into the
synchronized context is denied and the attempt to enter terminates by throwing a
CorePCPError object.

b. Assuming that entry into tHRCP-synchronized context is not prohibited by the
check performed in step a, the priority of the task is immediately raised to the
level that is identified as the ceiling priority associated with this synchroniza-
tion context.

c. As long as this task continues to execute withinP@®®-synchronized context,
this task shall be prohibited from performing any operation that might block
the task. If this task attempts to enteyechronized context belonging to some
other object except f&#CP-synchronized contexts with higher ceiling priority
than the currently lockelICP-synchronized context, or if it invoké&oreOb-
jectwait(), or if it invokesSignalingSemaphore.P() or CountingSemaphore.P(), or if
it invokesMutex.lock(), the Core Execution Environment shall abort the offend-
ing operation by throwing @orePCPError object.

d. The Core Execution Environment shall assure that only one Core task at a time
executes within any of the special contexts identifieBGEssynchronized
regions. A sufficient, but not necessary, implementation consists of elevating
the task’s priority to the ceiling level and then suspending time slicing while
the currently executing task is running within a priority ceiling context. The
key required behaviors are that a task that is executing within a priority ceiling
context runs uninterrupted until either:
i. itis preempted by a higher priority task (a task with priority higher than
thePCP ceiling priority), or
ii. it completes execution of the body of code that compriseRGReynchro-
nized context.

e. Upon exit from thé®CP-synchronized context, the Core Execution Environment
shall:

i. Restore this task’s priority to its original value, queuing this task on the
ready queue and dispatching the new highest priority ready task if it is no
longer the highest priority ready task.

ii. If there are no other Core tasks executing wig@R-synchronized con-
texts, the Core Execution Environment shall enable time slicing. The
amount of time allotted to the first time slice shall be implementation-
defined.

Real-Time Core Extensions 23

The Specification

iii. If this CoreTask has received a stop() request, the Core Execution Environ-
ment shall begin processing the request by aborting the code that is cur-
rently executing and shall now give each suspended try statement an
opportunity to execute itsfinally code.

3.9 Task Execution Model for Execution of Core-Baseline Methods

3.10

The Core programmer may identify certain methods of any Core class to be Core-Base-
line methods. A Core-Baseline method is one that shall be invoked only from the Base-
line domain. The type checking performed by the Core Verifier prevents a CoreTask
from invoking a Core-Baseline method.

A Baseline thread which invokes a Core-Baseline method shall transfigureitself into the
equivalent of a CoreTask for the duration of time that it is executing the Core-Baseline
method. Upon return from the Core-Baseline method, the thread shall restore itself to
have normal Baseline thread behavior. The key significance of this semanticsisasfol-
lows:

1.

All Core-Baseline methods shall execute with Base Priority equal to one, which is
the lowest priority within the Core Execution Environment.

When a Core-Baseline method enters a synchronized context, all of which are gov-
erned either by the Core’s priority inheritance or priority ceiling protocols, the pri-
ority of the running thread is automatically adjusted as required to implement the
appropriate priority inversion avoidance protocol.

When a Core-Baseline method acquirdutex lock, its priority is automatically
adjusted as required to implement priority inheritance protocols associated with the
Mutex lock as long as the thread’s control remains within the Core-Baseline method.

If a Core-Baseline method acquiredex lock and then returns without releasing
the lock, other core tasks which attempt to access the same lock shall experience
priority inversion until such time as the Mutex lock is released. This results because
the Core Execution Environment is unable to inherit priority to Baseline threads.

If a Baseline thread uses the Core-Basdlintex._lock() method to acquire a mutual
exclusion lock, that particular lock is likely to exhibit priority inversion because the
priority inheritance mechanism is not able to inherit Core task priorities to Baseline
threads.

Note that it is generally inadvisable for Core programmers to write Core-Baseline meth-
ods that return without releasing all of tetex locks they might have acquired.

The Core Memory Model

A number of important issues have been raised regarding ambiguities, lack of conform-
ance, and undesirable consequences associated with the Java memory model as it has
been defined in reference 2. These issues are discussed in 12, 13, and 14. It is important
for the Real-Time Java Working Group to take a stance on these issues by defining the
Core Memory Model. At this time, we have permission from the authors to use refer-
ence 12 as a normative reference.

24

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.11

Abort Mechanism and Asynchronous Transfer of Control in General

Invoking the stop() or abort() methods of org.rtjwg.CoreTask, or throwing CoreTask.abort-
WorkException() shall cause the corresponding task to be aborted. When atask is aborted,
all finally statements associated with currently executing contexts of the task shall be
executed in reverse order of entry (the finally statement for the last try statement entered
shall execute before all of the others). Further, the synchronization locks associated with
currently executing synchronized contexts shall be unlocked, also in reverse order of
entry into the corresponding synchronized contexts.

In order to improve the likelihood that stop() requests will be serviced quickly, the Core
specification imposes a number of restrictions on the contents of finally statements. The
purpose of these restrictionsis to ensure that if control reaches afinally statement as part
of the cleanup associated with abortion of a CoreTask, control will next flow to the sur-
rounding finally statement following completion of the code contained within thisfinally
statement. The restrictions described here constrain program control to stay within the
finally statements associated with currently executing try contexts. After all finally state-
ments have been executed, abortion of the CoreTask is complete. Even though these
restrictions prevent control from flowing outside the finally statements, these restrictions
are not sufficient to guarantee that finally statements complete their execution in atimely
manner. For example, afinally statement may contain an infinite loop, or it may attempt
to enter asynchronized context associated with an object that some other task has already
synchronized indefinitely, or its attempt to coordinate with other tasks might result in a
deadlock situation. In the spirit of supporting friendly cooperation between Core tasks,
it is the Core programmer’s responsibility, as a “trusted expert”, to strdivalestate-
ments so that they run to completion in small bounded time. Otherwise, when some
other task requests to abort this task, it will not abort in a timely manner.

The special Core requirements are as follows:

1. Except for Core-Baseline methodsally statements within Core methods shall not
containbreak, continue, or return statements.

2. Except for Core-Baseline Methodisally statements shall not inclutleow state-
ments.

3. The Core Verifier and the Core Compiler shall enforce the above restrictions.

4. If a CoreTask is executindinally statements as part of the cleanup associated with
responding to atop() or abort() invocation, or as part of the handling for a thrown
ScopedThrowable exception, and oreThrowable object is thrown from within the
body of one of thénally statements (or from a method that was invoked from
within the body of one of thinally statements), the Core Execution Environment
shall catch and mask the thro®oreThrowable object, shall consider tHipally
statement that threw ti@oreThrowable object to have completed its execution, and
shall resume cleanup activities by starting up execution of the next outer-nested
finally statement if there is one, or shall consider cleanup activities to have been
completed if there are no outer-nestiedly statements to execute.

5. If a CoreTask is executing within aynchronized region of code that corresponds to
an object that implements tA®mic interface when th€oreTask’s stop() or abort()
or signalAsync() method is invoked, handling of the asynchronous event handling
request is deferred until after tBereTask completes execution of the body of code
that comprises th&tomic-synchronized context.

Real-Time Core Extensions 25

The Specification

3.11.1

Asynchronous Transfer of Control

The CoreTask.abort() and CoreTask.stop() methods shall be implemented using a general
purpose asynchronous transfer of control mechanism. Throughout the remainder of this
section, we assume that the stop() method invokes the abort() method. Therefore, all dis-
cussion describing constraints imposed on implementation of the abort() method shall
apply equally to implementation of the stop() method.

Asynchronous transfer of control istriggered by the CoreTask.signalAsync() and Core-
Task.abort() methods (See Section 3.17.23 (starting on page 88)). When either of these
methods is invoked, the following shall be performed for the target task:

1.

If the task is constructed to ignore asynchronous events and this transfer-of-control
request was triggered by invocation of the signalAsync() method (rather than by
invocation of the CoreTask.abort() or CoreTask.stop() methods), ignore the request
(throwing a CoreATCEventslgnoredException in response to the signalAsync() invoca-
tion). Note that CoreTask.abort() and CoreTask.stop() aways have the effect of abort-
ing the CoreTask.work() method, even if the task was constructed to ignore
asynchronous events.

If thetask is currently executing within a deferral region, the task is allowed to con-
tinue executing until control leaves the deferral region. There are two kinds of
deferral regions:

a. Thebody of asynchronized statement contained within a class that implements
the Atomic interface is a deferral region.
b. Thebody of afinally statement is a deferral region.
Once control has left the body of the deferral region, proceed to step 3.
If this control-transfer request was triggered by an abort() invocation, go to step 8.
Create a new activation frame on the task’s run-time stack for execution of its event
handling code. Establish the appropriate context on the run-time stack to arrange
that if the event handling routine returns, the task’s control resumes with the next

instruction in sequence following the last instruction that was executed before the
asynchronous control transfer took place.

The event handler for the task would have been set by a prior action of one of the
following forms:

a. Atthe time the task was constructed, one of the constructor arguments pro-
vides a reference to the initial event handler for the task.

b. Subsequently, the event handler may have been replaced by invoking the task’s
asyncHandler() method.

The Core Execution Environment shall invoke tiardleATCEvent() method of the
task’s current event handler, using the task’s run-time stack for the activation frame.

If the invokedhandleATCEvent() method returns, control resumes within the inter-
rupted method at the point where execution was originally preempted.

Otherwise, if the invoketandleATCEvent() method throws an exception, this excep-
tion is propagated up the call chain starting with the context that was originally pre-
empted by the asynchronous event handler.

This control-transfer request was triggered by invocation of the taski§) invo-
cation. The Core Execution Environment shall invoke an appropriate implementa-

26

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

tion-defined method to trigger abortion of the task. This implementation-defined

method shall be declared with reduced visibility so as to not be accessible to Core
application code. The Core Execution Environment shall provide dedicated tempo-

rary memory for this method’s activation frame (rather than building the activation
frame on the task’s run-time stack) so as to avoid the risk of overflowing the task’s
run-time stack.

The implementation-defined method that is invoked to handlebting) request
shall throw the speci&copedThrowable object that is represented BgreTask.cur-
rentTask().abortWorkException().

3.12 Stack Allocation of Dynamic Objects

The Core system shall support stack allocation according to the following protocols:

1.

Within each Core method (excluding Core-Baseline methods), the programmer
identifies which local reference variables are stackable. To say that a particular ref-
erence variable is stackable is to say thatremyoperation that assigns its result
directly to this local variable shall be satisfied by allocating the new object from the
run-time stack. The notational conventions depend on the programmer’s choice of
developer tools:

a. Stylized Core source programmers concatenate the names of the variables into
a string constant, separated by semicolons, and pass this string constant to the
final public static methodCoreRegistry.registerStackable(String) as the first execut-
able code in the method’s implementation. The following example shows the
declaration of a method for an object which itself might reside on the stack
(becausehis is stackable), which takes as an argument a referend@oteGo-
ject which might reside on the stack, and which presumably allocates an array
of integers which would reside on the stack.

public java.lang.Object foo(int i, java.lang.Object x) {
int [] ia;

CoreRegistry.registerStackable(“x;ia;this");

/1 Body of method's implementation goes here
}

Note that this example uses java.lang.Object as a placeholder representing
org.rtjwg.CoreObject. This is the convention followed by Stylized Core source
code developers.

b. Syntactic Core source programmers use the stackable keyword in the declara

tions of each variable that is considered to reference a stack-allocatabl e object.
For example, the program above might be represented by the alternative nota
tion:

public stackable org.rtjwg.CoreObject foo(int i, stackable org.rtjwg.CoreObject x) {
stackable int [] ia;

I/ Body of method's implementation goes here

}

Real-Time Core Extensions 27

The Specification

Note the use of the stackable keyword as an attribute of the foo() method. This
signifies that the this argument is a so stackable.

Throughout this document, we use the | atter shorthand notation to identify stack-
able argumentsin our descriptions of the officially defined Core API services.

The objective is that the class |oader shall have an easy way to determine which
variables are stackable, without impacting run-time overhead. After examining the
argumentsto the CoreRegistry.registerStackable() method, the Core Class L oader shall
discard the invocation of registerStackable().

2. If aparticular method has parameters (including this) which are declared to be
stackable, then any class inheriting from this class must declare the same parame-
ters (at least) to be stackable.

Thisrestriction isrequired in order to support polymorphism. If aparticular method
isknown to accept stackable arguments, then all subclass implementations of the
same method must accept the same stackabl e arguments. Otherwise, supporting
stack allocation requires that interprocedural analysis of stackable arguments be

performed each time new classes are loaded into the Core Execution Environment.

Additional restrictions are of the form described below. Throughout this discussion,
the word “variable” refers to both local variables and to incoming arguments.

a.

Each Core Execution Environment shall identify throughCibreRegis-
ter.stackAllocation() APl whether it supports stack allocation, returrtiag from
this method if and only if all objects that this Core specification identifies as
stack allocatable shall be allocated on the run-time stack.

For each variable that is declared as stackalky abject request that assigns
its result to this variable shall be satisfied from the run-time stack if the Core
Execution Environment claims to support stack allocation. If a stackable vari-
able is declared to refer to a multi-dimensional array, all dimensions of any
newly allocated array assigned to this variable shall be stack allocated.

In order to allow the Core Execution Environment to blindly stack allocate
each new object that is assigned to a stackable variable (including argument
variables), the Core Verifier and Core Compiler shall enforce the following:

i. There shall be no data path within the method that allows the value of any
stackable variable to be copied to a local variable that is not identified as
stackable.

ii. There shall be no data path within the method that allows the stackable
variable’s value to be copied into a field of a Core object (as an instance or
static variable).

iii. There shall be no data path within the method that allows the value of the
stackable variable to be returned from this method as a return value.

iv. There shall be no data path within the method that allows the stackable
variable’s value to be copied to an outgoing argument list for invocation of
another method unless the invoked method declares the corresponding for-
mal argument to be of type stackable.

v. For eachew operation that assigns its result to a stackable variable, the
constructor shall declare it§s argument to betackable.

vi. Any new operation that assigns its result to a stackable variable shall not
appear within a loop of the method.

28

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

vii. If agiven Core Execution Environment does not implement stack alloca
tion, any allocated objects that would otherwise have been stack allocated
are dlocated instead within the currently active AllocationContext. The
memory for these objects shall be reclaimed when the corresponding Allo-
cationContext is released. See Section 3.17.8 for additional discussion on
the topic of allocation contexts.

Note that al of these restrictions are described and enforced in terms of Core
Class Files rather than source code. There are certain source-level notations,
such as creation of inner classes that make reference to local final objects cre-
ated in an outer class context, that appear to conform with the above-described
restrictions even though the byte-code translation of these notations does not.

3.13 Initialization and Class Loading

The Core Execution Environment shall perform al class resolution and initialization at

“load time”. For dynamically loaded classes, load time is defined as the time when the
class is dynamically loaded. For statically loaded classes, it is implementation-defined
whether load time means the time when the Core Static Linker builds the memory
image or the bootup time of the Core Execution Environment. This enables classes to be
initialized prior to burning ROM, or to initialize themselves out of ROM at power-up
time. Either approach offers superior performance to that of the Baseline language as it
is currently specified.

3.14 Execution-Time Analyzable Code

The execution model for the Java language assumes that Java byte codes are validated
by a byte-code analyzer prior to execution. In the Baseline environment, the purpose of
this byte-code analyzer is to ensure that the byte codes are type-consistent. Besides
making sure that byte codes will not introduce type mismatch errors, the Core Verifier
has the additional responsibility of determining through analysis that particular bodies
of Core code can be analyzed to determine their worst-case executioniGEeE)

The large majority of code comprising a Core program is not intended to be execution-
time analyzable. However, there are certain contexts in which reliable compliance with
stringent time constraints requires that the maximum time for execution of particular
code segments be known prior to run time.

The following describes the properties that characterize byte-code representations of
Core program segments that are considered to be execution-time analyzable.

1. A straight-line sequence (without conditional or unconditional branching and with-
out method invocations and withahtow statements) of Java virtual machine
instructions is execution-time analyzable as long as the sequence of instructions
does not includeew, newarray, anewarray, multianewarray, aastore, checkcast, or
instanceof byte-code instructions.

2. The dhrow instruction shall be execution-time analyzable. Note that the Core Exe-
cution Environment does not capture the stack backtrace in the representation of a
thrown object. Note also that the time required to execute the athrow instruction
includes the time required to find the appropriateh clause. Though this time is
context specific, the total cost can be calculated for any given context by summing

Real-Time Core Extensions 29

The Specification

the appropriate contributions associated with searching each nested method activa-
tion frame as part of the cost associated with that method’s invocation.

The code represented byiavokestatic or invokespecial instruction is execution-time
analyzable if the body of the static or final method to be invoked is execution-time
analyzable.

Given a program control flow consisting of a conditional branch and two alterna-
tive code flows that reunite at a common instruction, this complete control flow is
execution-time analyzable if each of the alternative arms of the control flow is exe-
cution-time analyzable. In terms of the symbols diagrammed in Figure 2 on

page 30, we say that the code path from pbitet pointD is execution-time analyz-
able if and only if the body of code (which need not be consecutive instructions)
represented bB is execution-time analyzable and the body of code represented by
C is also execution-time analyzable.

Figure 2.

Analyzable Conditional Control Flow

In Java byte code, both tlekupswitch andtableswitch instructions represent multi-

way conditional branches. A program control flow that starts with either of these
byte-code instructions and ends at a common execution point reached by all paths
originating from the starting point is execution-time analyzable if all of the paths
between the starting point and ending point are execution-time analyzable. In terms
of the symbols diagrammed in Figure 3 on page 31, we say that the code path from
pointA to pointH is execution-time analyzable if and only if the bodies of code
(which need not be consecutive instructions) represent8d®\p, E, F, andG are

each execution-time analyzable.

Within a class file’s method representation clauses are identified by the
exception_table array data structure (See Reference 8). Each entry in this table spec-
ifies the range of virtual machine instructions that is handled byoca@biclause
associated with thigy statement. If &inally statement is associated with a particular

30

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

Figure 3.

Analyzable Multi-Way Conditional Control Flow

\\@

try statement, the Baseline or Core Compiler inserts into the method’s class-file rep-
resentation an additional exception handler which handles all of the virtual machine
instructions ranging from the body of tinestatement to and including all bodies of

all programmer-declared exception handlers corresponding toytetdtement.

This special exception handler is invoked if one of the programmer-defined excep-
tion handlers throws an exception during its execution.

To identify the sequence of code representing the bodyoétatement, look at the
range of instructions spanned by the exception handlers identified in the
exception_table data structure. Some of the identified ranges represent the bodies of
try statements. The others represent the combined bodi¢y statement and all of

its programmer-defined exception handlers. Identififittaly statement entries by
separating out the entries whose ranges are supersets of other ranges. All of the
remaining entries identify ranges that correspond to the bodigsstditements.

To identify the sequence of code representing each programmer-defined exception
handler associated with a particuigrstatement, look at each of the exception han-
dler entries for thaty statement in thexception_table data structure. (Don’t include

the speciafinally statement exception handler.) Each of these entries identifies the
first instruction of each exception handler. The body of code for the exception han-
dler starts with this first instruction and ends witlp® byte-code instruction that
jumps to the code following they statement’s body. The destination address of the
goto instruction is the first point of convergence between the control-flow subgraph
starting at the try statement first instruction and the control flow subgraph starting
at the exception handler’s first instruction.

To identify the sequence of code representing the body difdle statement asso-

ciated with a particuldary statement, look at tHmally statement entry (described
above) within thexception_table data structure and extract from this entryténget

Real-Time Core Extensions 31

The Specification

address. (Note that some try statements don't havieally statements.) This repre-
sents the address of the first virtual machine instruction in the spealigistate-

ment exception handler. The instruction at this addresgrignatruction, which

jumps to the subroutine representing the body offitizity statement. For each
identified range, the body of thiy statement comprises the code starting with the
instruction at thgsr target address and includes all code up to and includingtthe
instruction that marks the end of tirally statement subroutine. In some cases, the
finally statement may have multipigt instructions. The body of tHimally state-

ment subroutine is execution-time analyzable if every path from the entry point to
any of theret instructions that represents completion of this subroutine is execution-
time analyzable.

A try statement, including itsatch andfinally clauses, is execution-time analyzable

if and only if (1) the body of they statement itself is execution-time analyzable,

(2) the body of eactatch clause, if any, associated with thisstatement is execu-

tion-time analyzable, and (3) the body of thelly clause, if any, associated with

thistry statement is execution-time analyzable.
7. As described in Reference 9natural loop is defined as follows:

a. A basic block is a sequence of consecutive byte-code instructions into which
control enters at the first instruction and from which control leaves following
execution of the last instruction, without any possibility of halting or branching
except after the last instruction.

b. A flowgraph is a collection of nhodes representing basic blocks of a computer
program which are connected by directed edges representing possible control
flow between basic blocks. In particular, the flow graph has a directed edge
from nodeB, to nodeB; if:

i. There is a conditional or unconditional jump from the last instruction in
the basic block represented by ndjeto the first instruction in the basic
block represented by, or if

ii. The basic block represented by n@&j)dmmediately follows the basic
block represented by nodg in the program sequence and the last instruc-
tion in blockB, is not an unconditional jump instruction.

c. We say that node of a flow graphdominates noden if every path from the ini-
tial node of the flow graph to noaepasses through node Note that every
node dominates itself.

d. A back edge is a directed edge of a flow graph whose head dominates its tail.
(Given a directed edge pointing from ndgigto nodeB,, we callB; the tail of
the directed edge ar®) the head of the directed edge.) Each back edge in the
flow graph corresponds to a loop.

e. Given a back edgelld, thenatural loop of that edge is the nodiplus all
nodes that can reach nadw/ithout passing through nodeWe call nodel the
header of the loop.

Algorithms to identify dominator relationships and natural loops within an arbitrary
flow graph are available in Reference 9. Given a natural loop, we define the follow-
ing two additional terms for purposes of facilitating discussion regarding the analy-
sis of loop execution time:

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

a. We characterize a departure edge of natural l1oop N to be a directed edge for
which the head is a node not contained within the loop and the tail is anode
contained within the loop.

b. For each departure edge, we call the node that represents the departure edge’s
tail adeparture node.

A natural loop is considered to be execution-time analyzable if and only if all of the
following conditions are satisfied:

a. Every path within the flow graph from the loop header back to the loop header
is execution-time analyzable.

b. There exists at least one departure node for the loop that exhibits the following
properties:

i. The departure node dominates each node within the loop that has a back
edge to the loop’s header. Note that the header dominates itself, and the
node containing the back edge also dominates itself. Note further that the
departure node must terminate with a conditional branch. Otherwise, there
would be no way for the departure node to be contained within the loop
and yet have an edge directed to a node that is outside the loop.

ii. The condition upon which the departure node decides whether to depart
from the loop is a simple integer magnitude comparison involving a local
variable (call the variablg and an integer constant value with no addi-
tional arithmetic.

iii. Within the loop, there is only one assignment to the varjafleis assign-
ment must be contained within a basic block whose node dominates all
other nodes within this loop that have back edges directed to this loop’s
header. Furthermore, this basic block shall not be contained within any
inner nested loop. An inner nested loop is a natural loop whose header is
contained within this loop and is distinct from this loop’s header. In sum-
mary, the variabl¢ shall be incremented or decremented exactly once on
each iteration of this loop. Furthermore, the value assigned to variable
must be obtained by adding or subtracting a non-zero integer constant to
the previous value of the varialjle

iv. There is only one definition of the variallerhich reaches the header of
the loop (Seeeaching definitions in Reference 9) from outside of the loop
and the value assignedjtby this definition must be a simple integer con-
stant.

3.14.1 Analyzability of Core Source Code

The characterization of execution-time analyzable code presented above is described in
terms of class-file byte-code representations. Most Core programmers prefer to think in
terms of Core source code conventions rather than in terms of their byte-code represen-
tations. To facilitate development of reliable Core source code components, the Core
specifications requires that a Core Compiler shall translate all of the following con-
structs into execution-time analyzable byte-code program segments:

1. A straight-line body of Core Source Code shall be translated by the Core Compiler
into execution-time analyzable byte code provided that this body of code does not

Real-Time Core Extensions 33

The Specification

include any new memory all ocation requests, reference type coercions, instanceof
operators, or assignments to an element of areference array.

2. A throw statement shall be translated by the Core Compiler into execution-time ana-
lyzable byte code if the expression that defines the value to be thrown meets the
constraints of paragraph 1 immediately above.

3. Aninvocation of astatic or final method shall be translated by the Core Compiler
into execution-time analyzable byte code provided that the implementation of the
invoked static or final method is execution-time analyzable.

4. TheCore Compiler shal translate if statements and if-else statements to execution-
time analyzable byte code if the conditional expression, the body of the if-clause,
and the body of the else-clause, if present, are all execution-time analyzable.

5. The Core Compiler shall translate switch statements to execution-time analyzable
byte codeif the controlling expression and the bodies of code representing each
case are each independently execution-time analyzable.

6. The Core Compiler shall translate for statements to execution-time analyzable byte
code if the iteration variable is an integer that is initialized to a constant prior to the
loop and incremented or decremented by a constant value exactly once on each iter-
ation of the loop as part of the for statement’s control clause, and the body ofdhe
loop is itself execution-time analyzable. The Core Compiler shall dileak and
continue statements in execution-time analyzable loops.

3.14.2 Predictability of the Core Execution Environment

In order to enable deployment of execution-time predictable Core real-time compo-
nents, the Core specification imposes the following constraints on implementations of
the Core virtual machine:

1. The time required to execute all virtual machine instructions is constant, except for
the following special instructions:

a. Thetime required to executew, newarray, anewarray, andmultianewarray
instructions is implementation-defined and need not be constant or predictable.

b. The maximum time required to execute #astore, checkcast, andinstanceof
instructions shall be proportional to the depth of the loaded class hierarchy.

c. The maximum time required to executeadimow instruction is proportional to
the depth of the current thread’s run-time stack, measured in stack frames.

d. The time required to execute mmokeinterface instruction is implementation-
defined and need not be constant or predictable.

2. The CPU time and dynamic memory impact of each of the official Core API librar-
ies, including Core-Baseline methods, shall be as detailed in Table 1 on page 35.
Within this table, saying that CPU requirements are implementation-defined means
that the supplier of a conforming Core Execution Environment shall either provide
documentation that details the CPU requirements for the particular implementation
running on a particular platform, or shall provide tools and appropriate documenta-
tion to allow users to measure the implementation-defined CPU requirements for
each method. Providing statistically significant measurement-based characteriza-
tions of CPU requirements shall be an acceptable replacement for analytical guar-
antees.

34 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

CoreObject
constructors Bounded by an implemen- | The new object shall be allocated
tation-defined constant. within the current AllocationCon-
text. No other memory shall be
allocated.
clone() Bounded by animplemen- | The new object shall be allocated
tation-defined function within the current AllocationCon-
whichislinearinthesize | text. No other memory shall be
of the object being cloned. | gl|ocated.
equals() Bounded by animplemen- | No memory allocation.
tation-defined constant.
getClass() Bounded by animplemen- | No memory allocation.
tation-defined constant.
hashCode() Bounded by an implemen- | No memory allocation.
tation-defined constant.
notify() Bounded by animplemen- | No memory allocation.
tation-defined constant.
notifyAll() Bounded by animplemen- | No memory allocation.
tation-defined constant.
The work of notifying
multiple waiting tasks
shall be distributed
amongst the wait() invoca-
tions of the waiting tasks.
toString() Bounded by an implemen- | The returned CoreString object
tation-defined constant. and the corresponding character
buffer, if any, shall be alocated
within the current AllocationCon-
text. How much memory is
required to represent a CoreString
object of the specific length shall
be implementation-defined. No
other memory shall be alocated.
wait() No CPU-time bound No memory allocation.
required on this method.
arrayAddress() Bounded by an implemen- | No memory allocation.
tation-defined constant.
sizeof() Bounded by animplemen- | No memory alocation.
tation-defined constant.

Real-Time Core Extensions

35

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact

CoreThrowable

constructors Bounded by animplemen- | The new CoreThrowable object
tation-defined constant. shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall
not be copied. Instead, the con-
structed Core Throwable object
shall simply maintain areference
to the supplied message argu-
ment. No other memory shall be
allocated.

getMessage() Bounded by animplemen- | No memory alocation.
tation-defined constant.

CoreRuntimeException?

constructors Bounded by animplemen- | The new CoreThrowable object
tation-defined constant. shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall
not be copied. Instead, the con-
structed Core Throwable object
shall simply maintain areference
to the supplied message argu-
ment. No other memory shall be
allocated.

CoreExceptionb

constructors Bounded by animplemen- | The new CoreException object
tation-defined constant. shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall
not be copied. Instead, the con-
structed CoreException object
shall simply maintain areference
to the supplied message argu-
ment. No other memory shall be
allocated.

36

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name
Method Name CPU Requirements Memory Impact
ScopedException
constructors Bounded by an implemen- | The new ScopedException object
tation-defined constant. shall be allocated within the cur-
rent AllocationContext. The Core-
String message argument shall
not be copied. Instead, the con-
structed ScopedException object
shall simply maintain areference
to the supplied message argu-
ment. No other memory shall be
allocated.
enable() Bounded by animplemen- | No memory alocation.
tation-defined constant.
disable() Bounded by animplemen- | No memory alocation.
tation-defined constant.
CoreClass
forName() No CPU-time bound No memory allocation.
required on this method.
getComponentType() Bounded by animplemen- | No memory alocation.
tation-defined constant.
isArray() Bounded by animplemen- | No memory allocation.
tation-defined constant.
isAssignableFrom() No CPU-time bound No memory allocation.
required on this method.
isinstance() No CPU-time bound No memory allocation.
required on this method.
isinterface() Bounded by an implemen- | No memory allocation.
tation-defined constant.
isPrimitive() Bounded by an implemen- | No memory allocation.
tation-defined constant.

Real-Time Core Extensions

37

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name ‘ CPU Requirements

Memory Impact

CoreClass

newlnstance() No CPU-time bound
required on this method.

The new object shall be allocated
within the current AllocationCon-
text. No other memory shall be
allocated, except for whatever
memory is allocated by execution
of the new object’s no-argument
constructor.

toString() No CPU-time bound
required on this method.

The returnedCoreString object
and the corresponding character
buffer, if any, shall be allocated
within the currenfllocationCon-
text. How much memory is
required to representGoreString
object of the specific length shall
be implementation-defined. No
other memory shall be allocated.

verification() Bounded by an implemen
tation-defined constant.

No memory allocation.

loadClass() No CPU-time bound
required on this method.

No bound on the number of
objects allocated by this method.
May allocate multiple temporary
objects within the currertlloca-
tionContext. None of these objects
is used following return from this
method. Additionally, a small
implementation-defined quantity
of more permanent objects shall
be allocated within a special
implementation-definedlloca-
tionContext for the purpose of rep
resenting the newly loaded class
within the Core Execution Envi-
ronment. When (if) this class is
subsequently unloaded, thidoad-
Class() method shall release the
specialAllocationContext.

unloadClass() No CPU-time bound
required on this method.

As a side effect of unloading this
class, the special implementation
definedAllocationContext that was

created for the purpose of repre-

senting this class shall be released.

No memory shall be allocated.

38

Copyright 1999, 2000 J Consortium, All Rights Reserved

o

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

tation-defined constant.

CoreArray®

constructors Bounded by an implemen- | The new array object is allocated
tation-defined function within the current AllocationCon-
thatislinear inthenumber | text. No other memory isallo-
of dotsin the array. cated.

length() Bounded by animplemen- | No memory allocation.
tation-defined constant.

atGet() Bounded by animplemen- | No memory alocation.
tation-defined constant.

atPut() Bounded by animplemen- | No memory alocation.

AllocationContext

required for this method.

constructors No CPU-time bound The new AllocationContext object
required for thismethod. | jsallocated within the current Allo-
cationContext. No other memory
is alocated.
available() Bounded by an implemen- | No memory allocation.
tation-defined constant.
allocated() Bounded by an implemen- | No memory allocation.
tation-defined constant.
release() No CPU-time bound No memory allocation.

SpecialAllocation

this.run() whichisinvoked
from within this method,
shall be bounded by an
implementation-defined
constant.

context() No congtraint. Thisisan No constraint. Thisis an abstract
abstract method which method which must be imple-
must be implemented by mented by the application devel -
the application developer. | oper.

run() No congtraint. Thisisan No constraint. Thisis an abstract
abstract method which method which must be imple-
must be implemented by mented by the application devel -
the application developer. | oper.

execute() The work performed by No memory allocation shall be
thismethod, excluding the | performed by this method. How-
work performed by ever, there is no bound on the

amount of memory that might be
allocated from within the run()
method which isinvoked by this
method.

Real-Time Core Extensions

39

The Specification

TABLE 1. Predictability Requirements for Core API Libraries
Class Name
Method Name CPU Requirements Memory Impact
CoreString
constructors Bounded by animplemen- | The newly constructed CoreString
tation-defined function object and the corresponding char-
that depends on the length | acter buffer, if any, shall be allo-
of the CoreString to be cated within the current
constructed. AllocationContext. How much
memory is required to represent a
CoreString object of the specific
length shall be implementation-
defined. No other memory shall be
allocated.
charAt() Bounded by animplemen- | No memory alocation.
tation-defined constant.
_charAt() Bounded by animplemen- | No memory alocation.
tation-defined constant.
hashCode() Bounded by animplemen- | No memory alocation.
tation-defined function
that depends on the length
of this CoreString object.
_hashCode() Bounded by an implemen- | No memory allocation.
tation-defined function
that depends on the length
of this CoreString object.
equals() Bounded by animplemen- | No memory allocation.
tation-defined function
that depends on the length
of this CoreString object.
length() Bounded by animplemen- | No memory allocation.
tation-defined constant.
_length() Bounded by animplemen- | No memory allocation.
tation-defined constant.
40 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

DynamicCoreString
constructors Bounded by animplemen- | The newly constructed Dynamic-
tation-defined function CoreString object and the corre-
that depends onthelength | sponding character buffer, if any,
of the DynamicCoreString | shall be allocated within the cur-
to be constructed. rent AllocationContext. How much
memory is required to represent a
DynamicCoreString object of the
specific length shall be implemen-
tation-defined. No other memory
shall be all ocated.
concat() Bounded by an implemen- | The returned DynamicCoreString
tation-defined function object and the corresponding char-
that dependsonthesumof | acter buffer, if any, shall be allo-
the lengths of the two cated within the current
strings that are being con- | AllocationContext. How much
catenated. memory is required to represent a
DynamicCoreString object of the
specific length shall be implemen-
tation-defined. No other memory
shall be all ocated.
getChars() Bounded by animplemen- | No memory allocation.
tation-defined function
that depends on the length
of this DynamicCoreString
object.
length() Bounded by animplemen- | No memory allocation.
tation-defined constant.
_length() Bounded by animplemen- | No memory allocation.
tation-defined constant.

Real-Time Core Extensions

41

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

DynamicCoreString

substring()

Bounded by an implemen-
tation-defined function

that depends on the length
of the requested substring.

The returned DynamicCoreString
object and the corresponding char-
acter buffer, if any, shall be allo-
cated within the current
AllocationContext. If the current
AllocationContextisdifferent from
the AllocationContext within
which this DynamicCoreString
resides, the substring() method
shall make a new copy of the sub-
string characters which shall
reside within an object belonging
to the current AllocationContext.
How much memory is required to
represent aDynamicCoreString
object of the specific length shall
be implementation-defined. No
other memory shall be alocated.

toCharArray()

Bounded by an implemen-
tation-defined function

that depends on the length
of the requested character

array.

Thereturned array of characters
shall be allocated within the cur-
rent AllocationContext. No other
memory shall be allocated.

toLowerCase()

Bounded by an implemen-
tation-defined function
that depends on the length
of thisDynamicCoreString
object.

The returned DynamicCoreString
object and the corresponding char-
acter buffer, if any, shall be allo-
cated within the current
AllocationContext. The returned
DynamicCoreString shall not
make reference to any character
buffer object residing in an Alloca-
tionContext that is not the current
AllocationContext. How much
memory is required to represent a
DynamicCoreString object of the
specific length shall be implemen-
tation-defined. No other memory
shall be all ocated.

42

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name
Method Name ‘ CPU Requirements Memory Impact
DynamicCoreString
toUpperCase() Bounded by animplemen- | The returned DynamicCoreString
tation-defined function object and the corresponding char-
that depends onthe length | acter buffer, if any, shall be allo-
of thisDynamicCoreString | cated within the current
object. AllocationContext. The returned
DynamicCoreString shall not
make reference to any character
buffer object residing in an Alloca-
tionContext that is not the current
AllocationContext. How much
memory is required to represent a
DynamicCoreString object of the
specific length shall be implemen-
tation-defined. No other memory
shall be all ocated.
ATCEventHandler
constructor Bounded by animplemen- | The new ATCEventHandler object
tation-defined constant. isallocated within the current Allo-
cationContext. No other memory
is allocated.
handleATCEvent() Bounded by an implemen- | No memory allocation.
tation-defined constant.
ATCEvent
constructor Bounded by animplemen- | The new ATCEvent object is allo-
tation-defined constant. cated within the current Allocation-
Context. No other memory is
allocated.
defaultAction() Bounded by an implemen- | No memory allocation.
tation-defined constant.

Real-Time Core Extensions

43

The Specification

TABLE 1. Predictability Requirements for Core API Libraries
Class Name
Method Name CPU Requirements ‘ Memory Impact
CoreRegistry
stackAllocation() Bounded by an implemen- | No memory allocation.
tation-defined constant.
registerStackable() The registerStackable() No memory allocation.
method shall be removed
from the executable code
by the Core Class Loader.
Thus, the implementation
of registerStackable()
shall require no CPU time.
registerBaseline() The registerBaseline() No memory allocation.
method shall be removed
from the executable code
by the Core Class Loader.
Thus, the implementation
of registerBaseling() shall
require no CPU time.
registerCoreClass() The registerCoreClass() No memory allocation.
method shall be removed
from the executable code
by the Core Class Loader.
Thus, the implementation
of registerCoreClass()
shall require no CPU time.
coerce() Bounded by animplemen- | No memory alocation.
tation-defined constant.
profiles() No CPU-time bound Thearray returned from this
required for this method. method shall be alocated in the
current AllocationContext. The
CoreString objects referenced
from the array shall not be allo-
cated by invocation of this
method. I nstead, these CoreString
objectsshall be pre-allocated from
within an implementati on-defined
AllocationContext and reused for
each invocation of the profiles()
method.
44 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

CoreRegistry

publish()

No CPU-time bound

required for this method.

A small implementation-defined
number of objects shall be allo-
cated within aspecial implementa-
tion-defined AllocationContext for
the purpose of representing the
published information within the
Core Execution Environment.
When (if) thisentry is subse-
quently unpublished, this special
AllocationContext shall be
released. No other memory shall
be allocated.

unpublish()

No CPU-time bound

required for this method.

The implementati on-defined Allo-
cationContext that was created by
the corresponding invocation of
the publish() method shall be
released.

Real-Time Core Extensions

45

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

SignalingSemaphore

constructor

Bounded by an implemen-
tation-defined constant.

memory is allocated.

Bounded by an implemen-
tation-defined function
that depends only on the
number of other tasks that
are concurrently perform-
ing P() or _P() operations
on this semaphore.

No memory allocation.

Bounded by an implemen-
tation-defined function
that depends only on the
number of other tasks that
are concurrently perform-
ing P() or _P() operations
on this semaphore.

No memory allocation.

Bounded by an implemen-
tation-defined constant.

No memory allocation.

Bounded by an implemen-
tation-defined constant.

No memory allocation.

Bounded by an implemen-
tation-defined constant.
Note that the effort
required to signal multi-
ple blocked waiters shall
be distributed between the
various tasksP() invoca-
tions.

No memory allocation.

vall()

Bounded by an implemen

tation-defined constant.
Note that the effort
required to signal multi-
ple blocked waiters shall

be distributed between the

various tasksP() invoca-
tions.

+ No memory allocation.

D

numWaiters()

Bounded by an implemen

tation-defined constant.

+ No memory allocation.

_numWaiters()

Bounded by an implemen

tation-defined constant.

+ No memory allocation.

46

Copyright 1999, 2000 J Consortium, All Rights Reserved

The new SignalingSemaphore
object is allocated within the cur-
rent AllocationContext. No other

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

CountingSemaphore

constructor

Bounded by an implemen-
tation-defined constant.

The new CountingSemaphore
object is allocated within the cur-
rent AllocationContext. No other
memory is allocated.

Bounded by an implemen-
tation-defined function
that depends only on the
number of other tasks that
are concurrently perform-
ing P() or _P() operations
on this semaphore.

No memory allocation.

Bounded by an implemen-
tation-defined function
that depends only on the
number of other tasks that
are concurrently perform-
ing P() or _P() operations
on this semaphore.

No memory allocation.

Bounded by an implemen-
tation-defined constant.

No memory allocation.

VO

Bounded by an implemen-
tation-defined constant.

No memory allocation.

numWaiters()

Bounded by an implemen-
tation-defined constant.

No memory allocation.

_numWaiters()

Bounded by an implemen-
tation-defined constant.

No memory allocation.

count()

Bounded by an implemen-
tation-defined constant.

No memory allocation.

_count()

Bounded by an implemen-
tation-defined constant.

No memory allocation.

Real-Time Core Extensions

47

The Specification

TABLE 1. Predictability Requirements for Core API Libraries

Class Name

Method Name CPU Requirements Memory Impact

Mutex

constructor Bounded by animplemen- | The new Mutex object is allocated
tation-defined constant. within the current AllocationCon-
text. No other memory isallo-
cated.

lock() Bounded by animplemen- | No memory alocation.
tation-defined function
that depends only on the
number of other tasks that
are performing lock() or
_lock() operations on this
Mutex object.

_lock() Bounded by animplemen- | No memory alocation.
tation-defined function
that depends only on the
number of other tasks that
are performing lock() or
_lock() operations on this
Mutex object.

unlock() Bounded by an implemen- | No memory allocation.
tation-defined constant.

_unlock() Bounded by animplemen- | No memory alocation.
tation-defined constant.

48 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name
Method Name ‘ CPU Requirements Memory Impact
Time
tickDuration() Bounded by an implemen- | No memory allocation.
tation-defined constant.
uptimePrecision() Bounded by an implemen- | No memory allocation.
tation-defined constant.
day() Bounded by animplemen- | No memory allocation.
tation-defined constant.
h() Bounded by animplemen- | No memory alocation.
tation-defined constant.
hertz() Bounded by animplemen- | No memory alocation.
tation-defined constant.
m() Bounded by animplemen- | No memory alocation.
tation-defined constant.
ms() Bounded by animplemen- | No memory alocation.
tation-defined constant.
ns() Bounded by animplemen- | No memory alocation.
tation-defined constant.
s() Bounded by animplemen- | No memory alocation.
tation-defined constant.
toString() Bounded by an implemen- | The returned CoreString object
tation-defined constant. and the corresponding character
buffer, if any, shall be alocated
within the current AllocationCon-
text. How much memory is
required to represent a CoreString
object of the specific length shall
be implementation-defined. No
other memory shall be alocated.
uptime() Bounded by animplemen- | No memory allocation.
tation-defined constant.
us() Bounded by animplemen- | No memory alocation.
tation-defined constant.

Real-Time Core Extensions

49

The Specification

TABLE 1. Predictability Requirements for Core API Libraries
Class Name
Method Name CPU Requirements Memory Impact
CoreTask
constructor No CPU-time bound The CoreTask object shall be allo-
required for thismethod. | cated in the current AllocationCon-
text. Certain additional
implementation-defined objects
shall be allocated, as required to
implement the services associ ated
with this CoreTask object. These
additional objects shall be alo-
cated within the default Allocation-
Context for this CoreTask. When
this CoreTask’s AllocationContext
is released, the Core Execution
Environment shall overwrite all
automatically constructed refer-
ences to these implementation-
defined objects withull.
currentTask() Bounded by an implement No memory allocation.
tation-defined constant.
defaultStackSize() Bounded by an implemenr No memory allocation.
tation-defined constant.
maxBaselinePriority() Bounded by an implemenr No memory allocation.
tation-defined constant.
maxCorePriority() Bounded by an implemen- No memory allocation.
tation-defined constant.
maxSystemPriority() Bounded by an implemen- No memory allocation.
tation-defined constant.
minBaselinePriority() Bounded by an implemenr No memory allocation.
tation-defined constant.
minCorePriority() Bounded by an implemenr No memory allocation.
tation-defined constant.
minSystemPriority() Bounded by an implemenr No memory allocation.
tation-defined constant.
numinterruptPriorities() Bounded by an implemen- No memory allocation.
tation-defined constant.
stackOverflowChecking() | Bounded by an implemen- No memory allocation.
tation-defined constant.
systemPriorityMap() Bounded by an implemenr The returned integer array shall i
tation-defined constant. | allocated from the curreddloca-
tionContext. No other memory
shall be allocated.
50 Copyright 1999, 2000 J Consortium, All Rights Reserved

D

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name

Method Name

CPU Requirements

Memory Impact

CoreTask
ticksPerSlice() Bounded by an implemen- | No memory allocation.
tation-defined constant.
abort() No CPU-time bound No memory allocation.
required for this method.
abortWorkException() Bounded by an implemen- | No memory allocation.
tation-defined constant.
asyncHandler() Bounded by an implemen- | No memory allocation.
tation-defined constant.
join() No CPU-time bound No memory allocation.
required for this method.
resume() No CPU-time bound No memory allocation.
required for this method.
setPriority() No CPU-time bound No memory allocation.
required for this method.
signalAsync() No CPU-time bound No memory allocation.
required for this method.
sleep() No CPU-time bound No memory allocation.
required for this method.
sleepUntil() No CPU-time bound No memory allocation.
required for this method.
stackDepth() Bounded by an implemen- | No memory allocation.
tation-defined constant.
stackSize() Bounded by an implemen- | No memory allocation.
tation-defined constant.
start() No CPU-time bound Bounded by an implementation-
required for this method. defined constant. All of the new
memory shall be allocated in the
default AllocationContext of this
CoreTask.
_start() No CPU-time bound Bounded by an implementation-
required for this method. defined constant. All of the new
memory shall be allocated in the
default AllocationContext of this
CoreTask.
stop() No CPU-time bound No memory allocation.
required for this method.
suspend() No CPU-time bound No memory allocation.
required for this method.

Real-Time Core Extensions

51

The Specification

TABLE 1. Predictability Requirements for Core API Libraries
Class Name
Method Name CPU Requirements Memory Impact
CoreTask
systemPriority() Bounded by an implemen- | No memory allocation.
tation-defined constant.
work() Bounded by animplemen- | No memory alocation.
tation-defined constant.
yield() No CPU-time bound No memory allocation.
required for this method.
ISR_Task
constructor No CPU-time bound ThelSR_Task object itself shall be
required for this construc- | allocated in the current Allocation-
tor. Context. Certain additional imple-
mentati on-defined objects (e.g. the
run-time stack) shall also be allo-
cated, as required toimplement al
of the services associated with this
ISR_Task object. These additional
objects shall be dlocated within
the default AllocationContext for
thisISR_Task. Whenitistimeto
release thisISR_Task’s Allocation-
Context, the Core Execution Envi
ronment shall overwrite all of the
automatically constructed refer-
ences to these implementation-
defined objects withull pointers.
serviced() Bounded by an implement No memory allocation.
tation-defined constant.
work() Bounded by an implement No memory allocation.
tation-defined constant.
ceilingPriority() Bounded by an implemenr No memory allocation.
tation-defined constant.
trigger() No CPU-time bound No memory allocation.
required for this method.
arm() Bounded by an implemen- No memory allocation.
tation-defined constant.
disarm() Bounded by an implement No memory allocation.
tation-defined constant.
52 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1. Predictability Requirements for Core API Libraries
Class Name
Method Name CPU Requirements Memory Impact
SporadicTask
constructor No CPU-time bound The SporadicTask object itself
required for this construc- | shall be allocated in the current
tor. AllocationContext. Certain addi-
tiona implementation-defined
objects (e.g. the run-time stack)
shall also be all ocated, as required
to implement all of the services
associated with this SporadicTask
object. These additional objects
shall be all ocated within the
default AllocationContext for this
SporadicTask. When it istime to
release this SporadicTask’s Alloca-
tionContext, the Core Execution
Environment shall overwrite all of
the automatically constructed ref
erences to these implementation
defined objects withull.
trigger() Bounded by an implemen- No memory allocation.
tation-defined constant.
work() Bounded by an implement No memory allocation.
tation-defined constant.
pendingCount() Bounded by an implemenr No memory allocation.
tation-defined constant.
clearPending() Bounded by an implemen- No memory allocation.
tation-defined constant.

Real-Time Core Extensions 53

The Specification

TABLE 1. Predictability Requirements for Core API Libraries
Class Name
Method Name ‘ CPU Requirements Memory Impact
loPortd

createlOPort() No CPU-time bound The returned [OPort subclass shall

required for this method. be allocated in the current Alloca-
tionContext. No other memory shall
be allocated.

readByte() Bounded by animplemen- | No memory allocation.
tation-defined constant.

writeByte() Bounded by animplemen- | No memory allocation.
tation-defined constant.

readShort() Bounded by an implemen- | No memory allocation.
tation-defined constant.

writeShort() Bounded by an implemen- | No memory allocation.
tation-defined constant.

readint() Bounded by an implemen- | No memory allocation.
tation-defined constant.

writelnt() Bounded by animplemen- | No memory allocation.
tation-defined constant.

readLong() Bounded by animplemen- | No memory allocation.
tation-defined constant.

writeLong() Bounded by animplemen- | No memory allocation.
tation-defined constant.

54 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

TABLE 1.

Predictability Requirements for Core API Libraries

Class Name
Method Name CPU Requirements Memory Impact
Unsigned
compare() Bounded by animplemen- | No memory allocation.
tation-defined constant.
0e() Bounded by animplemen- | No memory allocation.
tation-defined constant.
ot() Bounded by animplemen- | No memory allocation.
tation-defined constant.
le() Bounded by animplemen- | No memory alocation.
tation-defined constant.
It() Bounded by animplemen- | No memory alocation.
tation-defined constant.
eq() Bounded by animplemen- | No memory allocation.
tation-defined constant.
neq() Bounded by animplemen- | No memory allocation.
tation-defined constant.
toByte() Bounded by animplemen- | No memory allocation.
tation-defined constant.
toShort() Bounded by animplemen- | No memory alocation.
tation-defined constant.
tolnt() Bounded by animplemen- | No memory alocation.
tation-defined constant.
toLong() Bounded by animplemen- | No memory allocation.
tation-defined constant.
toString() Bounded by an implemen- | The returned CoreString object
tation-defined constant. and the corresponding character
buffer, if any, shall be alocated
within the current AllocationCon-
text. How much memory is
required to represent a CoreString
object of the specific length shall
be implementation-defined. No
other memory shall be alocated.
toHexString() Bounded by an implemen- | The returned CoreString object
tation-defined constant. and the corresponding character
buffer, if any, shall be alocated
within the current AllocationCon-
text. How much memory is
required to represent a CoreString
object of the specific length shall
be implementation-defined. No
other memory shall be alocated.

Real-Time Core Extensions

55

The Specification

The characterization of the constructor for CoreRuntimeException applies to CorelllegalMoni-
torStateException, CoreOutOfMemoryException, CoreArrayindexOutOfBoundsException, Core-
ClassFormatError.

. The characterization of the constructor for CoreException applies aso to the constructors

for CoreOperationNotPermittedException, CoreSecurityException, CoreBadPriorityExcep-
tion, CoreEmbeddedConflictException, CoreATCEventslgnoredException, CoreBadArgu-
mentException, CoreUnsignedCoercionException, CoreClassinUseException,
CoreClassNotFoundException, CoreArithmeticOverflowException, and CoreObjectNotAd-
dressableException.

. Within thistable, all of the comments relevant to CoreArray apply equally to CoreBoolAr-

ray, CoreByteArray, CoreShortArray, CoreCharArray, CorelntArray, CoreLongArray, Core-
FloatArray, CoreDoubleArray, and CoreRefArray.

. Within thistable, all comments pertaining to I0Port apply equally to each of its officialy

defined subclasses, including I0Port8l, I0Port80, I0Port810, I0Port16l1, I0OPort160, I0Port1610,
|OPort32l, 10Port320, I0Port3210, I0Port64l, IOPort640, and I0Port6410.

The CPU time and dynamic memory impact of the C/Native AP libraries described

in Section 3.16 (starting on page 57) shall be as detailed in Table 2 on page 56.

TABLE 2. Predictability Requirements for the C/Native API

C Function Name CPU Requirements Memory Impact

coreRegistryLookup() No CPU-time bound require- No memory allocation.
ment for this function.

maxCorePriority() Bounded by an implementa- No memory allocation.
tion-defined constant.

minCorePriority() Bounded by an implementa- No memory allocation.
tion-defined constant.

corePriorityMap() Bounded by an implementa- No memory allocation.
tion-defined constant.

maxBaselinePriority() Bounded by an implementa- No memory allocation.
tion-defined constant.

minBaselinePriority() Bounded by an implementa- No memory allocation.
tion-defined constant.

corelnterruptLevels() Bounded by an implementa- No memory allocation.
tion-defined constant.

semaphoreP() No CPU-time bound require- No memory allocation.
ment for this function.

semaphoreV() Bounded by an implementa- No memory allocation.
tion-defined constant.

semaphoreVall() Bounded by an implementa- No memory allocation.
tion-defined constant.

enterSynchronized() No CPU-time bound require- No memory allocation.
ment for this function.

exitSynchronized() Bounded by an implementa- No memory allocation.
tion-defined constant.

56 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

4. TheCPU time and dynamic memory impact of the Baseline API libraries described
in Section 4.0 (starting on page 103) are not constrained by this specification.

3.15 Core Class Loading APl Overview

Note that the Core Execution Environment supports dynamic classloading only if it is
combined with a Baseline Virtual Machine as part of an Extended Baseline Virtual

Machine. The system integrator’s API for customizing the core class loader shall consist
of the following class declaration:

public class CoreClassLoader extends java.lang.Object {
byte[] findClassBytes(java.lang.String name) throws ClassNotFoundException;

}

Note thatCoreClassLoader is a Baseline component. The responsibility offitd€lass-

Bytes() method is to find the byte-code representation of the class named by its string
argument and return this representation as an array of bytes. The default implementation
of findClassBytes() searches the local file system for the requested class, usiGgr¢he
ClassPath environment variable to guide its search order. To implement a different

search or load strategy, the system integrator implements a class that Egte@idss-

Loader and overridefindClassBytes() to provide whatever alternative behavior is desired.
Whenever the core class loader needs to load a class, it locates the bytes that represent
the class to be loaded by invoking the system integrdim®assBytes() method.

See Section 4.0 for additional discussion on configuration of the core class loader.

3.16 C/Native API

3.16.1 Obtaining Access to Core Objects

coreRegistryLookup(). The coreRegistryLookup() function shall look up the core object

that is stored in the core registry and identified by the specified nameambargu-

ment to this function is a null-terminated array of bytes, according to the standard string
conventions for the C programming language (See Reference 10). Since C characters
are only 8 bits wide, and Java characters are 16 bits wide, the C string argument to this
function is not able to describe all names that might be presentQordRegistry dictio-

nary. When converting this string argument to a Java string for purposes of comparing
with existing entries in th€oreRegistry dictionary, thecoreRegistryLookup() function fills

the eight high-order bits of each Java character with zemeRegistryLookup() returns

null if no such object is found in the registry. The internal organization of core objects
shall be available through static tools, the capabilities of which are not constrained by
this specification because they are implementation-defined. An example of such a tool
is javah, by Sun Microsystems. The C prototype is shown below:

CoreObject *coreRegistryLookup(char name][]);

3.16.2 Understanding Core Resource Needs and Contention

maxCorePriority(). ThemaxCorePriority() function shall return the maximum system-level
priority used by the real-time core tasks. The C prototype is shown below:

Real-Time Core Extensions 57

The Specification

3.16.3

int maxCorePriority();

minCorePriority(). The minCorePriority() function shall return the minimum system-level
priority used by the Core tasks. Note that maxCorePriority() - minCorePriority() might not
equal 127, in case, for example, the core dispatcher uses green threads. The C prototype
is shown below:

int minCorePriority();

corePriorityMap(). The corePriorityMap() method shall fill in the elements of the 128-entry
integer array whose address is passed as its argument with values representing the sys-
tem prioritiesto which each of the Core priority levels correspond. Thefirst entry in this
array isthe system priority level at which Core priority-1 tasks execute. The second
entry inthisarray isthe system priority level at which Core priority-2 tasks execute, and
so on. The C prototype is shown below:

void corePriorityMap(int map|[]);

maxBaselinePriority(). The maxBaselinePriority() function shall return the maximum sys-
tem-level priority used by the Baseline threads.The C prototype is shown below:

int maxBaselinePriority();

minBaselinePriority(). The minBaselinePriority() function shall return the minimum sys-
tem-level priority used by the Baseline threads. Note that maxBaselinePriority() - minBase-
linePriority() might not equal 9, in case, for example, the Baseline dispatcher uses an
internal task dispatcher (green threads) rather than the dispatcher of the underlying real-
time operating system. The C prototype is shown below:

int minBaselinePriority();

corelnterruptLevels(). The corelnterruptLevels() function shall return the number of inter-
rupt priority levelsthat might be masked by Core tasks. The interrupt priority levelsare
assumed to begin with the lowest interrupt priority level. It may be the case that higher
priority interrupts cannot be handled by Core tasks, as limited by the system configura-
tion. Suppose, for example, that a particular target supports 16 interrupt priority levels,
of which the highest 8 interrupt priority levels must be implemented in C (not the real -
time core). In this case, corelnterruptLevels() shall return 8. The C prototype is shown
below:

int corelnterruptLevels();

Synchronizing and Coordinating with the Baseline Domain

Note that the core API provides more semaphore operations than are provided to the C/
Native programmer. It isintentional that the interface between the core and native
worlds is small and simple.

semaphoreP(). The semaphoreP() function shall perform a semaphore P() operation on
the Core object whose reference is passed as its argument. That Core object should be
either a CountingSemaphore or a SignalingSemaphore. The semantics of this function
depends on the type of its argument. If semaphore represents a SignalingSemaphore, then
semaphoreP() represents a SignalingSemaphore.P() operation. If semaphore represents a

58

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

CountingSemaphore, then semaphoreP() represents a CountingSemaphore.P() operation. If
semaphore is neither, semaphoreP() shall return an error code (-1). Otherwise, sema-
phoreP() shall indicate normal termination by returning a status code of 0. The C proto-
typeis shown below:

int semaphoreP(CoreObject *semaphore);

semaphoreV(). The semaphoreV() function performs a semaphore V() operation on the
Core object whose referenceis passed as its argument. That Core object should be either
a CountingSemaphore or a SignalingSemaphore. The semantics of this function dependson
the type of its argument. If semaphore represents a SignalingSemaphore, then sema-
phoreV() represents a SignalingSemaphore.V() operation. If semaphore represents a Count-
ingSemaphore, then semaphoreV/() represents a CountingSemaphore.V() operation. If
semaphore is neither, semaphoreV() shall return an error code (-1). Otherwise, sema-
phoreV() shall indicate normal termination by returning a status code of 0. The C proto-
typeis shown below:

int semaphoreV(CoreObject *semaphore);

semaphoreVall(). The semaphoreVall() function performs a semaphore Vall() operation on
the core object passed as its argument. If the semaphore argument represents a Signaling-
Semaphore, semaphoreVall() shall perform a SignalingSemaphore.Vall() operation. If the
semaphore argument does not represent a SignalingSemaphore, semaphoreVall() shall
return an error code (-1). Otherwise, semaphoreVall() shall indicate normal termination
by returning a status code of 0.

Theimplementation of semaphoreVall() shall be constant-time, allowing its use from
within a time-constrained interrupt handler or other Atomic-Synchronized context. The
work of waking up the various waiting tasks shall be distributed between the various P()
operations that are waiting to be signaled.

The C prototype is shown below:

int semaphoreVall(CoreObject *semaphore);

enterSynchronized(). The enterSynchronized() function shall perform the equivalent of
entering a synchronized context associated with itsany_object argument. If any_object
does not implement the PCP interface, this function shall block the current task until all
other threads and tasks have released their locks on this object. If any_object implements
the PCP interface, this function shall adjust the active priority of the current task accord-
ing to implementation-defined conventions consistent with this Core Execution Envi-
ronment. If any_object implements the Atomic interface, the C programmer should take
care to ensure that the code that is executed following return from enterSynchronized()
and preceding execution of the corresponding exitSynchronized() function is execution-
time analyzable. This recommendation is not enforced. Failure to adhere to this recom-
mendation may compromise the real-time integrity of the Core Execution Environment.

If the native execution environment supports the ability to abort or to otherwise inter-
rupt the execution of native tasks, the implementation of enterSynchronized() shall be
robust to this possibility. In other words, if atask becomes blocked during execution of
enterSynchronized(), and that task is aborted before access to the requested region has

Real-Time Core Extensions 59

The Specification

3.17

3.171

been granted, the Core Execution Environment’s internal data structures shall be left in
a coherent and consistent state.

Note that nesting d?CP-synchronized contexts is only allowed if the ceiling priorities
associated with inner-nested contexts are strictly greater than the ceiling priorities of the
outer-nested contextsnterSynchronized() shall return an error code (-1) if the requested
service cannot be provided because of illegal nestig®fsynchronized contexts.
Otherwise gnterSynchronized() shall return a success code, represented by 0.

The C prototype is shown below:

int enterSynchronized(CoreObject *any_object);

exitSynchronized(). TheexitSynchronized() function shall perform the equivalent of exit-

ing a synchronized context associated witlanits object argument. Note that synchroni-
zation contexts may nest, and particular contexts may be entered multiple times. If a
particular context has been entered multiple times, it must be exited the same number of
times before this task releases exclusive access to the context. The Core Execution
Environment shall maintain an internal counter recording how many times each syn-
chronized context is entered, incrementing this counter for each execution of the con-
text's enterSynchronized() function and decrementing this counter for each execution of

the context’sxitSynchronized() function.

If this execution ogxitSynchronized() decrements the synchronized context entry count

to zero,exitSynchronized() shall release exclusive access to this context. If any_object
implements th@CP interface, releasing exclusive access consists of lowering the active
priority of the current task. Otherwise, releasing exclusive access consists of releasing
the lock associated with the context’s controlling object.

enterSynchronized() shall return an error code (-1) if the requested service cannot be per-
formed because the current task does not own exclusive access to the the context repre-
sented byany_object. OtherwiseegxitSynchronized() shall return a success code,

represented by 0.

The C prototype is shown below:

int exitSynchronized(CoreObject *any_object);

The Core API

This section describes the APIs that are used by developers of Core components. Unless
specifically identified as Core-Baseline methods, all methods are presumed to be Core
methods. Core methods are visible only to other Core components.

The CoreObject Class

CoreObject is the root of the core object hierarcByreObject serves a purpose similar to
java.lang.Object in the Baseline domain.

Note that the Baseline compiler seegrtjwg.CoreObject as extending from
java.lang.Object. However, it is the responsibility of the Core programmer to avoid

60

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

invoking any of the methods inherited from java.lang.Object that are not specifically
identified in the Core specification as being supported by org.rtjwg.CoreObject. The Core
Verifier shall rgject asinvalid any Core class file that makes reference to non-supported
methods.

Though the typical Core programmer does not have to worry about such details, it is
important to note that special tricks must be applied in order to author the implementa-
tion of CoreObject. In particul ar, certain methods of java.lang.Object are defined to befinal,
meaning that subclasses are not alowed to override their implementations. Theimple-
mentation of CoreObject must override the getClass(), wait(), notify(), and notifyAll() meth-
ods, al of which are defined in java.lang.Object to be final. To work around this
restriction, the Core programmer who implements CoreObject names methods
_getClass(), _wait(), _notify(), and _notifyAll() methods, respectively. The Core class loader
shall overwrite the implementations of getClass(), wait(), notify() and notifyAll() with the
specially named replacements.

CoreObject Constructor. There shall be one constructor for the CoreObject class. The
Core signature follows:

public CoreObject();
The following methods are supported for the CoreObject class.

CoreObject.clone(). The clone() method shall make acopy of this object, copied one level
deep, and shall return areference to the new copy. The Core signature is shown below:

final public protected stackable Object clone();

CoreObject.equals(). The equals() method shall return true if and only if object o is the
same object as this object. (Note that subclasses can redefine the “meangug!56f)
The Core signature is shown below:

public boolean stackable equals(stackable Object o);

CoreObject.getClass(). ThegetClass() method shall return a reference to @oeeClass
object that represents this object’s class information. The Core signature is shown
below:

final public CoreClass stackable getClass();

CoreObject.hashCode(). The hashCode() method shall return an integer that represents
the hash code associated with this object. The Core signature is shown below:

public int stackable hashCode();

CoreObject.notify(). Thenotify() method shall wake up ti@ereTask task that has the high-

est priority among tasks waiting on this object’s condition and has been waiting the
longest amount of time if multiple tasks of the same highest priority are associated with
this same monitor. If no objects are waiting on this conditionpdtifg() method shall

have no effect on the state of this object’s monitor. If the object for whiatotifyé

method is invoked implements tREP interface or if the currently executing task does
not own exclusive access to the corresponding object’'s monitor, this method throws a

Real-Time Core Extensions 61

The Specification

previously alocated CorelllegalMonitorStateException exception. (Since CorelllegalMoni-
torStateException is a subclass of CoreRuntimeException, this exception does not appear in
the method’s signature.) The Core signature is shown below:

final public void stackable notify();

CoreObject.notifyAll(). ThenotifyAll() method wakes up alloreTask objects that are wait-

ing for the condition associated with this monitor to be signaled. If the object for which
thenotifyAll() method is invoked implements tREP interface or if the currently execut-
ing task does not own exclusive access to the corresponding object’s monitor, this
method throws a previously allocat@adrelllegalMonitorStateException exception. (Since
CorelllegalMonitorStateException is a subclass d@foreRuntimeException, this exception does

not appear in the method’s signature.) The Core signature is shown below:

final public void stackable notifyAll();

CoreObject.toString(). ThetoString() method shall return a reference t6ageString

object, allocated in the currently active allocation context, that provides an abstract
implementation-defined textual representation of this object. The Core signature is
shown below:

public CoreString stackable toString();

CoreObject.wait(). Thewait() method shall cause the currently executing core task to be
put to sleep until this task is the highest priority task on the monitor queue and some
other Core task invokes this objeatttify() method or until some other Core task

invokes thenotifyAll() method. If the object for which thwit() method is invoked imple-
ments thé’CP interface or if the currently executing task already owns exclusive access
to somePCP object’'s monitor, this method shall throw a previously alloc&uzelllegal-
MonitorStateException exception. (Sinc€orelllegalMonitorStateException is a subclass of
CoreRuntimeException, this exception does not appear in the method’s signature.) The
Core signature is shown below:

final public void wait();

CoreObject.arrayAddress(). ThearrayAddress() method shall return the address of this
primitive array if this object is a Core array of primitive type. Otherwise, this method
shall throw a previously allocated instanceCofeObjectNotAddressableException. Note

that this method shall return the address of the first element of the array rather than the
start address of the object that contains the array elements. The Core Execution Envi-
ronment shall represent arrays of primitive elements using whatever convention is fol-
lowed by the dominant C compilers supporting the given architecture. The Core
signature is shown below:

final public long stackable arrayAddress() throws CoreObjectNotAddressableException;
CoreObiject.sizeof(). Thesizeof() method shall return the number of bytes used to repre-

sent this object, including any alignment padding and bookkeeping fields inserted for
the benefit of garbage collection. The Core signature is shown below:

final public int stackable sizeof();

62

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.2 The CoreThrowable Class

The org.rtjwg.CoreThrowable class is the Core Execution Environment’s analog of
java.lang.Throwable. Every reference tava.lang.Throwable shall be replaced with a refer-
ence taCoreThrowable by the Core Class Loader. Within the Core Execution Environ-
ment, all exceptions thrown and caught must extend érgmtiwg.CoreThrowable.

Unlike itsjava.lang.Throwable analog, the&oreThrowable class shall not maintain a repre-
sentation of the run-time stack backtrace.

CoreThrowable Constructors. There shall be two constructors for tbaeThrowable

class. The first takes no arguments and shall cre@aeeBhrowable object with no par-
ticular message. The second shall take a sidgksString argument, which represents
the message to be associated with @isThrowable object, and shall createCare-
Throwable object which maintains a reference toniessage argument. The Core signa-
tures are as follows:

public CoreThrowable();
public CoreThrowable(CoreString message);

CoreThrowable.getMessage(). The getMessage() method returns a reference to Guee-
String object that was passed as an argument tGdfe&hrowable constructor, or returns
null if this CoreThrowable object was constructed with no message.

3.17.3 The CoreRuntimeException Class

Theorg.rtjwg.CoreRuntimeException class, which extendsg.rtjwg.CoreThrowable, is the
Core analog ofava.lang.RuntimeException. Every reference tiava.lang.RuntimeException
shall be replaced with a referenceCmeRuntimeException by the Core Class Loader.
Within the Core Execution Environme@greRuntimeException represents exceptional
events that are not expected to occur. A method that thr@msRuntimeException

object shall not be required by the Core Compiler (or by the Java Compiler) to declare
in its signature that it throw@oreRuntimeException. A context that invokes a method that
might throw aCoreRuntimeException object shall not be required to catch @oeeRunt-
imeException object or to declare that the context might throwQbreRuntimeException
object. In the common vernacular, ®@eRuntimeException class represents
“unchecked” exceptions.

CoreRuntimeException Constructors. There are two constructors for tBereRuntimeEx-
ception class. The first shall take no arguments and shall crezteRuntimeException

object with no particular message. The second shall take a Sogfring argument,

which represents the message to be associated wittotbRintimeException object and
shall create &oreRuntimeException object that maintains a reference to its message argu-
ment. The Core signatures are as follows:

public CoreRuntimeException();
public CoreRuntimeException(CoreString message);

3.17.4 The CoreException Class

Theorg.rtjwg.CoreException class, which extendsg.rtjwg.CoreThrowable, is the Core ana-
log ofjava.lang.Exception. Every reference tfava.lang.Exception shall be replaced with a
reference t@oreException by the Core Class Loader. Within the Core Execution Envi-

Real-Time Core Extensions 63

The Specification

3.175

ronment, CoreException represents exceptional events that are not expected to occur. A
method that throws a CoreException object shall be required by the Core Compiler (and
by the Baseline Compiler) to declarein its signature that it throws CoreException. A con-
text that invokes a method that might throw a CoreException object shall be required
either to catch the CoreException object or to declare that the context might throw the
CoreException object. In the common vernacular, the CoreException class represents a
“checked” exception.

CoreException Constructors. There shall be two constructors for @eException class.

The first shall takes no arguments and shall cre@tee&xception object with no partic-

ular message. The second shall take a sibgksString argument, which represents the
message to be associated with GigException object, and shall createCareException

object that maintains a reference to its message argument. The Core signatures are as
follows:

public CoreException();
public CoreException(CoreString message);

The ScopedException Class

Theorg.rtjwg.ScopedException class extendsrg.rtjwg.CoreThrowable. A ScopedException
object is special in that when thrown, it is only catchablealh clauses belong to the
method within which th&copedThrowable object was most recently enabled. When the
object is constructed, it is automatically enabled in the context that invoked the con-
structor.

ScopedException Constructors. There are two constructors for tBeopedException

class. The first shall take no arguments and shall crészmedException object with no
particular message. The second shall take a stugdString argument, which represents
the message to be associated with $hopedException object and shall createSaope-
dException object that maintains a reference to its message argument. The Core sigha-
tures are as follows:

public ScopedException();
public ScopedException(CoreString message);

ScopedException.enable(). Theenable() method establishes the context of the calling
method as the only method that can catch this exceptioScépadException is enabled
multiple times, the most recegnable() invocation is the one that establishes the catch-
ing context. The Core signature follows:

public final void enable();

ScopedException.disable(). Thedisable() method disables thBcopedException. If an
ATCEventHandler attempts to throw a disabl&dopedException, the effect is to simply
return from theATCEventHandler, causing the asynchronously signaBedeTask to
resume execution as if it had never been signaled. If a disadupetiException is
thrown from a normaCoreTask execution context (rather than from within an
ATCEventHandler), the exception shall not be caught and shall caugeoth@sk’s work()
method to abort execution. The Core signature follows:

public final void disable();

64

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.6

The CoreClass Class

The CoreClass class extends CoreObject. Its roleis similar to java.lang.Class.

CoreClass.forName(). The forName() method shall return the CoreClass object associated
with the class or interface known by the string name supplied asits argument if the
named class was previously loaded. The forName() method shall not cause the class to be
loaded. If the classis not currently loaded, this method shall throw a previously allo-
cated instance of CoreClassNotFoundException. The Core signature is shown below:

public static CoreClass forName(CoreString className)
throws CoreClassNotFoundException;

CoreClass.getComponentType(). The getComponentType() method shall return the Core-
Class object that represents the component type of this object, which is presumed to be
an array. If this object is not an array, getComponentType() shall return null. The Core sig-
nature is shown below:

final public CoreClass getComponentType();
CoreClass.isArray(). TheisArray() method shall return true if and only if this CoreClass
object represents an array class. The Core signature is shown below:

final public boolean isArray();
CoreClass.isAssignableFrom(). TheisAssignableFrom() method shall return true if and
only if the class or interface represented by this CoreClass object is either the same as, or

isasuperclass or superinterface of, the class or interface represented by the supplied
CoreClass parameter. The Core signature is shown below:

final public boolean isAssignableFrom(CoreClass cls);
CoreClass.isInstance(). Theislnstance() method shall return true if and only if its obj argu-
ment represents an instance of the class or interface represented by this CoreClass. If this
CoreClass represents an array type, isinstance() shall return true if and only if obj isor can

be coerced to be of the array’s type. If tbiseClass represents a primitive typsin-
stance() shall returrfalse. The Core signature is shown below:

final public boolean isinstance(CoreObject obj);
CoreClass.isInterface(). Theisinterface() method shall returtiue if and only if thisCore-
Class object represents an interface type. The Core signature is shown below:
final public boolean isInterface();
CoreClass.isPrimitive(). TheisPrimitive() method shall returtiue if and only if thisCore-
Class object represents a primitive type. The Core signature is shown below:
final public boolean isPrimitive();
CoreClass.newlnstance(). Thenewlnstance() method shall create a new instance of the
class represented by tltisreClass object. The Core signature is shown below:

final public CoreObject newlnstance();

Real-Time Core Extensions 65

The Specification

3.17.7

CoreClass.toString(). ThetoString() method shall return an implementation-defined Core-
String textual representation of this CoreClass object. The CoreString object returned from
the toString() method shall be allocated in the current allocation context. The Core signa-
tureis shown below:

final public CoreString toString();

CoreClass.verification(). The verification() method shall return true if and only if this par-
ticular Core Execution Environment performs verification of loaded classfiles. If this
method returnstrue, the verification performed by the Core classloader shall conform to
the specification of the Core Verifier (See Section 3.5.1). The Core signature is shown
below:

final public static boolean verification();

CoreClass.loadClass(). The loadClass() method shall load and fully resolve the class

named by its CoreString argument, throwing a previously allocated instance of CoreClass-
NotFoundException if this class, or any of the classes it makes reference to cannot be

found. This method is omitted from the Static Core Execution Environment and the

Core Static Linker issues an appropriate error message if any of the Core application

code that it islinking attemptsto invoke this method. TheloadClass() method shall throw
aprevioudly allocated instance of CoreClassFormatError if this particular Core Execution
Environment claims to perform verification of newly loaded classes (See “Core-
Class.verification()” on page 66) and the requested class, or any of the classes it makes
reference to, fails byte-code verification as performed by the Core Verifier. The Core
signature is shown below:

final public static CoreClass loadClass(CoreString class_name)
throws CoreClassNotFoundException, CoreClassFormatError;

CoreClass.unloadClass(). TheunloadClass() method shall remove this class from the set

of loaded classes and shall reclaim the memory used to represent this class, throwing a
previously allocated instance @breClassinUseException if there exist instances of this

class, or if other loaded classes make reference to this class. This method is omitted
from the Static Core Execution Environment and the Core Static Linker issues an appro-
priate error message if any of the Core application code that it is linking attempts to
invoke this method. The Core signature is shown below:

final public unloadClass() throws CoreClassinUseException;

The CoreArray Class

TheCoreArray class, which represents arrays within the Core Execution Environment,
extendsCoreObject. All uses of special array syntax within Core source code shall be
treated within the Core Execution Environment as sp€oialrray (or derivative)

objects. This means that the Core Execution Environment allows the subscript operation
to be performed on an object of typereArray. Further, it means thatrew operation

that allocates an array within the Core Execution Environment produ@esfaray

object. All of CoreBoolArray, CoreByteArray, CoreShortArray, CoreCharArray, CorelntArray,
CorelLongArray, CoreFloatArray, CoreDoubleArray, andCoreRefArray extendCoreArray.

66

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

If the Baseline environment obtains areference to a core array object, the Baseline envi-

TABLE 3.

Core Type

Baseline Type

Core Array Representation Within Baseline Domain

Core-Baseline Methods

Array of

boolean

Array of byte

Array of short

Array of char

Array of int

Array of long

Array of float

CoreBoolArray

CoreByteArray

CoreShortArray

CoreCharArray

CorelntArray

CoreLongArray

CoreFloatArray

baseline public final int length();
baseline public final boolean atGet(int index)
throws CoreArraylndexOutOfBoundsException;
baseline public final void atPut(int index, boolean b)
throws CoreArraylndexOutOfBoundsException;

baseline public final int length();
baseline public final byte atGet(int index)
throws CoreArraylndexOutOfBoundsException;
baseline public final void atPut(int index, byte b)
throws CoreArraylndexOutOfBoundsException;

baseline public final int length();
baseline public final short atGet(int index)
throws CoreArraylndexOutOfBoundsException;
baseline public final void atPut(int index, short s)
throws CoreArraylndexOutOfBoundsException;

baseline public final int length();
baseline public final char atGet(int index)
throws CoreArraylndexOutOfBoundsException
baseline public final void atPut(int index, char c)
throws CoreArraylndexOutOfBoundsException;

baseline public final int length();
baseline public final int atGet(int index);
throws CoreArraylndexOutOfBoundsException
baseline public final void atPut(int index, int i)
throws CoreArraylndexOutOfBoundsException;

baseline public final int length();
baseline public final long atGet(int index)
throws CoreArraylndexOutOfBoundsException;
baseline public final void atPut(int index, long x)
throws CoreArraylndexOutOfBoundsException;

baseline public final int length();
baseline public final float atGet(int index)
throws CoreArraylndexOutOfBoundsException;
baseline public final void atPut(int index, float f)
throws CoreArraylndexOutOfBoundsException;

Real-Time Core Extensions

67

The Specification

TABLE 3. Core Array Representation Within Baseline Domain

Core Type Baseline Type Core-Baseline Methods

Array of double CoreDoubleArray baseline public final int length();
baseline public final double atGet(int index)
throws CoreArraylndexOutOfBoundsException;
baseline public final void atPut(int index, double d)
throws CoreArraylndexOutOfBoundsException;

Array of any CoreRefArray baseline public final int length();
core reference baseline public final CoreObject atGet(int index)
type throws CoreArraylndexOutOfBoundsException;

ronment sees this Core array as one of the nine types identified in the second column of
Table 3 on page 67. From within the Baseline domain, this Core object does not ook
like a Baseline array. In other words, the Baseline domain is not allowed to access the
data contained within this object using Baseline subscripting operations. Instead, the
Baseline domain is required to access the data contai ned within the Core array by invok-
ing the Core-Baseline methods described in the third column of this table. The signifi-
cance of these methodsis described below.

length(). This method shall return the number of elements in the corresponding Core
array object.

atGet(). This method shall return the array element at the specified index position from
within the corresponding core array object, or shall throw a previously alocated
instance of CoreArraySubscriptOutOfBoundsException if the requested index position is out
of range for the given array.

atPut(). This method shall overwrite the array element at the specified index position

within the corresponding Core array object with the value supplied as the method’s sec-
ond argument, or shall throw a previously allocated instan€ereArraySubscriptOutOf-
BoundsException if the requested index position is out of range for the given array. Note
thatCoreRefArray does not implement trePut() method. This is intentional. The reason

for this omission is that the Baseline domain is not allowed to overwrite reference fields
of Core objects.

3.17.8 The AllocationContext Class

The AllocationContext class extend8oreObject. Every Core object is allocated within a
particular allocation context, represented abstractly byltbationContext class. Asso-
ciated with every Core task is a dedicatdlacationContext object which serves as the
tasks’ default allocation context. This means that by default, every new object is allo-
cated within the allocation context that represents the task’s default allocation context.

There are no public interfaces to allow Core components to directly manipulate the allo-
cation context of a core task. When a Core task completes its execution, the allocation
context is automatically released, making all of the objects allocated by that Core task
eligible for garbage collection. The precise moment at which a Core task is considered
to have completed its execution depends on what type of task it is:

68 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

If thisisan ISR_Task or SporadicTask, the task is not considered to have “completed”
execution until after itstop() method has been invoked and that method has exe-
cuted to completion. This is the only way for one of these kinds of tasks to com-
plete execution.

Otherwise, this must beGoreTask. There are several ways fo€areTask (which is
not one of the above three subclasses) to complete execution:

a. It may return from itsvork() method.

b. It may throw an uncaught exception, including the special exception returned
from its abortWorkException() method.

c. The task’sstop() method may be invoked, in which case the task is considered
to have completed execution upon return fromstbg) method invocation.

AllocationContext Constructors. There are three constructors fdiocationContext.

1.

The first shall take no arguments and shall creatdl@mationContext object that is
configured with no particular bound on how much memory might be allocated from
within that context. The location of the allocation region within memory shall be
determined by the Core Execution Environment in an implementation-defined
manner. The Core signature for this constructor follows:

public AllocationContext();

The second constructor shall take an argument identifying the maximum total num-
ber of bytes authorized to be allocated within the corresponding allocation region
and shall create akllocationContext object that is configured to allocate no more

than the specified number of bytes. When this form of constructor is used, the allo-
cation region is required to be contiguous memory, and the Core Execution Envi-
ronment shall use a constant-time allocation algorithm which simply increments or
decrements a region-specific allocation pointer by the size of each allocation
request. The location of the allocation region within memory shall be determined
by the Core Execution Environment in an implementation-defined manner. This
constructor shall throw a previously allocated instandeodOutOfMemoryExcep-

tion if there is not a large enough region of contiguous memory to satisfy the
request. The Core signature for this constructor follows:

public AllocationContext(long maximum_bytes)
throws CoreOutOfMemoryException;

The third constructor shall take an argument identifying the maximum total number
of bytes authorized to be allocated within the corresponding allocation region and a
second CoreString argument identifying the name of the special memory block
within which the allocation region is to be allocated. This constructor shall create
anAllocationContext object that is configured to allocate no more than the specified
number of bytes from within the specified memory block. When this form of con-
structor is used, the allocation region is required to be contiguous memory, and the
Core Execution Environment shall use a constant-time allocation algorithm which
simply increments or decrements a region-specific allocation pointer by the size of
each allocation request. The idea is that in particular configurations, special names
might be given to memory blocks representing fast static memory, dual-ported
memory, or non-volatile battery powered RAM. The naming conventions for indi-
vidual memory blocks shall be implementation-defined. This constructor shall
throw a previously allocated instanceGafeOutOfMemoryException if there is not a

Real-Time Core Extensions 69

The Specification

3.17.9

large enough region of contiguous memory within the requested memory block to
satisfy the request. The Core signature for this constructor follows:

public AllocationContext(long maximum_bytes, CoreString block_name)
throws CoreOutOfMemoryException;

AllocationContext.available(). If this AllocationContext was constructed with an argument
specifying the maximum number of bytes to be allocated, the available() method shall
return the number of bytes that are currently available to be allocated within this Alloca-
tionContext. If no limit was specified when the AllocationContext was constructed, the
available() method shall return the special code of -1. The Core signature is shown
below:

final public long available();

AllocationContext.allocated(). The allocated() method shall return the total number of
bytes, including alignment padding and bookkeeping header information associated
with allocated objects, that have been allocated within this AllocationContext. The Core
signature is shown below:

final public long allocated();

AllocationContext.release(). Core components invoke an AllocationContext’s release()

method to indicate that all of the objects allocated within that context, includiddgjothe
cationContext object itself, are now eligible for garbage collection. The memory dedi-
cated to these objects shall not be reclaimed until after the Core Execution Environment
verifies that the respective objects are no longer visible to the Baseline domain. The
Core signature for thelease() method is shown below:

final public void release();

The SpecialAllocation Class

The SpecialAllocation class extend8oreObject. By default, all new objects shall be allo-

cated within the default allocation context of the currently exec@inglask. To allo-

cate objects within some other allocation context, Core programmers extend the abstract
SpecialAllocation class by implementing thien() andcontext() methods. Core tasks invoke

the SpecialAllocation.execute() method to establish a new allocation context. S8peeial-
Allocation is an abstract class, there are no constructors.

SpecialAllocation.context(). Implementations of the abstraohtext() method shall return

a reference to thallocationContext object that represents the special allocation context
established to keep track of all objects allocated during execution §p#aialAllocation
object’sexecute() method, excluding any objects that might be allocated during execu-
tion of otherSpecialAllocation object’s inner-nesteekecute() methods. To use special
allocation contexts, Core programmers must implementatiext() method to return a
reference to the approprigiéocationContext object. The Core signature is:

public abstract AllocationContext context();

SpecialAllocation.run(). This is an abstract method, which is invoked during execution of
theexecute() method. To use special allocation contexts, Core programmers must imple-

70

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.10

ment the run() method, providing the body of code that is to execute within the new allo-
cation context. The Core signature is shown below:

public abstract void run();

SpecialAllocation.execute(). The execute() method is invoked to enter into the special
allocation context. The effect of calling execute() shall beto (1) establish the new alloca-

tion context to be the AllocationContext whose reference is returned from the context()
method, (2) invoke this object’sn() method, and (3) restore the original allocation con-
text upon return (or thrown exception) from the) method. The Core signature fol-
lows:

final public void execute();

The PCP Interface

ThePCP interface represents the intent to use the priority ceiling protocol for synchroni-
zation. If a core object implements this interface, the Core Execution Environment shall
use the modified priority ceiling protocol defined here for all synchronization associated
with that object. In particular:

1. If some task running at a priority higher than a particRGH object’s ceiling prior-
ity attempts to synchronize on that object, the synchronization attempt shall fail by
throwing a previously allocated instanceGofelllegalMonitorStateException.

2. For any class that implements th@P interface, it is improper to invoke thait(),
notify(), or notifyAll() methods of that class’s instances. Any attempt to invoke these
methods shall fail by throwing a previously allocated instan@»efllegalMoni-
torStateException.

3. Obtaining a synchronization lock (whether it iBGP object or a priority inherit-
ance object) for a Core object shall not require allocation of memory.

4. When a task is executing with possession BEB object’s synchronization lock,
the Core task shall run at the correspondi@if object’s ceiling priority.

No queues shall be used in the implementation of a priority ceiling lock.
PCP synchronization shall not cause the currently running task to block.

No time slicing of tasks at equal or lower priority shall be allowed while the run-
ning task holds a priority ceiling lock.

8. Blocking I/O and synchronizing operations shall not be permitted while the current
task holds &CP synchronization lock. Any core service invoked from within a
PCP-synchronized context that might block shall not perform the requested operation
and shall instead throw a previously allocated instan@arefllegalMonitorStateEx-
ception exception. Examples of methods that shall automatically tGaelllegal-
MonitorStateException if invoked from within aPCP-locked context include
CoreTask.sleep(), CoreTask.sleepUntil(), CoreTask.join(), Mutex.lock(), SignalingSema-
phore.P(), CountingSemaphore.P(), CoreObject.wait(), and entry into aynchronized con-
text that is not identified aCP.

9. Static and dynamic nesting of priority ceiling locks shall be permitted. However,
entry into an inner-nesteRCP-locked context shall only be allowed if the priority
ceiling associated with the inner context is greater than the active priority of the
currently executing task. Otherwise, entry into the inner-nést@docked context

Real-Time Core Extensions 71

The Specification

3.17.11

shall be denied by throwing a previously allocated instance of CorelllegalMoni-
torStateException.

10. For PCP objects, third-party synchronization shall be prohibited. |n other words, the
code fragment:

synchronized (0) {
doSomething();

}

represents an inappropriate request within the Core Execution Environment unless
object 0 happens to equal this. If object o does not equal this, attempted execution of
the above statement results in throwing of a previously allocated instance of Corell-
legalMonitorStateException.

11. The Core Execution Environment shall give special handling to the construction of
objects that implement the PCP interface. Whenever a PCP object is constructed,
the Core Execution Environment shall invoke the objeeflmgPriority() method to
determine the intended ceiling priority for the objectellingPriority() returns an
interrupt-level priority but the corresponding object does not impleAiemic (See
Section 3.17.11), the constructor shall fail by throwing a previously allocated
instance oforelllegalMonitorStateException.

The methods supported by tR@P class follow:

PCP.ceilingPriority(). TheceilingPriority() method is the only method defined in #&P
interface. It shall return the priority which is the intended ceiling priority for this Core
object. The Core Execution Environment shall invoke this method only once for each
instantiated object that implements 8P interface. If the return value is -1, this indi-
cates that the corresponding object is never used for locking and therefore does not
require memory to be allocated to represent a locking mechanism. If a paRicRlar

object identifies itself as not implementing a lock, and subsequently some Core compo-
nent attempts to synchronize on that object, the synchronization attempt shall fail by
throwing a previously allocated instanceCofelllegalMonitorStateException. The Core
signature is shown below:

abstract int stackable ceilingPriority();

The Atomic Interface

TheAtomic interface is used to distinguiBEP objects that adhere to special restrictions
and provide special semantics. TAemic interface shall extend tHREP interface.

There shall be no public variables or methods defined for this interface. Rather, use of
this interface is simply an indication to the Core class loader that certain objects deserve
special treatment. The special treatment givektdmic objects shall be as follows:

1. Only objects that implement tiagomic interface shall be allowed to set their prior-
ity ceiling to an interrupt-level priority. This has the effect of assuring that system
interrupts shall not be disabled for arbitrarily long periods of time.

2. Each of the bodies of code that comprisesjnehronized statements associated
with anAtomic object shall be execution-time analyzable. The definition of execu-
tion-time analyzable code is provided in Section 3.14.

72

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.12

3. If atask is executing synchronized code of an Atomic object (“Atomic synchronized
code”) when a request to abort the task is delivered to the Core Execution Environ-
ment, the Core Execution Environment shall defer abortion of the task until after
thesynchronized code completes its execution.

The CoreString Class

The CoreString class shall extenatg.rtjwg.CoreObject. TheCoreString class shall be used
to represent string literal constants within Core components.

CoreString Constructors. There shall be two constructors fesreString. The first shall

accept as its argument an array of characters and shall prodoreStang object repre-

senting that sequence of characters. The second shall accept as its arguments an array of
charactersv@lue), an integer offset within the arragfféet), and an integer length field

(length). It shall produce &oreString object containindength characters copied from the

value array starting with the character at positoffeet. This second constructor shall

throw a previously allocated instanceGafeArraylndexOutOfBoundsException if offset is

negative or if the sum of ttadfset andlength parameters exceeds the length ofviee

character array. The Core signatures for the two constructors are shown below:

public CoreString(char[] value);
public CoreString(char(] value, int offset, int length) throws
CoreArrayIndexOutOfBoundsException;

CoreString.charAt(). ThecharAt() method shall return the character found at the specified
position (ndex) within thisCoreString object. Anindex value of zero shall correspond to

the first character in the string. If the requested position is negative, or if it exceeds the
length of the string, theharAt() method shall throw a previously allocated instance of
CoreArrayIndexOutOfBoundsException. The Core-BaselinecharAt() method shall behave

the same as the cotkarAt() method, except that it is intended to be invoked from a
Baseline thread. The Core signatures are shown below:

final public char charAt(int index) throws CoreArraylndexOutOfBoundsException;
final public baseline char _charAt(int index) throws CoreArrayindexOutOfBoundsException;

CoreString.hashCode(). The hashcode() method shall return an integer value that corre-
sponds to the sequence of characters represented IQprising object. If twoCore-

String objects represent the same sequence of characters, their respective hash codes
shall be the same. The Core-BaselihashCode() method shall behave the same as the
hashCode() method, except it is intended to be invoked from a Baseline thread. The Core
signatures are shown below:

final public int hashCode();
final public baseline int _hashCode();

CoreString.equals(). The equals() method shall returtiue if and only if itsCoreString
argument represents the exact same sequence of charaditsrsteag. Its Core signa-
ture is shown below:

final public boolean equals(CoreString s);

Real-Time Core Extensions 73

The Specification

3.17.13

CoreString.length(). Thelength() method shall return the number of charactersin this Cor-
eString object. The Core-Baseline _length() method shall behave the same as the length()
method, except it isintended to be invoked from a Baseline thread. The Core signatures
are shown below:

final public int length();
final public baseline int _length();

The DynamicCoreString Class

The DynamicCoreString class shall extend CoreString. This class has considerably more
functionality than CoreString.

DynamicCoreString Constructors. There are five constructors, with signatures as shown
below, for DynamicCoreString. The first takes no arguments and shall construct a Dynam-
icCoreString object of length zero. The second takes asits argument an array of bytesand
shall construct a DynamicCoreString object with as many characters as the length of the
byte array, with each byte converted into the appropriate Unicode character in sequence
within the resulting DynamicCoreString object. The meaning of the bytes stored in the
byte array shall be interpreted according to ASCII conventions. The third constructor is
like the second, except the character sequence for the DynamicCoreString is taken from
the byte array starting with the byte at index position offset and ending with the byte at
index position (offset + length - 1). This constructor shall throw a previoudly allocated
instance of CoreArraylndexOutOfBoundsException if its offset or length arguments are nega-
tive or if (offset + length) is greater than the length of the array. The fourth and fifth con-
structors are like the second and third constructors respectively, except the input arrays
shall hold Unicode characters instead of ASCII bytes.

The Core signatures for the five constructors are shown below:

public DynamicCoreString();
public DynamicCoreString(byte[] bytes);
public DynamicCoreString(byte[] bytes, int offset, int length)
throws CoreArraylndexOutOfBoundsException;
public DynamicCoreString(char(] chars);
public DynamicCoreString(char[] value, int offset, int length)
throws CoreArraylndexOutOfBoundsException;

DynamicCoreString.concat(). The concat() method shall create and return a new Dynamic-
CoreString object that represents the concatenation of this string with the string supplied
asitsstr argument. The Core signature is shown below:

final public DynamicCoreString concat(CoreString str);

DynamicCoreString.getChars(). The getChars() method shall copy the sequence of char-
actersfound within this string starting at index position source_begin and ending at index
position source_end into the character array named destination starting at index position
destination_begin. This method shall throw a previously allocated instance of CoreArrayln-
dexOutOfBoundsException if source_begin isless than O, if source_end is greater than the
length of thisstring, if source_end is less than source_begin, if destination_begin is less
than zero, or if the destination array is not long enough to represent all of the characters

74

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.14

to be copied into the array starting from index position destination_begin. The Core sig-
nature is shown bel ow:

final public void getChars(int source_begin, int source_end,
char[] destination, int destination_begin)
throws CoreArraylndexOutOfBoundsException;

DynamicCoreString.substring(). The substring() method shall create a new DynamicCore-
String representing the sequence of characters from this DynamicCoreString starting at
index position begin_index and ending at index position end_index. This method shall
throw a previously allocated instance of CoreArraylndexOutOfBoundsException if
begin_index is less than zero, end_index is less than begin_index, or end_index is greater
than the length of this DynamicCoreString. The Core signature is shown below:

final public DynamicCoreString substring(int begin_index, int end_index)
throws CoreArraylndexOutOfBoundsException;

DynamicCoreString.toCharArray(). The toCharArray() method shall create a new character
array of the same length as this DynamicCoreString object and initialize the elements of
the character array by copying the characters from this DynamicCoreString object in
sequential order. The Core signature is shown below:

final public char[] toCharArray();

DynamicCoreString.toLowerCase(). The toLowerCase() method shall create a new Dynam-
icCoreString object of the same length as this DynamicCoreString and shall initialize the
characters of the new DynamicCoreString by copying the characters of this DynamicCore-
String object in sequential order, replacing each upper case character with the corre-
sponding lower case character during the copying process. The definition of which
character encodings are considered to be upper case and which are lower case, and the
mapping between the two is defined by Unicode conventions. The Core signature is
shown below:

final public DynamicCoreString toLowerCase();

DynamicCoreString.toUpperCase(). The toUpperCase() method shall create a new Dynam-
icCoreString object of the same length as this DynamicCoreString and initialize the charac-
ters of the new DynamicCoreString by copying the characters of this DynamicCoreString
object in sequential order, replacing each lower case character with the corresponding
upper case character during the copying process. The definition of which character
encodings are considered to be upper case and which are lower case, and the mapping
between the two is defined by Unicode conventions. The Core signature is shown
below:

final public DynamicCoreString toUpperCase();

The ATCEventHandler class

The ATCEventHandler class shall extend org.rtjwg.CoreObject. This class represents the
main entry point for asynchronous transfer of control event handlers. Each CoreTask for
which asynchronous event handling is enabled shall have an associated ATCEventHandler
object. When an asynchronous event is signaled to that task, the Core Execution Envi-
ronment shall invoke the corresponding ATCEventHandler's handleATCEvent() method.

Real-Time Core Extensions 75

The Specification

3.17.15

3.17.16

ATCEventHandler Constructor. The constructor for ATCEventHandler shall take no argu-
ments. The Core signature follows:

public ATCEventHandler();

ATCEventHandler.handleATCEvent(). The handleATCEvent() method shall invoke the
defaultAction() method of its ATCEvent argument e and then return. The handleATCEvent()
method is declared to throw a CoreThrowable object because in many cases, the desired
result of asynchronous event handling is to abort a particular section of code by throw-
ing an exception from within the asynchronous event handler. The Core signature fol-
lows:

public void handleATCEvent(ATCEvent e) throws CoreThrowable;

Note that application developers may override this method to implement different
semantics for the asynchronous event handlers associated with particular Core tasks.

The ATCEvent class

The ATCEvent class shall extend org.rtjwg.CoreObject. This class represents an asynchro-
nous event. To signa an asynchronous event to a Core task t, construct an ATCEvent
object e and pass thisATCEvent e as the sole argument to t's signalAsync() method.

ATCEvent Constructor. The constructor fohRTCEvent shall take no arguments. The Core
signature follows:

public ATCEvent();

ATCEvent.defaultAction(). ThedefaultAction() method shall perform no side effects and
shall simply return. TheefaultAction() method is declared to throwCareThrowable

object because in many cases, the desired result of asynchronous event handling is to
abort a particular section of code by throwing an exception from within the asynchro-
nous event handler. The Core signature is shown below:

public void defaultAction() throws CoreThrowable();

Note that application developers may override this method to implement different
semantics for particular asynchronous event objects.

The CoreRegistry class

The CoreReygistry class shall extenatg.rtjwg.CoreObject. The role of this class is to pro-

vide a repository for configuration information and for information that is shared

between the core domain and the native and Baseline domains. There are no public con-
structors, since all methods are static and there are no instance variables.

CoreRegistry.stackAllocation(). ThestackAllocation() method shall returtue if and only if

this Core Execution Environment supports stack allocation of objects. Otherwise, it
shall returrfalse. All Core Execution Environments that claim to support stack alloca-
tion shall behave the same with regards to which objects are stack allocated. The Core
signature for this method follows:

public static boolean stackAllocation();

76

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

CoreRegistry.registerStackable(). For each Core class, the registerStackable() method shall
beinvoked as the first executable code within any method that desires to identify any of
its local variables (including incoming arguments and this) as potentially stack allocat-
able. The string argument to registerStackable() is alist of the names of the arguments
and local variables whose referents shall be allocated on the stack if the Core Execution
Environment supports stack allocation of locals and arguments. The variable names are
separated by semicolons. In the case that a constructor has stackable arguments or local
variables, and the constructor invokes its super-class constructor, the invocation of regis-
terStackable() shall come immediately following the invocation of the super-class con-
structor. In order to identify local variables and arguments by original source code name
in the class file representation, the Core classfile for any classthat contains invocations
of the CoreRegistry.registerStackable() method shall contain the symbolic information that
is produced by common Baseline compilers when the debug flags are enabled. The Core
signature is shown below:

public static void registerStackable(stackable CoreString s);

CoreRegistry.registerBaseline(). The registerBaseline() method shall be invoked as the
second line of executable code within the static initializer associated with a CoreClass if
the CoreClass has any methods to identify as Core-Baseline methods (meaning the meth-
ods can be invoked from the Baseline domain). Thefirst executable line of the static ini-
tializer shall be theinvocation of registerCoreClass(). The Core signature follows:

public static void registerBaseline(CoreString methods);

The methods argument identifies the Core-Baseline methods by listing the name and sig-

nature of each method, separating each method’s description from the others with a
semicolon. For notational convenience, method signatures can be wildcarded using the
asterisk character)(For example, the method represented by the signéto(é-)Vv”

can be abbreviated al®d*". Note that *” represents only the signature. It does not

stand in place of any text from the method’s name.

CoreRegistry.registerCoreClass(). TheregisterCoreClass() method shall be invoked as the

first executable code in the static initializer for a class that intends to be loaded as a Core
Class File. The presence or absence of this method’s invocation within the static initial-
izer of the class is the key indicator of whether this class is intended for the Baseline
domain or for the Core domain. The Core signature is as follows:

public static void registerCoreClass();

CoreRegistry.coerce(). Given that the Core programmer might be dealing with objects
that extend front€oreObject but which look to the Baselirmmpiler like they extend
from java.lang.Object, the Core programmer can coerce such objed@sra®bject by
invoking thestatic coerce() method oforg.rtjwg.CoreRegistry. The Core signature follows:

public static CoreObject coerce(java.lang.Object 0);
Typical usage is to further coerce the result returned froroénee() method to the type

that the Core programmer really expects this object to be. Consider, as an example, the
following code fragment:

Real-Time Core Extensions 77

The Specification

try {
doSomething();

} catch (java.lang.Exception x) {
MyCoreException cx;
cx = (MyCoreException) CoreRegistry.coerce(X);
cx.handleException();

}

The Core class |oader gives special treatment to this particular method, in most cases,
removing dynamic type coercion and checking codein favor of a static check.

CoreRegistry.profiles(). The profiles() method shall return an array of CoreString represent-
ing the collection of all real-time profiles that are present within this Core Execution
Environment. Profile naming conventions serve to differentiate key features of the pro-
files, asfollows:

1. A profile whose name begins with the substringyj-consortium” is considered to
be an official JConsortium profile. The specification for the profile shall have been
formalized by the J Consortium. The J Consortium maintains the officia definition
of the profile and may provide mechanisms to assess conformance of implementa-
tions.

2. All other profiles are considered to be proprietary, defined by particular individuals
or industry organizations. The specification and conformance assessment for these
profiles is handled external to the J Consortium.

3. Any profile whose name ends with the special characteshall disable certain
capabilities that would normally be present in the Core Execution Environment.
Any profile whose name does not end with the special character “-” shall not dis-
able any capabilities that would normally be present in the Core Execution Envi-
ronment. To ensure that a particular Core Execution Environment supports all of
the features of the Core specification, a Core component could verify through
examination of the names of the system'’s profiles that none of the installed profiles
removes any core functionality.

The Core signature for thpeofiles() method follows:

public static CoreString [] profiles();

CoreRegistry.publish(). The publish() method shall publistore_object for access by Base-
line and/or native components. Thblish() method shall allocate and initialize memory
for a private copy of theame CoreString argument and for additional implementation-
defined objects for use in representing this entry withirCtheRegistry’s private data
tables. This private copy of tmame argument shall be allocated within a dedicated
implementation-definedllocationContext. The Core signature is shown below:

public static void publish(CoreString name, CoreObject core_object);

CoreRegistry.unpublish(). Theunpublish() method shall remove the previously published
core object that is identified by itame argument from th€oreRegistry tables and shall
release théllocationContext that was previously dedicated to representing this entry
within the CoreRegistry database. After the entry has been unpublished, subsequent

78

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.17

attempts by the Baseline and/or native domains to lookup the CoreObject known by this
name shall fail. The Core signature is shown below:

public static void unpublish(CoreString name);

The SignalingSemaphore Class

The SignalingSemaphore class extends org.rtjwg.CoreObject. The key difference between
CountingSemaphore and SignalingSemaphore isthat SignalingSemaphore shall not buffer V()
operations. The default (only) constructor shall take no arguments.

SignalingSemaphore.P(). The P() method shall implement a semaphore P operation. Care
shall be taken in the implementation of P() to avoid race conditions between multiple
threads invoking P(), V(), and/or Vall() methods on the same semaphore. The Core-Base-
line _P() method serves the same purpose for the Baseline environment. The Core signa-
tures are shown below:

final public void stackable P();
final public baseline void _P();

SignalingSemaphore.V(). The V() method shall implement a semaphore V operation,
releasing the highest priority longest waiting Core task or Baseline thread that is
blocked on this semaphore. If no tasks or threads are currently blocked on this sema-
phore, the V() method has no effect. Care shall be taken in the implementation of V() to
avoid race conditions between multiple threads invoking P(), V(), and/or Vall() methods
on the same semaphore. The Core-Baseline _V() method serves the same purpose.

The Core signature is shown below:

final public void stackable V();
final public baseline void _V();

SignalingSemaphore.Vall(). The Vall() method shall awaken al Core tasks and Baseline
threads that are blocked on this semaphore. If no tasks or threads are currently blocked
on this semaphore, the Vall() method has no effect. Care shall be taken in the implemen-
tation of Vall() to avoid race conditions between multiple threadsinvoking P(), V(), and/or
Vall() methods on the same semaphore. The Core-Baseline _Vall() method shall serve the
same purpose.

Theimplementation of Vall() shall be constant-time, allowing its use from within atime-
constrained interrupt handler. The work of waking up the various waiting tasks shall be
distributed between the various P() operations that are waiting to be signaled.

The Core signatures are shown below:
final public void stackable Vall();

final public baseline void _Vall();

SignalingSemaphore.numWaiters(). The numWaiters() method shall report how many
tasks or threads are waiting or blocked on this semaphore. The Core-Baseline
_numWaiters() method serves the same purpose.

Real-Time Core Extensions 79

The Specification

3.17.18

The Core signature is shown below:

final public int stackable numWaiters();
final public baseline int _numWaiters();

The CountingSemaphore Class

The CountingSemaphore class shall extend org.rtjwg.CoreObject. The key difference
between CountingSemaphore and SignalingSemaphore isthat CountingSemaphore buffers Vv
operations. The default (only) constructor shall take no arguments.

CountingSemaphore.P(). The P() method is a semaphore P operation. If the value of the
semaphore’s count field is greater than zero, the P operation shall decrement the count.
If the value of the semaphore’s count field equals zero, the currently executing task or
thread shall block until some other task or thread performs a V operation on this same
counting semaphore. Care shall be taken in the implementatR{htofavoid race con-
ditions between multiple threads invokiR) and/orV() methods on the same sema-

phore. The Core-Baselin®() method serves the same purpose. The Core signatures are
shown below:

final public void stackable P();
final public baseline void _P();

CountingSemaphore.V(). TheV() method represents a semaphore V operation. If a core
task or Baseline thread is currently waiting to lock this semaphore, this method shall
awaken the highest priority, longest waiting task that is blocked on this semaphore. Oth-
erwise, this operation shall increment the value of the count field associated with this
semaphore. Care shall be taken in the implementatig() af avoid race conditions
between multiple threads invokifg) andV() methods on the same semaphore. The
Core-Baseline V() operation serves the same purpose. The Core signatures are shown
below:

final public void stackable V();
final public baseline void _V();

CountingSemaphore.numWaiters(). The numWaiters() method shall report how many
tasks or threads are blocked waiting on this semaphore. The Core-Baseline
_numWaiters() method shall serve the same purpose. The Core signatures are shown
below:

final public int stackable numWaiters();
final public baseline int _numWaiters();

CountingSemaphore.count(). Thecount() method shall report the current value of this
semaphore’s internal count field. The Core-Baselmeant() method shall serve the
same purpose. The Core signature is shown below:

final public int stackable count();
final public baseline int _count();

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.19

3.17.20

The Mutex Class

The Mutex classis used like a semaphore to enforce mutual exclusion. The key distinc-
tion between semaphores and a Mutex object is that the Mutex class shall implement pri-
ority inheritance. The task or thread that locks a Mutex object shall continue to own
mutual exclusion until that same task or thread unlocks the Mutex object. If some higher
priority task or thread attemptsto lock the same Mutex object while it is aready locked
by alower priority task or thread, the priority inheritance mechanism shall automati-
cally elevate the priority of the original lock holder to the level of the higher priority
task or thread that is requesting access to the lock. The implementation of priority inher-
itance shall be transitive, meaning that active priority of the task holding the lock is
always at least as high as the highest priority of any task that iswaiting for entry into the
locked resource. If a CoreTask aborts or stops while it is holding a Mutex lock, the Core
Execution Environment shall automatically release the lock.

Mutex Constructors. The default and only constructor for Mutex takes no arguments.

Mutex.lock(). The lock() method shall obtain the lock associated with this Mutex object,
blocking the current task until other tasksrelease their lock if necessary. The Core-Base-
line _lock() method serves the same purpose. The Core signatures are shown bel ow:

final public void stackable lock();
final public baseline void _lock();

Mutex.unlock(). The unlock() method shall release a previously obtained lock. If the lock
isnot currently held by the current task or thread, this method throws a previoudly allo-
cated instance of CorelllegalMonitorStateException. The Core-Baseline _unlock() method
serves the same purpose. The Core signatures are shown below:

final public void stackable unlock() throws CorelllegalMonitorStateException;
final public baseline void _unlock() throws CorelllegalMonitorStateException;

The Configuration Class

The Core Execution Environment can be configured in multiple distinct forms. The sys-
tem integrator shall set configuration preferences by modifying the implementation of
the Configuration class.

The Configuration class extends org.rtjwg.CoreObject. To configure the Core Execution
Environment, the system integrator edits the constants defined in this class. When defin-
ing these variables, the system integrator must take care to ensure that the requested
configuration is consistent with the capabilities of the underlying hardware.

It isimplementation-defined which combinations of configuration parameters are sup-
ported by each Core Execution Environment. The constant numbers programmed into
the Configuration class are suggestions to the Core Execution Environment. Programmers
should never assume that the suggested parameter values have been honored. In all
cases, APIs are provided to allow Core componentsto query the Core Execution Envi-
ronment to discover how it is actually configured.

Real-Time Core Extensions 81

The Specification

Configuration.tick_duration. tick_duration is the requested number of nanoseconds
between timer ticks. The Core Execution Environment shall round up all timeouts and
time slice requests to the nearest timer tick. The Core declaration for thisvariableis:

public static final int tick_duration;

Configuration.ticks_per_slice. ticks_per_slice represents the desired number of timer ticks
in each time dlice. If tick_duration equals 1,000 and ticks_per_slice equals 10, the system
integrator is asking for 10 microseconds per time slice. Special significanceisgivento a
value of zero. If ticks_per_slice() is set to zero, thisrepresents adesireto disable al time
dlicing for this configuration of the Core Execution Environment. The Core declaration
for thisvariableis:

public final static int ticks_per_slice;

Configuration.uptime_precision. uptime_precision represents the desired resolution of the
result returned from the upTime() method. If uptime_precision has value 100, this means
that the result returned from uptime() shall be accurate to within plus or minus 100 nano-
seconds. The Core declaration for uptime_precision is shown below:

public static final int uptime_precision;

Configuration.default_stack_size. default_stack_size representsthe default size, measured
in 32-bit words, of CoreTask. If default_stack_size has value 1,024, this means that unless
specified to the contrary, each CoreTask is started up with a stack size of 1,024 words.
The Core declaration for default_stack_size is shown below:

public static final int default_stack_size;

Configuration.stack_overflow_checking. stack_overflow_checking represents whether or

not this Core Execution Environment is configured to perform stack overflow checking.

If this variable’s value igue, stack overflow checking shall be enabled. Otherwise,
stack overflow checking should, but need not, be disabled. A conforming implementa-
tion of the Core Execution Environment must support the option of performing stack
overflow checking. A conforming implementation of the Core specification need not
honor the request to disable stack overflow checking. The Core declaration for
stack_overflow_checking is shown below:

public static final boolean stack_overflow_checking;

Configuration.min_core_priority. min_core_priority represents the intended system-level
priority that corresponds to the Core task priority level 0. The Core declaration for this
variable is shown below:

public static final int min_core_priority;

Configuration.system_priority_map. system_priority_ map represents the desired mapping
from Core priorities to underlying operating system priorities. This array has 128
entries. The first entry in this array is the system priority level at which Core priority-1
tasks should execute. The second entry in this array is the system priority level at which
Core priority-2 tasks should execute, and so on. Note that a conforming implementation
of the Core Execution Environment need not honor a configuration request to define the
system priority map. The Core declaration for this variable is shown below:

82

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.21

public static final int [] system_priority _map;

Configuration.little_endian. If little_endian is true, this represents arequest to treat all
IOPort classes as little-endian channels. To say that the channel is little endian means
that the byte whose addressis the same as the address of a multi-byte value stored at the
same location represents the least-significant byte of that larger value. If little_endian is
false, this represents a request to treat all IOPort classes as big-endian channels. To say
that the channel is big endian means that the byte whose address is the same as the
address of amulti-byte value stored at the same location represents the most-significant
byte of that larger value. The Core declaration for this variable is shown below:

public static final boolean little_endian;

The Time Class

Mainly as an aid to enhance source code readability, the Time class provides unit con-
versions between common units of time measurement. The standard representation of
time is a 64-bit long integer, representing nanoseconds.

The Time class extends CoreObject. This classis not designed to be instantiated. Rather,
Time provides avariety of servicesin the form of static methods.

Time.tickDuration(). This method shall return the number of nanoseconds between con-
secutive ticks of the Core Execution Environment’s timer. Note that the value returned
from this method might not equ@bnfiguration.tick_duration in cases that the system inte-
grator’s request could not be satisfied. The Core signature follows:

public static int tickDuration();

Time.uptimePrecision(). TheuptimePrecision() method shall return the precision of the
uptime() method, measured in nanoseconds. For examplginiePrecision() returns 100,

this means that the result returned fraptime() is accurate to within plus or minus 100
nanoseconds. Note that the value returned from this method might noCenfigata-
tion.uptime_precision in cases that the system integrator’s request could not be satisfied.
The Core signature follows:

public static int uptimePrecision();

Time.day(). Theday() method shall return the number of nanosecondsayndays,

throwing a previously allocated instanceGofeArithmeticOverflowException if the num-

ber of nanoseconds is too large to be represented in a 64-bit integer. The Core signature
is shown below:

public static long day(int day) throws CoreArithmeticOverflowException;
Time.h(). Theh() method shall return the total number of nanosecontdshurs, throw-
ing a previously allocated instanceQufreArithmeticOverflowException if the number of

nanoseconds is too large to be represented in a 64-bit integer. The Core signature is
shown below:

public static long h(int h) throws CoreArithmeticOverflowException;

Real-Time Core Extensions 83

The Specification

Time.hertz(). The hertz() method shall return the number of nanoseconds in a period cor-
responding to freq Hertz, throwing a previously allocated instance of CoreArithmeticOv-
erflowException if the number of nanoseconds istoo large to be represented in a 64-bit
integer. The period is rounded down. The Core signature is shown below:

public static long hertz(int freq) throws CoreArithmeticOverflowException;

Time.m(). The m() method shall return the number of nanosecondsin m minutes, throw-
ing a previously allocated instance of CoreArithmeticOverflowException if the number of
nanoseconds is too large to be represented in a 64-bit integer. The Core signature is
shown below:

public static long m(int m) throws CoreArithmeticOverflowException;

Time.ms(). The ms() method shall return the number of nanoseconds in ms milliseconds,
throwing a previoudly allocated instance of CoreArithmeticOverflowException if the num-
ber of nanosecondsistoo large to be represented in a 64-bit integer. There are two ver-
sions of this method. The Core signatures are shown below:

public static long ms(int ms) throws CoreArithmeticOverflowException;
public static long ms(long ms) throws CoreArithmeticOverflowException;

Time.ns(). The ns() method shall return its ns argument. This method serves no real pur-
pose other than facilitating the creation of self-documenting code. The Core signature is
shown below:

public static long ns(long ns);
public static long ns(int ns);

Time.s(). The s() method shall return the number of nanoseconds in s seconds, throwing
apreviously allocated instance of CoreArithmeticOverflowException if the number of nano-
seconds is too large to be represented in a 64-bit integer. The Core signature is shown
below:

public static long s(long s) throws CoreArithmeticOverflowException;
public static long s(int s) throws CoreArithmeticOverflowException;

Time.toString(). The toString() method shall return a string representation of its ns argu-
ment according to the templateldddd hh:mm:ss.decimal” where d represents days,
h represents the total number of whole hours, m represents the total number of whole
minutes, s represents the total number of whole seconds, and decimal represents the
fractional number of seconds. All numbers are represented in English decimal notation.
To facilitate report formatting, the various fields are fixed width. In particular:

d: 5 characters (right justified)

h: 2 characters (right justified, O filled)
m: 2 characters (right justified, O filled)
s: 2 characters (right justified, O filled)

decimal: 9 characters (left justified, O filled, rounded in the last digit to an even number if
the tenth digit equals 5 and all remaining digits equal 0)

A side effect of invoking toString() isto create a new CoreString object in the current alo-
cation context. The memory for this CoreString object shall become eligiblefor recycling

84

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.22

when the corresponding allocation context is released. The Core signature is shown
below:

public static CoreString toString(long ns);

Time.uptime(). The uptime() method shall return the number of nanoseconds since the
system was last restarted. The Core signature is shown below:

public static long uptime();

Time.us(). Theus() method shall return the number of nanoseconds represented by itsus
argument, which is expressed in terms of microseconds, throwing a previously allocated
instance of CoreArithmeticOverflowException if the number of nanosecondsistoo large to
be represented in a 64-bit integer. The Core signature is shown below:

public static long us(long us) throws CoreArithmeticOverflowException;
public static long us(int us) throws CoreArithmeticOverflowException;

The Unsigned class

One shortcoming in the Java language isits lack of built-in support for unsigned inte-
gers. This section describes the API for the Unsigned class, a Core library that provides
support for traditional unsigned arithmetic. This classis not intended to be instantiated.
Instead, the services are provided in the form of static methods.

Unsigned.compare(). There are four variants of the compare() method, targeted to the
four different integer sizes that might be used to represent unsigned integers. In all
cases, the compare() method shall return -1 if itsfirst argument is smaller than the sec-
ond, O if the two arguments are equal, and 1 if its first argument islarger than the sec-
ond. All comparisonstreat their arguments as if they are encoded according to unsigned
integer conventions.

The Core signatures for the four variants of compare() follow:

byte b1, byte b2);
short s1, short s2);
intil, inti2);

long 11, long 12);

static int compare
static int compare
static int compare
static int compare

N N~ o~

Unsigned.ge(). The ge() method shall return true if itsfirst argument is greater than or
equal to its second argument, and false otherwise. The magnitude comparison assumes
both arguments are encoded according to unsigned integer conventions. There are four
variants of ge(), with signatures as shown below, to address each of the four different
integer sizes that might be used to represent unsigned integer quantities.

static boolean ge(byte b1, byte b2);
static boolean ge(short s1, short s2);
static boolean ge(int i1, int i2);

static boolean ge(long 11, long 12);

Unsigned.gt(). The gt() method shall return true if itsfirst argument is greater than its sec-
ond argument, and false otherwise. The magnitude comparison assumes both arguments
are encoded according to unsigned integer conventions. There are four variants of gt(),

Real-Time Core Extensions 85

The Specification

with signatures as shown below, to address each of the four different integer sizes that
might be used to represent unsigned integer quantities.

static boolean gt(byte b1, byte b2);
static boolean gt(short s1, short s2);
static boolean gt(int i1, int i2);

static boolean gt(long 11, long 12);

Unsigned.le(). The le() method shall return true if itsfirst argument islessthan or equal to
its second argument, and false otherwise. The magnitude comparison assumes both
arguments are encoded according to unsigned integer conventions. There are four vari-
ants of le(), with signatures as shown below, to address each of the four different integer
sizes that might be used to represent unsigned integer quantities.

static boolean le(byte b1, byte b2);
static boolean le(short s1, short s2);
static boolean le(int i1, int i2);

static boolean le(long 11, long 12);

Unsigned.lt(). The It() method shall return true if its first argument isless than its second
argument, and false otherwise. The magnitude comparison assumes both arguments are
encoded according to unsigned integer conventions. There are four variants of It(), with
signatures as shown below, to address each of the four different integer sizes that might
be used to represent unsigned integer quantities.

static boolean lt(byte b1, byte b2);
static boolean lt(short s1, short s2);
static boolean It(int i1, int i2);

static boolean lt(long 11, long 12);

Unsigned.eq(). The eq() method shall returntrue if itsfirst argument is equal to its second
argument, and false otherwise. The magnitude comparison assumes both arguments are
encoded according to unsigned integer conventions. There arefour variants of eq(), with
signatures as shown below, to address each of the four different integer sizes that might
be used to represent unsigned integer quantities.

byte b1, byte b2);
short s1, short s2);
intil, inti2);

long 11, long 12);

static boolean eq
static boolean eq
static boolean eq
static boolean eq

_ = ==

Unsigned.neq(). The neq() method shall return true if itsfirst argument is not equa toits
second argument, and false otherwise. The magnitude comparison assumes both argu-
ments are encoded according to unsigned integer conventions. There are four variants of
neq(), with signatures as shown below, to address each of the four different integer sizes
that might be used to represent unsigned integer quantities.

static boolean neq(byte b1, byte b2);
static boolean neq(short s1, short s2);
static boolean neq(int i1, int i2);

static boolean neq(long 11, long 12);

86

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

Unsigned.toByte(). The toByte() method shall coerce its unsigned integer argument to an
unsigned 8-bit quantity, throwing a previously alocated instance of CoreUnsignedCoer-

cionException if the number to be coerced is greater than 255 (28 - 1). There are four vari-
ants of toByte(), with signatures as shown below, to address each of the four different
integer sizes that might be used to represent unsigned integer quantities.

static byte toByte(byte b);

static byte toByte(short s) throws CoreUnsignedCoercionException;
static byte toByte(int i) throws CoreUnsignedCoercionException;
static byte toByte(long) throws CoreUnsignedCoercionException;

Unsigned.toShort(). The toShort() method shall coerce its unsigned integer argument to a
16-bit quantity, throwing a previously allocated instance of CoreUnsignedCoercionExcep-

tion if the number to be coerced is greater than 65,535 (216 - 1). There are four variants
of toShort(), with signatures as shown below, to address each of the four different integer
sizes that might be used to represent unsigned integer quantities.

static short toShort(byte b);

static short toShort(short s);

static short toShort(int i) throws CoreUnsignedCoercionException;
static short toShort(long 1) throws CoreUnsignedCoercionException;

Unsigned.tolnt(). Thetolnt() method shall coerceits unsigned integer argument to a 32-bit
guantity, throwing a previously alocated instance of CoreUnsignedCoercionException if

the number to be coerced is greater than 4,294,967,295 (232 - 1). There are four variants
of tolnt(), with signatures as shown below, to address each of the four different integer
sizes that might be used to represent unsigned integer quantities.

static int tolnt(byte b);

static int tolnt(short s);

static int tolnt(int i);

static int tolnt(long 1) throws CoreUnsignedCoercionException;

Unsigned.toLong(). The toLong() method shall coerce its unsigned integer argument to a
64-bit quantity. Note that there is no possibility of overflow when coercing to 64-bit
unsigned quantities. There are four variants of toLong(), with signatures as shown bel ow,
to address each of the four different integer sizes that might be used to represent
unsigned integer quantities.

static long toLong(byte b);
static long toLong(short s);
static long toLong(int i);
static long toLong(long I);

Unsigned.toString(). The toString() method shall take an unsigned integer asits argument
and return a CoreString object representing the value of its supplied argument in
unsigned decimal representation. There are four variants of toString(), with signatures as
shown below, to address each of the four different integer sizes that might be used to
represent unsigned integer quantities. The CoreString object returned from toString() is
allocated within the current task’s allocation context.

Real-Time Core Extensions 87

The Specification

3.17.23

static CoreString toString
static CoreString toString
static CoreString toString
static CoreString toString

byte b);
short s);
int iy;
long I);

——0—0—3

Unsigned.toHexString(). The toHexString() method shall take an unsigned integer asits
argument and return a CoreString object representing the value of its supplied argument

in hexadecimal representation. The length of the resulting CoreString object shall depend
on the type (not the value) of the argument, padding with zero as appropriate. Alpha-
betic characters in the resulting string shall be lower case. There are four variants of
toHexString(), with signatures as shown below, to address each of the four different inte-
ger sizesthat might be used to represent unsigned integer quantities. The CoreString

object returned from toHexString() is allocated within the current task’s allocation con-
text.

static final CoreString toHexString
static final CoreString toHexString
static final CoreString toHexString
static final CoreString toHexString

byte b); /I Returns 1-character string
shorts); // Returns 2-character string
inti); /I Returns 4-character string
long I); Il Returns 8-character string

————y

The CoreTask Class

The CoreTask class shall exten@oreObject. This class represents the analog of
java.lang.Thread within the Core domain.

To create a Core task, the Core programmer ext@ord$ask, providing an implemen-
tation of thework() method. To start the task’s execution as an independently executing
thread, the application invokes t@ereTask object’sstart() or _start() methods.

Upon invoking thestart() or _start() methods of a newly construct&dreTask object, the

Core Execution Environment shall initiate execution of the task. Eorefiask object,

this causes theork() method to be invoked. Once tiwerk() method terminates, the
CoreTask has completed its execution. As long asGbreTask.work() method continues

to execute, additional increments of CPU time are dedicated toward execution of this
method according to the fixed priority round-robin scheduling system that is part of the
Core Execution Environment.

There are two subclassesGufreTask, namedSR_Task andSporadicTask, which represent
special forms of real-time tasks. FeporadicTask andISR_Task, invocation of thestart()

or _start() methods makes the task eligible to be triggered for execution by the corre-
sponding asynchronous event.

CoreTask Constructor. When aCoreTask is created, it is hecessary to identify several
characteristics of the task, as listed below:

1. Whether or not asynchronous event handling otherabat{) andstop() is enabled
for this core task.
The size of this task’s run-time stack.
The size and type of the default allocation context for@hisTask.

4. The task’s Base Priority.

88

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

The signature of the CoreTask constructor is shown here:

public CoreTask(ATCEventHandler handler, long stack_size,
long allocation_size, CoreString allocation_block_name, int priority)
throws CoreBadPriorityException, CoreEmbeddedConflictException;

If handler isnull, this CoreTask shall ignore asynchronous event signaling other than

abort() and stop() requests. Otherwise, theinitial event handler for this task isrepresented

by handler. The stack_size argument specifies the number of 32-bit words on the task’s
run-time stack. I6tack_size equals zero, the task’s stack will be the default stack size.
Theallocation_size argument specifies the number of bytes in the task’s defitnation-
Context. If allocation_size equals zero, the defadliocationContext for this task is variable,
growing at run time based on demand and availability of memory. The
allocation_block_name argument specifies the name of the block of memory within which
the AllocationContext’s memory shall be located. If this argument equallsthe Core
Execution Environment shall place th#ocationContext’s memory region in the host
computer system’s main memoryallbcation_block_name specifies an allocation region
that does not exist within this Core Execution Environment, or if the Core Execution
Environment chooses (for implementation-defined reasons) to not permit this task to
use the named memory region as its default allocation region, the constructor shall
throw a previously allocated instanceGafeEmbeddedConflictException. Thepriority
argument specifies the Base Priority of @ueeTask object. The constructor throws a
previously allocated instance G6reBadPriorityException if the priority argument is out-

side the range of valid Core task priorities.

Static Methods.

CoreTask.currentTask(). ThecurrentTask() method shall return a reference to the task that
is currently executing in the Core Execution Environment. The Core signature is shown
below:

public static CoreTask currentTask();

CoreTask.defaultStackSize(). The defaultStackSize() method shall return the default stack
size, specified in terms of 32-bit words. Note that the value returned from this method
might not equaConfiguration.default_stack_size in cases that the system did not honor the
system integrator’s request. The Core signature is shown below:

static long defaultStackSize();

CoreTask.maxBaselinePriority(). ThemaxBaselinePriority() method shall return the system-
level priority that corresponds to the top Baseline thread priority. For example, if
java.lang.Thread priority number 10 corresponds to the host operating system’s priority
number 12, this method shall return 12. The Core signature is shown below:

public static int maxBaselinePriority();

CoreTask.maxCorePriority(). ThemaxCorePriority() method shall return the system-level
priority that corresponds to the top Core priority. For example, if core priority number
128 corresponds to system priority level 140, this method shall return 140. The Core
signature is shown below:

Real-Time Core Extensions 89

The Specification

public static int maxCorePriority();

CoreTask.maxSystemPriority(). The maxSystemPriority() method shall return the maxi-
mum priority number for identifying the system-level priorities supported by the host
operating system. For example, if the host operating system supports priorities num-
bered from 0 to 255, this method returns 255. The Core signature is shown below:

public static int maxSystemPriority();

CoreTask.minBaselinePriority(). The minBaselinePriority() method shall return the system-
level priority that corresponds to the bottom Baseline thread priority. For example, if
java.lang.Thread priority number 1 corresponds to the host operating system’s priority
number 3, this method shall return 3. The Core signature is shown below:

public static int minBaselinePriority();

CoreTask.minCorePriority(). The minCorePriority() method shall return the system-level
priority that corresponds to the bottom Core priority. For example, if core priority num-
ber 0 corresponds to system priority level 13, this method shall return 13. The Core sig-
nature is shown below:

public static int minCorePriority();

CoreTask.minSystemPriority(). TheminSystemPriority() method shall return the minimum
priority number for identifying the system-level priorities supported by the host operat-
ing system. For example, if the host operating system supports priorities numbered from
0 to 255, this method shall return 0. The Core signature is shown below:

public static int minSystemPriority();

CoreTask.numinterruptPriorities(). The numinterruptPriorities() method shall return the
number of priorities that are dedicated to interrupt handling. The interrupt-level priori-
ties are always the highest priorities in the systemunifinterruptPriorities() returns 12,

for example, Core priorities 117 through 128 are known to represent interrupt-level pri-
orities.

public static final int numinterruptPriorities();

CoreTask.stackOverflowChecking(). The stackOverflowChecking() method shall returtiue

if and only if the Core Execution Environment is configured to perform stack overflow
checking. Note that conforming Core Execution Environments might run with stack
overflow checking enabled evenQénfiguration.stack_overflow_checking is false. The

Core signature is shown below:

public static boolean stackOverflowChecking();

CoreTask.systemPriorityMap(). The systemPriorityMap() method shall return an integer

array with 128 entries in it, representing the system priorities to which each of the Core
priority levels correspond. The first entry in this array is the system priority level at
which Core priority-1 tasks execute. The second entry in this array is the system priority
level at which Core priority-2 tasks execute, and so on. The returned array is a private
copy of this information, allocated in the currently actilecationContext. The Core
signature is shown below:

90

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

public static int [] systemPriorityMap();

CoreTask.ticksPerSlice(). The ticksPerSlice() method shall return the number of timer
ticks that the system is dedicating to each time slice of a CoreTask. If ticksPerSlice()
returns zero, thisindicates that this Core Execution Environment is configured to per-
form no time dlicing. Note that the result of this method might not equal Configura-
tion.ticks_per_slice in case the Core Execution Environment does not honor the system
integrator’s request. The Core signhature is shown below:

static public int ticksPerSlice();
Instance Methods.

CoreTask.abort(). Theabort() method shall caugkis Core task to abort execution of the

most recent invocation of itgork() method. The implementation affort() shall support

the same semantics as the implementation of asynchronous transfer of control. This
means thaabort() requests are deferred during execution of code that defers asynchro-
nous event handling. Even Core tasks that are constructed with asynchronous event han-
dling disabled shall abort themselves in response to invocation of the dbak(s

method.

public final void abort();

CoreTask.abortWorkException(). The abortWorkException() method shall return a refer-
ence to a previously allocat&dopedThrowable object that is provided for the purpose of
aborting thevork() method associated withis CoreTask object. The scope for this
exception shall belong to that part of the Core Execution Environment that irnkiskes
task’swork() method. The Core signature for this method is shown below:

public final ScopedThrowable abortWorkException()

To abort the currently executing tasiisrk() method, the Core programmer might exe-
cute the following:

throw CoreTask.currentTask().abortWorkException();

CoreTask.asyncHandler(). TheasyncHandler() method shall atomically set the asynchro-

nous event handler for threTask, returning a reference to the previously established
asynchronous event handler. If this task was constructed without an asynchronous event
handler, asynchronous event handling is permanently disabled for this task. In that case,
asyncHandler() throws a previously allocated instanceCofeATCEventsignoredException

instead of changing the asynchronous event handler. The Core signature is shown
below:

public final ATCEventHandler asyncHandler(ATCEventHandler new_handler)
throws CoreATCEventsignoredException;

CoreTask.join(). Thejoin() method causes the current task to block thiditask termi-

nates execution. F68R_Task andSporadicTask, termination means that the tasétty()
method has been invoked and completely processedoralask, termination means
either that the task'stop() method has been invoked and completely processed, or that
the task has returned from itsrk() invocation. The Core signature is shown below:

Real-Time Core Extensions 91

The Specification

public final void join();

CoreTask.resume(). If this task is currently in a suspended state (because of a prior invo-
cation of the suspend() method), the resume() method shall cause this task’s Base Priority

to be restored to the value it held at the moment the tauslp'snd() method was

invoked, or to the new value specified by the most recent invocation of thes&BK's
ority() method during the time this task was suspended. If this task is not currently in a
suspended state, thesume() method shall have no effect. The Core signature is shown
below:

public final void resume();

CoreTask.setPriority(). The setPriority() method shall set the Base Priority for the given
task, performing a security check to see if the current thread is allowed to modify the
priority of thisCoreTask. This method shall throw a previously allocated instance of
CoreSecurityException if the current thread is not allowed to modify the priority of the
specified task and throws a previously allocated instan€ereBadPriorityException if

the requested priority is not in the range of acceptable core priorities. If this task is cur-
rently executing within a priority ceiling context for which the ceiling priority is lower
than the value of this method invocationéw_priority argument, the effect of ttsetPri-

ority() method shall be deferred until after this task leaves the priority ceiling context.
The Core signature is shown below:

public final void setPriority(int new_priority) throws
CoreBadPriorityException, CoreSecurityException, CorelllegalMonitorStateException;

CoreTask.signalAsync(). ThesignalAsync() method shall caugbis task to invoke its cur-

rent event handler, passiA§CEvent e as an argument. If the event handler returns, con-
trol resumes withirthis task at the instruction that follows the point at which the
asynchronous event handling began. If the event handler throws an exception, it is as if
the exception was thrown by whatever code was executing whthi®oreTask when

control was interrupted by asynchronous event handlinbis ifask was configured to

ignore asynchronous evensgnalAsync() throws a previously allocated instance of
CoreATCEventslgnoredException. The Core signature is shown below:

public final void signalAsync(ATCEvent e) throws CoreATCEventsignoredException;

If this task is executing code contained withifinally statement, or is executing code
contained within aynchronized block of any object that implemenitomic at the
momentsignalAsync() is invoked, handling of the asynchronous event is deferred until
control leaves that context.

We say arATCEvent object is pending on a particular thread if that object has been
passed as an argument to a completed invocation of that thsigaassync() method

but the thread has not yet begun to execut&TiE&ventHandler.handleATCEvent()

method. In the case that this thread has received a previous invocaignalasync()

and is still waiting to process that previous request because the thread is still executing
within a deferral region (fnally statement osynchronized statement associated with an
Atomic object), theATCEvent argument osignalAsync() will be placed on a queue of

pending asynchronous transfer of control events associated with this thread unless this
same event is already pending for this or some other thread. If this event is already

92

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

pending on some thread, the new signalAsync() invocation is simply ignored. (To assure
that no asynchronously signaled events go ignored, application programmers should
structure their software so that each event corresponds to a different thread, and that the
event is not signaled a second time to that thread until after the thread has processed the
first signaling of the event.) Pending events are processed in FIFO order as soon asthis
thread leavesits deferral region. Thisresults in nesting of the asynchronous transfer of
control event handlers, with the handler for the most recently signaled event nested
within the others.

If this task is currently blocked (on entry to a Mutex.lock(), or entry to a synchronized con-
text, or a semaphore P() operation), or is suspended in a CoreTask.sleep(), Core-
Task.sleepUntil(), CoreTask.join(), or CoreObject.wait() invocation, the suspending operation
isinterrupted by the signalAsync() invocation. If the event handler returns, the blocking
operation is restarted. This means that this CoreTask loses its place in any FIFO queue
associated with the blocking operation.

CoreTask.sleep(). The sleep() method shall cause the current task to sleep a minimum of
sleep_time nanoseconds. The Core signature is shown below:

public static sleep(long sleep_time);
CoreTask.sleepUntil(). The sleepUntil() method shall cause the current task to sleep until

the specified time arrives, where time is measured according to Time.uptime(). The Core
signature is shown below:

public static sleepUntil(long alarm_time);
CoreTask.stackDepth(). The stackDepth() method returns the number of words currently
in use on this task’s run-time stack. The Core signature is shown below:

public final int stackDepth();
CoreTask.stackSize(). ThestackSize() method returns the total number of words allocated
to this task’s run-time stack. The Core signature is shown below:

public final int stackSize();
CoreTask.start(). Thestart() method shall start the Core task, making it ready for execu-
tion. Note that certain subclasse<ofeTask (e.g.SporadicTask) do not begin to run
immediately following invocation of th&tart() method. Rather, these subclasseSood-

Task begin execution at some point following invocation ofdfag() method, in
response to an asynchronous trigger invocation. The Core signature is shown below:

final public void start();
CoreTask._start(). The_start() method shall start up a Core task (in the same way that the

CoreTask.start() method starts up @oreTask) from the Baseline domain. The Core signa-
ture is shown below:

final public baseline void _start();

CoreTask.stop(). Thestop() method shall render th@oreTask inoperable, making it no
longer eligible for dispatching by the Core Execution Environmetitisifask is execut-

Real-Time Core Extensions 93

The Specification

3.17.24

ing its work() method when stop() is invoked, this method implements the equivalent of
CoreTask.abort() followed by whatever additional work is required by the semantics of

the stop() method. Following invocation of the stop() method, subsequent invocations of
start() have no effect. If the CoreTask is running (or suspended) when the stop() method is
invoked, all finally clauses associated with nested execution of try statements by this
CoreTask are executed, enabling release of al synchronization locks held by the task. If
the core task is executing within an “Atomic Synchronized” region (See Section
3.17.11), abortion of th@oreTask is deferred until after the Atomic Synchronized region
completes its execution. Similarly, if the core task is executing the bodijnalfyestate-
ment, abortion of the core task is deferred until aftefiibly statement has executed to
completion. The Core signature is shown below:

public void stop();

CoreTask.suspend(). Thesuspend() method shall temporarily set the Base Prioritshisf

task to the special Never Scheduled Priority level. Assuminghibaask is not cur-

rently inheriting a higher priority level, this caudks task to be put to sleep until it is
subsequently awakened by some other task’s invocation mstinee(). If, however, the

task holds a synchronization lock that is required by some other task, this task will con-
tinue to run at its active priority, as determined by the corresponding lock’s priority
inversion avoidance mechanism (either priority inheritance or immediate priority ceil-
ing). The Core signature is shown below:

public final void suspend();

CoreTask.systemPriority(). The systemPriority() method shall return the system-level pri-
ority that corresponds tbis Core task’s priority level. For exampletlifs real-time core

task is running at host operating system priority 23, regardless of what core priority this
might correspond to, this method shall return 23. The Core signature is shown below:

public final int systemPriority();

CoreTask.work(). Thework() method shall be invoked by the Core Execution Environ-
ment to do the work of this task. The default implementation ofithe) method sim-

ply returns void. Normally, the Core programmer will override this default
implementation with an appropriate replacement. The Core signature is shown below:

public void work();

CoreTask.yield(). Theyield() method shall cause the currently executing Core task to
yield the remainder of its time slice to another Core task of equal priority. If no other
Core tasks of equal priority are ready to run,yibld() method shall have no effect. The
Core signature is shown below:

final public void yield();

The ISR_Task Class

ThelSR_Task class extend8oreTask and implementatomic. This class is used to imple-

ment interrupt service routines. Wi8R_Task objects, the associated work is triggered

by physical or software interrupts. The work ofl8R_Task is executed as part of an

interrupt service routine rather than an operating system thread. Mi8&plask

objects may be registered to service the same interrupt event. Each time the shared inter-

94

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

rupt is triggered, the Core Execution Environment shall invoke the work() methods asso-

ciated with each of the interrupt handlers in sequence, ordered according to the priority

of the ISR_Task objects that represent the respective interrupt handlers with higher prior-

ity ISR_Task objects serviced before lower priority ISR_Task objects. Following comple-

tion of each ISR_Task’s work() method, the Core Execution Environment shall invoke the
ISR_Task’s serviced() method to determine whether the interrupt has been completely ser-
viced. IfISR_Task.serviced() returngrue, the Core Execution Environment shall consider
interrupt processing done for this particular trigger, and shall not invoke the remaining
lower priority ISR_Task objects’work() methods for this particular trigger.

ISR_Task Constructor. When anSR_Task is created, it is necessary to identify several
characteristics of the task, as listed below:

1. The size of this task’s run-time stack.

2. The size and type of the default allocation context forGhigTask.

3. The task’s Base Priority.

4. The number of the interrupt that is to trigger execution ofi#sTask.

The signaturef thelSR_Task constructor is shown here:

public ISR_Task(long stack_size, long allocation_size,
CoreString allocation_block_name, int priority, int interrupt_no)
throws CoreBadPriorityException, CoreEmbeddedConflictException;

Thestack_size argument specifies the number of words on the task’s run-time stack. If
stack_size equals zero, the task’s stack will be the default stack sizealld¢eion_size
argument specifies the number of bytes in the task’s defénchitionContext. If

allocation_size equals zero, the defaudlliocationContext for this task is variable, growing

at run time based on demand and availability of memoryalldeation_block_name
argument specifies the name of the block of memory within whichillgeationContext's
memory shall be located. If this argument equallsthe Core Execution Environment
shall place thdllocationContext's memory region in the host computer system’s main
memory. Ifallocation_block_name specifies an allocation region that does not exist within
this Core Execution Environment, or if the Core Execution Environment chooses (for
implementation-defined reasons) to not permit this task to use the named memory
region as its default allocation region, the constructor shall throw a previously allocated
instance ofCoreEmbeddedConflictException. Thepriority argument specifies the Base Pri-
ority at which thdSR_Task’s work() method executes each time the corresponding inter-
rupt is triggered. Thaterrupt_no argument specifies the number of the interrupt that is
to trigger execution of thilSR_Task’s work() method. Ifinterrupt_no equals -1, this

ISR_Task object is not bound to a hardware interrupt, and can only be triggered by soft-
ware. The constructor throws a previously allocated instanCereBadPriorityException

if the priority argument is outside the range of valid Core task priorities or is lower than
the interrupt priority of the interrupt that is to trigger execution of this interrupt service
routine. There is no lower bound on this task’s priority ifithezrupt no argument

equals -1. The constructor thro@sreEmbeddedConflictException if the Core Execution
Environment cannot bind thiSR_Task to the requested interrupt number.

ISR_Task.serviced(). If multiple ISR_Task objects share a single interrupt, the Core Exe-
cution Environment shall invoke thwrk() methods for these tasks in order of decreas-

Real-Time Core Extensions 95

The Specification

ing priority. If multiple ISR_Task objects of the same priority are bound to the same

interrupt number, their respective work() methods shall be executed in the order that

these ISR_Task objects were bound to the corresponding interrupt (by invocation of the
ISR_Task’s arm() method). Following completion of eawrk() method, the Core Execu-
tion Environment shall invoke that same taselwiced() method to determine if the
interrupt is considered to have been completely serviced. If a given task tefirns

from itsserviced() method, this indicates that the interrupt has been completely serviced
and the Core Execution Environment shall not invoke any additiBRalask.work()
methods for this particular interrupt trigger. The default implementati¢8Rofask.ser-
viced() shall returrfalse. The Core signature follows:

public boolean serviced();

ISR_Task.trigger(). Thetrigger() method allows software to trigger execution of this inter-
rupt service routine. Invokintggger() has the effect of causing th8R_Task alone to run

its work() method at théSR_Task's interrupt priority level. Note that thiSR_Task’s

work() method will be invoked even if thiSR_Task is currently disarmed. Also note that
invoking thetrigger() method for thidSR_Task does not cause whatever ott&R_Task
objects are bound to the same interrupt to have woeif) methods executed.

Trigger requests (whether by hardware or software) shall not be queued. For each trig-
ger, the Core Execution Environment shall defer execution of the correspavudifig
method as long as other tasks are running at higher priority, and as long as other inter-
rupt service routine tasks are running at equal priority. If the $§3fn&ask is triggered

again while it is still deferring execution of iterk() method from a previous trigger, the
new trigger shall have no effect.

The Core signature is shown below:

public final void trigger();

ISR_Task.work(). The Core Execution Environment shall invoke k() method each

time the interrupt is triggered. This method is “Atomic Synchronized”, meaning that the
work() method must be execution-time analyzable. During execution of this method,
interrupts at this object’s priority ceiling level and below are disabled. The default
implementation of theork() method simply returns void. The Core signature is shown
below:

public synchronized void work();

All implementations of thaork() method in subclasses ISR_Task shall declare the
method to beynchronized. The Core Verifier shall enforce this restriction.

ISR_Task.ceilingPriority(). TheceilingPriority() method shall return 129 minGsre-
Task.numinterruptPriorities(). Note that subclassesISR_Task may override this method to
return a different priority. The Core signature is shown below:

public short ceilingPriority();
ISR_Task.arm(). Thearm() method shall cause tHBR_Task to become armed. When first

constructedISR_Task objects are not armed. This means that3ReTask’s work()
method is not invoked by the Core Execution Environment in response to signaling of

96

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3.17.25

the corresponding hardware interrupt. To install an interrupt handler, the Core program-
mer must first construct the ISR_Task, following which he must invoke the start() or
_start() methods, following which he must invoke the arm() method. The Core signature
is shown below:

public final void ISR_Task.arm();

ISR_Task.disarm(). The disarm() method shall cause this ISR_Task to become disarmed.

When first constructed, ISR_Task objects are not armed. This meansthat the ISR_Task’s

work() method is not invoked by the Core Execution Environment in response to signal-
ing of the corresponding hardware interrupt. To install an interrupt handler, the Core
programmer must first construct tfs®_Task, following which he must invoke the

start() or_start() methods, following which he must invoke tren() method. To return
thelSR_Task to disarmed state after arming it, the Core programmer invokesahe()
method. The Core signature is shown below:

public final void ISR_Task.arm();

The SporadicTask Class

The SporadicTask class extend8oreTask. Use this class to implement responses to spo-
radic (asynchronous) events. To triggeédparadicTask to respond to an asynchronous
event, invoke the taskiggger() method. This causes the task®k() method to be exe-
cuted by this task running at the designated priority. If the task is still executing a previ-
ous invocation of itsvork() method when a new execution is triggered, the new request
is queued so that this task can perform the requested invocationofkfienethod fol-
lowing completion of previously triggered executions ofwtlek() method.

SporadicTask Constructor. When aSporadicTask is created, it is necessary to identify
several characteristics of the task, as listed below:

1. Whether or not asynchronous event handling otherabat{) andstop() is enabled
for this core task.

The size of this task’s run-time stack.
The size and type of the default allocation context for@hisTask.
4. The task’s Base Priority.

The signaturef the SporadicTask constructor is shown here:

public SporadicTask(ATCEventHandler handle, long stack_size, long allocation_size,
CoreString allocation_block_name, int priority)
throws CoreBadPriorityException, CoreEmbeddedConflictException;

If handler is null, thisSporadicTask shall ignore asynchronous event signaling. Otherwise,
the initial event handler for this task is representetabgiler. Thestack_size argument
specifies the number of words on the task’s run-time stastack size equals zero, the
task’s stack will be the default stack size. Bheration_size argument specifies the
number of bytes in the task’s defaélibcationContext. If allocation_size equals zero, the
defaultAllocationContext for this task is variable, growing at run time based on demand
and availability of memory. Thalocation_block_name argument specifies the name of
the block of memory within which thidlocationContext’s memory shall be located. If

Real-Time Core Extensions 97

The Specification

3.17.26

this argument equals null, the Core Execution Environment shall place the AllocationCon-

text's memory region in the host computer system’s main memory. If
allocation_block_name specifies an allocation region that does not exist within this Core
Execution Environment, or if the Core Execution Environment chooses (for implemen-
tation-defined reasons) to not permit this task to use the named memory region as its
default allocation region, the constructor shall throw a previously allocated instance of
CoreEmbeddedConflictException. Thepriority argument specifies the Base Priority at which
the SporadicTask’s work() method executes each time the corresponding interrupt is trig-
gered.

SporadicTask.trigger(). Thetrigger() method allows software to trigger execution of this
sporadic task. Each invocation of trigger() method is queued. Tt8poradicTask object
remembers the number of pendimgrk() invocations and decrements this count each
time it completes an executionwdrk(). If no work() invocations are pending, this task
suspends itself awaiting a subsequent invocatidriggér(). The Core signature for the
trigger() method is shown below:

public final void trigger();

SporadicTask.work(). The Core Execution Environment shall invoke tloek() method
each time the sporadic task is triggered. The default implementationvedriie
method simply returns void. The Core signature is shown below:

public synchronized void work();

SporadicTask.pendingCount(). ThependingCount() method returns the difference between
the number of times this task has been triggered (by invokitriggsr() method) and

the number of times this task has completed executionwbit§ method in response
to previoudrigger() invocations. Note thatendingCount() treats a triggered invocation as
still pending until the triggeredork() invocation completes. The Core signature is
shown below:

public final int pendingCount();

SporadicTask.clearPending(). TheclearPending() method clears all pending invocations
of this task’swork() method except for the currently executwayk() invocation, if any.
Immediately following execution afearPending(), pendingCount() returns zero if this

task is not currently executing it®rk() method and one otherwise. The Core signature
is shown below:

public final void clearPending();

The IOPort class

A frequent need of embedded and real-time programmers is to be able to transfer data
into and out of physical device ports that are seen by the embedded processor as 1/0
ports or memory-mapped I/O channels. This class, and its subclasses, provide the ability
to perform these actions.

There are many subclasses of IOPort, each one named according to the following tem-
plate:

|OPort<port-width><permissions>|

98

Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

Within this template, <port-width> is replaced with 8, 16, 32, or 64 representing 8-bit, 16-
bit, 32-bit, and 64-bit ports respectively. <permissions> is replaced with |, O, or 10, repre-
senting permission to read only, write only, or both read and write. For example, the
class 10Port80 represents an 8-bit output-only port. All methods of the IOPort subclasses
arefinal.

Thereis no constructor for IOPort or for any of its subclasses. Instead, I0Port provides a
static factory method named createlOPort(). Given that the arguments to createlOPort()
specify the port width and permissions, createlOPort() returns an instance of the IOPort
subclass which represents the requested port width and 1/O permissions.

IOPort.createlOPort(). Use this method to create instances of an I0Port subclass class.
Each instance of an I0Port subclass is configured with permissions to perform a
restricted subset of the full I0Port API. For example, instances of I0Port80 only permit
8-bit output operations. For instances of I0Port80, all other 1/0 services (input opera-
tions, and operations that attempt to transfer 16, 32, or 64 bits) terminate by throwing
CoreOperationNotPermittedException. The Core signature for createlOPort() is shown
below:

public static IOPort createlOPort(long address, boolean memory_mapped, int port_width,
boolean read_permission, boolean write_permission)
throws CoreEmbeddedConflictException;

Instead of returning the requested I0Port object, createlOPort() throws CoreEmbeddedCon-
flictException if the Core Execution Environment cannot grant the requested 1/O access.
The conditions under which createlOPort() might throw this exception are implementa-
tion-defined.

IOPort.readByte(). The readByte() method fetches an 8-bit value from the corresponding

port, assuming thisis an instance of I0Port8I or I0Port8I0. In all other cases, this method
terminates by throwing a previously allocated instance of CoreOperationNotPermittedEx-

ception. The Core signature is shown below:

public byte readByte() throws CoreOperationNotPermittedException;

IOPort.writeByte(). The writeByte() method stores an 8-bit value to the corresponding port,
assuming thisis an instance of I0Port80 or I0Port8I0. This method returns the value of
its single argument. In all other cases, this method terminates by throwing a previously
allocated instance of CoreOperationNotPermittedException. The Core signature is shown
below:

public byte writeByte(byte b) throws CoreOperationNotPermittedException;
IOPort.readShort(). The readShort() method fetches a 16-bit value from the corresponding
port, assuming this is an instance of 10Port16l or I0Port1610. In all other cases, this

method terminates by throwing a previoudly allocated instance of CoreOperationNotPer-
mittedException. The Core signature is shown below:

public short readShort() throws CoreOperationNotPermittedException;

IOPort.writeShort(). The writeShort() method stores a 16-bit value to the corresponding
port, assuming this is an instance of 10Port160 or I0Port1610. This method returns the

Real-Time Core Extensions 99

The Specification

value of its single argument. In all other cases, this method terminates by throwing a
previously alocated instance of CoreOperationNotPermittedException. The Core signature
is shown below:

public short writeShort() throws CoreOperationNotPermittedException;

IOPort.readint(). The readint() method fetches a 32-bit value from the corresponding port,
assuming this is an instance of I0Port321 or IOPort3210. In all other cases, this method
terminates by throwing a previously allocated instance of CoreOperationNotPermittedEx-
ception. The Core signature is shown below:

public int readInt() throws CoreOperationNotPermittedException;

IOPort.writelnt(). The writelnt() method stores a 32-bit value to the corresponding port,
assuming thisis an instance of 10Port320 or I0Port3210. This method returns the value of
its single argument. In all other cases, this method terminates by throwing a previously
allocated instance of CoreOperationNotPermittedException. The Core signature is shown
below:

public int writelnt() throws CoreOperationNotPermittedException;

IOPort.readLong(). ThereadLong() method fetches a 64-bit value from the corresponding
port, assuming this is an instance of 10Port64l or I0Port6410. In all other cases, this
method terminates by throwing a previoudly allocated instance of CoreOperationNotPer-
mittedException. The Core signature is shown below:

public long readLong() throws CoreOperationNotPermittedException;

IOPort.writeLong(). The writeLong() method stores a 64-bit value to the corresponding
port, assuming this is an instance of 10Port640 or I0Port6410. This method returns the
value of its single argument. In all other cases, this method terminates by throwing a
previously allocated instance of CoreOperationNotPermittedException. The Core signature
is shown below:

public long writeLong() throws CoreOperationNotPermittedException;

3.17.27 Core Throwable Types
The Core specification distinguishes four broad classes of throwable types.

1. CoreThrowable: org.rtjwg.CoreThrowable extends org.rtjwg.CoreObject. Within the Core
Execution Environment, only CoreThrowable objects shall be thrown and caught. If
amethod declaresitself to throw objects, the type of the thrown object shall be
CoreThrowable or one of its derivatives.

2. CoreException: org.rtjwg.CoreException extends org.rtjwg.CoreThrowable. Within the
Core Execution Environment, CoreException is used to indicate a throwabl e object
that typical Core components would want to catch. The Core Verifier shall enforce
that any context that might throw a CoreException object declaresin its signature
that it does so. Further, the Core Verifier shall enforce that any context that invokes
amethod that might throw a CoreException object either catches the CoreException
object or declaresthat it propagates the thrown CoreException object. In the com-
mon vernacular, a CoreException is a “checked” exception.

100 Copyright 1999, 2000 J Consortium, All Rights Reserved

The Specification

3. CoreRuntimeException: org.rtjwg.CoreRuntimeException extends org.rtjwg.CoreThrow-
able. Within the Core Execution Environment, CoreRuntimeException is used to indi-
cate athrowabl e object that typical Core componentswould probably not want to
catch. The Core Verifier shall not require that contexts that might throw a CoreRunt-
imeException object declare that they do so. Further, the Core Verifier shall not
require contexts that invoke methods that might throw CoreRuntimeException objects
to catch the object or to declare that the context propagates the thrown CoreRuntime-
Exception object. In the common vernacular, a CoreRuntimeException isan
“unchecked” exception.

4. ScopedException: org.rtjwg.ScopedException extendrg.rtjwg.CoreException. A Scope-
dException object is special in that when thrown, it is only “catchabletdigh
clauses belonging to the method within which $hepedThrowable object was
enabled. The intended usesSobpedException objects are as follows:

a. A routine that anticipates the need to establish a special asynchronous event
handler which will cause abortion of a particular scoped region of code con-
structs aScopedException object, establishes a scope-spedifi€EventHandler
to throw thisScopedException object, and initiates execution of the scoped con-
text.

b. When the asynchrono#§CEventHandler is signaled, itdandleATCEvent()
method throws the previously creat&mpedException object.

c. In processing this thrown exception, the Core Execution Environment does not
allow any intervening scopes to “see” the thrown exception. Ecettla
clause that is declared to catch &uwyeException object does not match this
thrown exception. The onlgatch clause that are allowed by the Core Execu-
tion Environment to see the thrown exception arecéteh clauses found
within the method that constructed the exception.

ScopedException supports two methods that are not supporte@dogException:
enable() anddisable(). The Core signatures are as follows:

public final void enable(); Il enable this ScopedException
public final void disable(); I/ disable this ScopedException

The special semantics of these two methods are as described here:

d. If an ATCEventHandler attempts to throw &copedException that has been dis-
abled, the effect is to simply return from #ECEventHandler (returning to the
code that had been executing so it can resume execution, as if the event had
never been signaled).

e. The activation frame from within whichSxopedException is enabled repre-
sents the only scope that can catch the exceptioatchAclause contained
within any other invoked method’s activation frame is unable to see this
scoped exception. If an object is enabled multiple times, the most recent
enabling is the one that establishes its context. Enabling and disab8og of
pedException objects does not nest.

f. When aScopedException is instantiated, it is automatically enabled in the con-
text from within which the object was constructed.

g. Whenever a method’s activation frame is removed from the run-time stack, all
of the ScopedException objects that are enabled for that specific activation
frame are automatically disabled. This is done atomically with respect to han-
dling of nested asynchronous transfer of control events.

Real-Time Core Extensions 101

The Specification

Note that the Core Execution Environment does not support the analog of java.lang.Runt-
imeException, which extends java.lang.Exception but is unchecked.

Table 4 on page 102 details the various CoreThrowable classesthat are part of the official
Core specification. In all cases, each of these CoreThrowable classes supports two con-
structors, one taking no arguments and the other taking a single CoreString object which
represents the message to which this CoreThrowable object shall maintain a reference.

TABLE 4. Core CoreThrowable Classes
Class Name Super Usage
Class
CorelllegalMonitor- Core- Thrown if await() or synchronization request vio-
StateException Runtime- |atesthe rules for priority inheritance or priority
Exception ceiling synchronization.
CoreOutOfMemory- Core- Thrown if arequest to allocate memory cannot be
Exception Runtime- immediately satisfied because of insufficient mem-
Exception ory.
CoreArrayIndexOut- Core- Thrown if aresponse to an array (or CoreString)
OfBoundsException Runtime- subscripting operation reaches beyond the length of
Exception the array.
CoreClassFormatError Core- Thrown if an attempt to dynamically load a class
Runtime- cannot be satisfied because the class, or one of the
Exception classit refersto, is of improper format or because it
fails byte-code verification.
CoreOperationNotPermitted- Core- Thrown if aparticular operation isnot permitted (or
Exception Exception supported) for a particular combination of parame-
ters and/or system state.
CoreSecurityException Core- Thrown if request to create a task or to change the
Exception priority or period of atask is not permitted for the
requesting component.
CoreBadPriorityException Core- Thrown if arequest to set the priority of a Core task
Exception is outside the range of valid Core priorities.
CoreBadArgumentExcep- Core- Thrown if an argument to amethod has an unac-
tion Exception ~ ceptable value.
CoreEmbeddedConflict- Core- Thrown if arequest to obtain accessto a particular
Exception Exception 1/O resource (such as an interrupt vector) conflicts
with some other software component’s access to the
same resource.
CoreATCEventslgnoredEx- Core- Thrown if a component requests to signal an asyn-
ception Exception ~ chronous event or to change the asynchronous
event handler for a Core task that does not support
asynchronous event handling.
CoreUnsignedCoercion- Core- Thrown if a request to coerce an unsigned integer to
Exception Exception @ smaller size unsigned integer overflows the
capacity of the smaller integer.
102 Copyright 1999, 2000 J Consortium, All Rights Reserved

Baseline API

TABLE 4.

4.0

Core CoreThrowable Classes

Class Name Super Usage
Class

CoreClassInUseException Core- Thrown if arequest to unload a class cannot be sat-

Exception isfied because the classis currently in use.
CoreClassNotFound- Core- Thrown if arequest to dynamically load a class can-
Exception Exception ~ not be satisfied because the class cannot be found.
CoreArithmeticOverflow- Core- Thrown by certain contexts (such as unit conver-
Exception Exception sion operations of the Time class) if arithmetic

operations result in overflow.

CoreObjectNot- Core- Thrown if the CoreObject whose addressis
AddressableException Exception requested is not an array of primitive type.

Throughout the Core API description provided in this specification, it is stated that Core
methods which throw exceptions do so by throwing “previously allocated instances” of
the exceptions. The point in emphasizing this detail is that the act of throwing an excep-
tion does not require allocation of any new objects and that the thrown exception object
need not be explicitly released. All of the previously allocated exceptions described in
the official Core API descriptions shall be allocated once during startup of the Core vir-
tual machine.

Baseline API

The real-time core has been designed to facilitate cooperation between components
written for execution on the Baseline virtual machine and components written for exe-
cution within the Core Execution Environment. Core Execution Environments need not
support the optional connection to the Baseline virtual machine. When the Core Execu-
tion Environment is combined with a Baseline virtual machine, the Baseline API shall
support the services described in this section.

As discussed in Section D.2 (starting on page 153), every Core object has two applica-
tion programmer interfaces, one for the core domain and the other for the Baseline
domain. Conceptually, these two interfaces are represented by distinct class representa-
tions. Consider, for example, representatioor@ftjwg.CoreObject. Though this class

and instances of it reside in the Core domain, this same class is also visible to the Base-
line domain. However, the Baseline domain does not know about the variables or the
core methods associated with this object.

This section discusses the Baseline domain’s view of particular Core objects. In this sec-
tion, when we speak @foreObject andCoreClass, we are specifically referring to the
Baseline view of those classes. Another subtle issue to emphasize is that even though
the Baseline domain cannot see everything that is inside of a core object, if the Baseline
domain passes a reference to a core object back into the core domain (by supplying the
reference as an argument to a Core-Baseline method), the core domain can see the pri-
vate information that had been invisible to the Baseline domain.

Real-Time Core Extensions 103

Baseline API

4.1

Semaphore Operations. Baseline components can synchronize with Core components by
performing appropriate semaphore operations. See Section 3.17.17 for a description of
the Baseline SignalingSemaphore operations and Section 3.17.18 for a description of the
Baseline CountingSemaphore operations.

CoreTask Operations. A special serviceis provided to allow Baseline components to
start up core tasks. See “CoreTask._start()” on page 93 for more information on this
topic.

Core Execution Profiles. To determine the set of optional profiles that have been
installed into a particular Core Execution Environment, the Baseline component
invokes theCoreDomain.profiles() method, described in the section titled “CoreDo-
main.profiles()” on page 106.

Starting Up a Core Execution Environment. To start up a Dynamic Core Execution Envi-
ronment, the Baseline programmer must load and instantiate the HaseiiakCore-
ClassLoader class, described in Section 4.1.

The BaselineCoreClassLoader Class

BaselineCoreClassLoader Constructors. There are two constructors f®aselineCore-
ClassLoader. The first of these takes no arguments. Its Core signature is shown here:

public BaselineCoreClassLoader();

The first instantiation of thBaselineCoreClassLoader class shall define the mechanism

for all Core class loading to be performed within this Core Execution Environment. If
the firstBaselineCoreClassLoader instance is constructed using the no-argument con-
structor, the Core Execution Environment shall use the default implementaGore-of
ClassLoader to search for class files that need to be loaded. As described below, the
defaultCoreClassLoader implementation searches the local file system as directed by the
CoreClassPath environment variable for class files to be loaded.

To override the default behavior, a system integrator exteord€lassLoader, overrid-

ing the implementation dihdClassBytes(). See Section 3.15 for a more complete
description of theCoreClassLoader class. This new implementationfoidClassBytes()

might search a compressed ROM image, or probe a network class file server, or email a
special request to have the class file transmitted over digital wireless carrier. To connect
the special implementation tfidClassBytes() to theBaselineCoreClassLoader, the system
integrator shall supply a reference to the specialtzeeClassLoader object as an argu-

ment to theBaselineCoreClassLoader constructor. The signature for the second form of
theBaselineCoreClassLoader constructor is shown below:

public BaselineCoreClassLoader(CoreClassLoader specialized_ccl);

BaselineCoreClassLoader semantics. BaselineCoreClassLoader extendgava.lang.Class-

Loader. In this regard, it behaves like other Java class loaders. However, there are a num-
ber of ways in whiclBaselineCoreClassLoader is distinct. The special attributes of this

class loader are as follows:

104

Copyright 1999, 2000 J Consortium, All Rights Reserved

Baseline API

4.2

1. Insofar asthe Baseline domain is concerned, the Baseline interface to all Core
classesis represented as if those classes had been loaded by the BaselineCoreClass-
Loader class |oader.

2. The BaselineCoreClassLoader class loader shall only load classes that correspond to
Core objects and selected infrastructure routines (such as the Baseline CoreDomain
class). Any attempt to load any other class with the BaselineCoreClassLoader shall
abort by throwing a ClassNotFoundException exception.

3. BaselineCoreClassLoader shall be afinal class, meaning that it cannot be extended.

4. Theconstructors for BaselineCoreClassLoader shall load org.rtjwg.CoreDomain, shown
below, and all of the other key Core classes that are required for implementation of
the Baseline interface to the Core domain, including org.rtjwg.CoreObject,
org.rtjwg.CoreThrowable, and org.rjwgCorelntArray.

5. TheBaselineCoreClassLoader class |oader shall perform security manager checks on
all class load requests, making sure that the requests originate from within CoreDo-
main.defineClass() or CoreDomain.loadClass(), or indirectly from within the Core Exe-
cution Environment'€oreClassLoader.defineClass() or CoreClassLoader.loadClass()
methods. Any other requests to load Core classes shall be refused by throwing a
java.lang.SecurityException.

The CoreDomain Class

The CoreDomain class extendiava.lang.Object. The static initializer for th€oreDomain
class creates the primordial instance ofGbeDomain class. TheCoreDomain class pub-
lishes a static variable nameate which represents the primordial instance of this class.

public final static CoreDomain core;

CoreDomain.lookup(). Thelookup() method returns the core object that was previously
published in the core registry with the specified name, thro@ijegtNotFoundExcep-
tion if no such object exists in the core registry. The Core signature is shown below:

public final CoreObject lookup(String name) throws ObjectNotFoundException;

CoreDomain.defineClass(). The defineClass() method converts the sub-sequence ranging
from positionoffset to position(offset + len - 1) within the array obytes b into an instance

of classClass. TheClass object returned frordefineClass() represents the Baseline inter-

face to the newly loaded class. The Core methods of the newly loaded class are not visi-
ble to the Baseline domain, so they are omitted from the Baseline class representation.
A side effect of loading a Baseline class in this way is that the Core version of the same
class is loaded into the Core Execution Environment.défireeClass() method shall

throw ClassNotFoundException if any referenced class was not previously loaded. The

Core signature is shown below:

public final CoreClass defineClass(String name, byte[] b, int off, int len)
throws ClassNotFoundException;

CoreDomain.loadClass(). TheloadClass() method shall load the class specified by its
name argument, searching for the class file representation according to the strategy rep-
resented by this Core Execution Environme@tgClassLoader implementation. This
method shall resolve all referenced classes. The Core signature is shown below:

Real-Time Core Extensions 105

Baseline API

4.3

4.4

public final CoreClass loadClass(String name) throws ClassNotFoundException;

CoreDomain.instantiate(). The instantiate() method instantiates a Core object within the
Core heap to implement the CoreClass c. The no-argument constructor for the newly
allocated Core object runs asiif it were invoked from a Core task. In other words, the
constructor is not a Core-Baseline method. The Core signature is shown below:

public final CoreObject instantiate(CoreClass c);

CoreDomain.profiles(). The profiles() method shall return an array of java.lang.String

objects representing the collection of all real-time profilesthat are present within this

Core Execution Environment. Profile naming conventions serve to differentiate key fea-

tures of the profiles, as described in the section titled “CoreRegistry.profiles()” on page
78.

The Core signature for thpeofiles() method follows:

public static String [] profiles();

The ObjectNotFoundException Class

Theorg.rtjwg.ObjectNotFoundException class extendjava.lang.Exception. This class has a

two constructors, one taking no arguments and the other taking ajsvaddag.String
argument to represent the message associated with this exception. There are no other
methods defined for this exception class.

The CoreBaselineThrowable Class

Theorg.rjwg.CoreBaselineThrowable class, which extendava.lang.Throwable, is a Base-
line class. If a Core-Baseline method is declared to thr6areT hrowable object which
does not derive from either til®reRuntimeException or CoreException classes, the Core
Class Loader shall represent the Baseline API of this method as throevéBgse-
lineThrowable. At run time, if this method terminates by throwinQaaeThrowable object,
the Core Execution Environment shall wraPoseBaselineThrowable object around the
thrown CoreThrowable object by constructing theoreBaselineThrowable object, passing a
reference to the throw@oreThrowable object as the sole argument to GoeeBaselineTh-
rowable constructor. Th€oreBaselineThrowable object shall be constructed in the Base-
line context, and its stack backtrace shall begin at the point of the Core-Baseline method
invocation whose execution terminated by throwing@beThrowable object.

CoreBaselineThrowable Constructors. There shall be only one constructor for Goee-
BaselineThrowable class. This constructor shall require a reference twgatjwg.Core-
Throwable object as its sole argument. The Core signature is shown below:

public CoreBaselineThrowable(org.rtjwg.CoreThrowable throwable_core_exception);
CoreBaselineThrowable.getCoreThrowable(). ThegetCoreThrowable() method shall return

a reference to tharg.rtjwg.CoreThrowable object that was supplied as the sole argument
to theCoreBaselineThrowable constructor. The Core signature is shown below:

final public org.rtjwg.CoreBaselineThrowable getCoreThrowable();

106

Copyright 1999, 2000 J Consortium, All Rights Reserved

Baseline API

4.5

4.6

The CoreBaselineRuntimeException Class

The org.rtjwg.CoreBaselineRuntimeException class, which extends java.lang.RuntimeExcep-
tion, isa Basdline class. When a Core-Baseline method terminates by throwing a Core-
RuntimeException object, the Core Execution Environment shall wrap a
CoreBaselineRuntimeException object around the thrown CoreRuntimeException object by
constructing the CoreBaselineRuntimeException object, passing a reference to the thrown
CoreRuntimeException object as the sole argument to the constructor. The CoreBase-
lineRuntimeException object shall be constructed in the Baseline context, and its stack
backtrace shall begin at the point of the Core-Baseline method invocation whose execu-
tion terminated by throwing the CoreRuntimeException object.

CoreBaselineRuntimeException Constructor. There shall be only one constructor for the
CoreBaselineError class. This constructor shall require areference to an org.rtjwg.CoreRun-
timeException object asits sole argument. The Core signature is shown below:

public CoreBaselineRuntimeException(
org.rtjwg.CoreRuntimeException throwable_core_exception);

CoreBaselineRuntimeException.getCoreException(). The getCoreException() method shall
return areference to the org.rtjwg.CoreException object that was supplied as the sole argu-
ment to the CoreBaselineError constructor. The Core signature is shown below:

final public org.rtjwg.CoreBaselineRuntimeException getCoreException();

The CoreBaselineException Class

Theorg.rtjwg.CoreBaselineException class, which extends java.lang.Exception, is a Baseline
class. When a Core-Baseline method terminates by throwing a CoreException object, the
Core Execution Environment shall wrap a CoreBaselineException object around the
thrown CoreException object by constructing the CoreBaselineException object, passing a
reference to the thrown CoreException object as the sole argument to the CoreBaselineEx-
ception constructor. The CoreBaselineException object shall be constructed in the Baseline
context, and its stack backtrace shall begin at the point of the Core-Baseline method
invocation whose execution terminated by throwing the CoreException object.

CoreBaselineException Constructors. There shall be only one constructor for the Core-
BaselineException class. This constructor shall require a reference to a org.rtjwg.CoreEx-
ception object as its sole argument. The Core signature is shown bel ow:

public CoreBaselineException(org.rtjwg.CoreException throwable_core_exception);
CoreBaselineException.getCoreException(). The getCoreException() method shall return a

reference to the org.rtjwg.CoreException object that was supplied as the sole argument to
the CoreBaselineException constructor. The Core signature is shown below:

final public org.rtjwg.CoreBaselineException getCoreException();

Real-Time Core Extensions 107

Acknowledgments

5.0 Acknowledgments

This work represents the results of many people’s efforts, including the various partici-
pants in the J Consortium’s Real-Time Java Working Group, NewMonics real-time
development team, and NewMonics administrative support staff. We thank all for their
contributions to this specification.

6.0 Informative References

10.

11.

12.

13.

14.

Requirements For Real-time Extensions For the Java ™ Platfalited by Lisa
Carnahan and Marcus Ruark, National Institute of Standards and Technol ogies.
April 1999.

Java Language Reference, 2nd Edition, by Mark Grand, O'Reilly Publications, July
1997, ISBN 1-56592-326-X.

Java Virtual Machine, by Jon Meyer and Troy Downing, March 1997, ISBN 1-
56592-194-1.

The Java™ Programming Language, Second EditigriKen Arnold and James
Gosling, Addison-Wesley, 1998, 464 pages, |SBN 0-201-31006-6.

The Java Language Specificatjdny James Gosling, Bill Joy and Guy Steele, Add-
ison-Wesley, September 1996, |SBN 0-201-63451-1.

The Java Class Libraries Volume 1, Second EditigrPatrick Chan, Rosanna Lee
and Douglas Kramer, Addison-Wesley, July 1998, ISBN 0-201-31002-3.

The Java Class Libraries Volume 2, Second EditigrPatrick Chan and Rosanna
Lee, Addison-Wesley, April 1998, ISBN 0-201-31003-1.

The Java Virtual Machine Specificatidoy Tim Lindholm, Frank Yellin, Bill Joy,
and Kathy Walrath, Addison-Wesley, 1998, 256 pages, | SBN 0-201-63452-X.

Compilers: Principles, Techniques, and Todlg Alfred Aho, Ravi Sethi, and Jef-
frey Ullman, 1986, 796 pages, | SBN 0-201-10088-6.

C ISO/IEC 9899:1990
C++ ISO/IEC/14882: 1998

Improving the Java Memory Model Using CRF, by Jan-Willem Maessen, Arvind,

and Xiaowei Shen, in Proceedings of the Conference on Object Oriented Program-
ming, Systems, Languages, and Applicatitisineapolis, Minnesota, 2000.

Fixing the Java Memory Model, by William Pugh, in Proceedings of the ACM Java
Grande Conferenceune 1999.

The Java Memory Model, Issues and Discussions hosted at http://fwww.cs.umd.edu/
~pugh/java/memoryModel/.

108 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

Annex A

History

Al

Revision 1.0.14

This revision represents changes motivated by the possible opportunity to present the
Core Specification to ISO under ISO’s PAS program. Specific changes are listed below:

1.

10.

11.

Removed the word Java from the title and from many of the notational terms used
throughout the document. Concern was raised that using Java in the title of an inter-
national standard might violate Sun Microsystems trademark guidelines.

Various small changes to correct misspellings, cut-and-paste errors, and to improve
clarity. These are scattered throughout the document.

Reordered the document to move the edit history, requirements, rationale, and
implementation suggestions into annexes, removing them from the body of the
specification.

Removed the notion of Syntactic Core extensions from the Core specification. The
use ofaseline andstackable keywords is no longer supported as conforming syntax.
These words are used only as a notational convenience in presenting Core library
signatures.

Revised the discussion of conformity assessment (Section 3.1 (starting on page 6))
to make conformity requirements more clear and precise. Removed all syntax
dependencies from conformity requirements. Conformity is now defined in terms

of class file representations rather than source code syntax.

Removed the entird/O Subsystem” section from the Core specification. This
material was redundant with the specification being developed concurrently by the
Real-Time Data Access Working Group. Keeping the efforts of the two groups syn-
chronized was difficult and time consuming. In its place, the Core specification has
new simplified definitions ofSR_Task, SporadicTask, andlOPort. We expect that the
Real-Time Data Access Working Group will eventually supplement these classes
by defining a variant of the Real-Time Access Profile which is designed for integra-
tion within a Core Execution Environment.

ReplacedCoreError with CoreRuntimeException andCoreBaselineError with CoreBase-
lineRuntimeException. It was felt this represents a better match to the existing experi-
ence of current Baseline programmers.

Added Section 3.9 (starting on page 24), which clarifies the required scheduling
behavior for Baseline threads executing within the Core Execution Environment.

Added Section 3.10 (starting on page 24), which discusses briefly the need to clar-
ify the Core Memory Model. This section needs further work.

Added discussion of predictability requirements for the C/Native API and for the
Baseline API. See Section 3.14.2 (starting on page 34). Updated Table 1 on page 35
to reflect changes to the APl and to correct several errors from the previous revi-
sion.

Replaced the C library functiaorePrioritylnterleave() with corePriorityMap() in Sec-
tion 3.16 (starting on page 57). AdderderSynchronized() andexitSynchronized()
methods to that same section.

Real-Time Core Extensions 109

History

A.2 Revision 1.0.13

In preparation for submission to 1 SO through the PAS program, the Real-Time Data
Access Group and Real-Time Java Working Group identified two genera areas that
could be improved in order to achieve significant quality improvement to the specifica-
tion. These are:

1. Toremove unnecessary reference and dependency on the Baseline specification,
and

2. Tofurther unify the Core specification with the evolving specification for the Real -
Time Data Access Profile.

This draft represents proposed changes intended to address both of these concerns. The
changesidentified in this draft have not yet been approved by the Real-Time Java Work-
ing Group. The following list identifies a number of additional contemplated changes
that have not yet been folded into the document.

1. Add aOneShotEvent classthat is similar to PeriodicEvent class except that execution
of the corresponding work() method occurs only once each time thisevent handler is
enabled. Following the one-time execution of the event handler, the event handler
automatically disables itself. The OneShotEvent classis patterned after the class by
the same name which is defined in the Real-Time Data A ccess specification version
15.

a. It shall be implementation-defined when a OneShotEvent handler’s work()
method is invoked relative to the timing of any fixed-period timer ticks that
might be part of the system. In particular, ttoek() invocation may either pre-
cede or trail the periodic delay by up to one full period.

2. For all kinds of events¢riodicEvent, OneShotEvent, SporadicEvent, andinterrupt-
Event), any such events that are triggered while that event is disabled shall be
ignored. This represents a change in the specified behavigpdiadicEvent.

3. There are a number of contemplated changes regarding queueing and buffer over-
run:

a. For all kinds of events¢riodicEvent, OneShotEvenSporadicEvent, andinter-
ruptEvent), addenableQueue() anddisableQueue() methods. While queueing is
enabled, each event maintains a count of how many times it has been triggered
and not serviced. Note that each event has a single event handler.

b. The meaning oEvent.disable() is to prevent new events from being queued.

c. For all kinds of events, the enable() and disable() methods may involve interac-
tion with the operating system, which may result in error conditions being sig-
naled by the operating system. For this reasorenit#e() anddisable()
methods are now declared to thrGareOperationFailedException.

d. The meaning oEvent.disableQueuge() is also to prevent new events from being
gueued. Additionallyfvent.disableQueue() wipes the event queue clean.

e. Add anonError() method to each of thHeventHandler classes.

f. Add anerror() method to each kind of event. This method returns an integer
code representing the reason thatatfteror() method was invoked. A special
error code name@verrunkrror is defined to equal one (1) l@EventHandlerlnter-
face. Other error codes remain to be specified. The intent is that we will specify
additional error codes for publication in this specification.

110 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

g. If thework() method of an event handler is till running and the one of the
Events that this event handler handles is enabled, and queueing is disabled for
that event when a new event arrives, we invoke the onError() method for the
corresponding EventHandler object.

h. Eliminate the numberOverruns() method from PeriodicTask.

4. Add an I0Description class patterned after the class by the same namein the Real -
Time Data Access profile specification, version 1.5.

5. Add an enumerate() method to IONodeLeaf, which returns an array of I0Description
objects representing all of the proxies and events that have been created by this ION-
odeLeaf object.

6. Addan event handler to the IOChannel proxy objects. Specify this as an argument to
the createlO() invocation.

7. AddaVersion class, which has the following final fields:

CoreString spec_no Il which version of the specification does
I/ this implement?

CoreString vendor_name; I Which vendor supplied this class?

CoreString vendor_version; I What is vendor’s version number for

I/ this product?

8. Add an IOEventHandler class from which PeriodicTask, InterruptTask, and SporadicTask
derive. Thisis patterned after the class by the same name in the Real-Time Data
Access profile specification, version 1.5.

a. Tentatively, add areference to SymbolTable as an argument to the various cre-
ateXX() methods. This argument may be null, signifying that the object to be
created is not named symbolically.

9. Move pendingCount() to EventHandler class and remove this method from Event
classes.

10. Givethe IONode constructor an argument named driver_name, of type CoreString,
which represents the name of a system driver which shall be initialized by this con-
structor. The driver_name argument shall name a Java class which implements the
necessary driver services in an implementation-defined manner. Thisis patterned
after the same concept as described in the Real-Time Data Access profile specifica-
tion, version 1.5.

11. A change is proposed to the range checking associated with the IONodeLeaf.cre-
atelO() method, which would read as follows: “If thede attribute’slOlnter-
face.lOMemoryMapped bit is set and the sum of the 1/O channeffset attribute with
the range calculated above exceeds the value returned framanmog/Range()
method invoked on thi®NodeLeaf object, throw an instance GperationNotPermit-
tedException. Note that the memory range of ttidNodeLeaf is computed by sub-
tracting thislONodeLeaf's base address from the memory range ofl@hsdeLeaf’s
parent.)

Revision 1.0.12

Upon distribution of revision 1.0.11, Omron observed inconsistencies in the signatures
of thevalue() methods of théOChannel subclasses. In some cases, these were declared to
throw an exception, and in other cases, they were declared to not throw an exception.

Real-Time Core Extensions 111

History

A4

A5

A.6

That was an editing oversight. In thisrevision, al of the value() methods are declared to
not throw an exception.

Revision 1.0.11

During the 30-day strategic review period initiated following the Jan. 31, 2000 J Con-
sortium board meeting, anumber of oversights and small errors were uncovered. These
are addressed in this “errata” revision.

1. In Section C.15 (starting on page 145), the sample code did not compile. We found
it necessary to capitalizlass and change the initial assignment to ¢th@ariable.
Also, we added constructor arguments to the invocati@oeClass.instantiate().

2. In Section C.17 (starting on page 146), we modified the sample timeout code and
the description thereof to improve clarity.

3. In Section 3.5 (starting on page 15), paragraph 20, removed mentiorAtintive
interface. This change was supposed to have been incorporated into revision 1.0.3
of this document.

4. In thePeriodicEvent class description (since removed from this document), remove
thenumberOverruns() method as this is redundant wieriodicTask.numberOverrunsy().

5. In thelONodeLeaf class description (since removed from this document), remove
thereadable andwriteable arguments of thereatelO??() method. Add discussion of
the“proxy” attribute for IONodeLeaf descriptions. In this same section, add an Inter-
ruptTask argument to the IONodeLeaf.createlnterrupt() method.

6. In Section 4.2 (starting on page 105), we clarified that the constructor triggered by
execution of CoreDomain.instantiate() runs as a Core task, and not as a Baseline
thread executing a Core-Baseline method.

7. A number of minor typographic errors were corrected.

Revision 1.0.10

The J Consortium Board met on Jan. 31, 2000 and approved the start of the 30-day stra-
tegic review period concurrent with publication of the specification for additional public
review. Prior to beginning this review, board members requested that a small number of
minor errors and oversights be corrected. Thisiswhat was addressed with this Revision
1.0.10.

Revision 1.0.9

The J Consortium Technical Committee met on Jan. 27, 2000 and approved revision
1.0.8 for submission to the J Consortium board to begin the 30-day strategic review. In
preparation for that review, a small number of minor typographic errors and editing
oversights were corrected, resulting in revision 1.0.9. Additionally, the following
changes, each of which had been discussed previoudly by participants of the Real-Time
Java Working Group but which were accidentally omitted from subsequent drafts of the
specification, were incorporated:

1. Allow nesting of PCP synchronization locks. This change is reflected in Section
3.17.10 (starting on page 71) and discussed in Section C.11 (starting on page 144).

112

Copyright 1999, 2000 J Consortium, All Rights Reserved

History

A7

2. Removed the prohibition on invocation of methods from within finally clauses.
This change isreflected in Section 3.5 (starting on page 15) and in Section 3.11
(starting on page 25).

Revision 1.0.8

A meeting of the Real-Time Java Working Group was held on Jan. 25, 2000. As aresult
of that meeting, the following additional revisions were made to this specification and
the resulting specification was forwarded to the Technical Committee of the J Consor-
tium to be advanced to its next milestone.

1.

Remove “draft” from the title of Section 3.0 (starting on page 6). Also, replace a
number of occurrences of the word “draft” with the word “revision”.

Add |OEventinterface.PeriodicEventCode to the list of special cases associated with
invocations ofOEventinterface.fire(). This change is reflected in the description of
thelOEventInterface interface, which was removed in a subsequent revision of this
document.

ReplacdONodeleaf.createlOxxx() with IONodeLeaf.createlO??(). This change is

reflected in the description of th@NodeLeaf class, which was removed from a sub-
sequent revision of this document, and in assorted other locations that make use of
this name.

Add to description ofONodeLeaf.createl0??() that if thelOChannel object is created
with implicit_io argument set toiue, the createtDChannel object’sread() andwrite()
methods throwCoreOperationNotPermittedException. This change is reflected in the
description of théONodeLeaf class, which was removed from a subsequent revision
of this document.

In the description of thE&DeviceDescription class, which was removed from a sub-
sequent revision of this document, remove redundant reference to “memory-
mapped /O addresses”. In this same section, clean up the wording of numbered
paragraph 1.

Forl0DeviceDescription objects that represent I/O channels, replacéahge”
attribute with an “entries” attribute. Change the meaning from size of spanned

address space measured in bytes to number of entries spanned by this multi-port
channel, each entry representing ascalar 1/0 channel of the width specified by the
IODeviceDescription’s “mode” attribute. This changeisreflected in the descriptions of
the I0DeviceDescription and IONodeLeaf classes, both of which were removed from a
subseguent revision of this document.

In the description of 10Interface.mode() (subsequently changed to I0Descrip-
tion.mode()), explain that the value() methods transfer a block of data as a complete
array if the IOArrayAccess hit is set for a particular [OInterface object. This changeis
reflected in the description of the IOInterface interface, which was removed from a
subsequent revision of this document.

Add a “Scope” section, as Section 1.0 (starting on page 1).
A few typographic errors were corrected.

Real-Time Core Extensions 113

History

A.8 Revision 1.0.7

Based on ameeting of the Rea - Time Java Working Group which was held on Jan. 21,
2000, the following additional revisions were made to this specification.

1. Add to IOEventHandlerInterface and to the classes that implement thisinterface a
method named handleEvent(). This method has the effect of setting the event for this
invocation of work(), triggering execution of the work() method, and then waiting for
the work() method to complete its processing. The handleEvent() method is synchro-
nized in the following sense: Once the handleEvent() method has been invoked, no
other invocations of handleEvent() are allowed to overwrite the value of the set event
until the corresponding invocation of work() completes. Having introduced the han-
dleEvent() method described above, remove the setEvent() method from IOEv-
entHandlerInterface and the classes that implement this interface. These changes are
reflected in sections treating IOEventHandlerinterface, PeriodicTask, and SporadicTask,
all of which were removed from a subsequent revision of this document.

2. Remove the explicit constructor from the InterruptEvent class. This changeis
reflected in the section treating InterruptEvent, which was removed from a subse-
guent revision of this document.

3. Change the constructor for IONodeLeaf to take a single integer interrupt number
rather than a string that potentially represents multiple interrupt numbers. If multi-
ple interrupt numbers need to be associated with a particular device, application
developers must describe that device using multiple I0DeviceDescription objects, one
for each of the distinct interrupt numbers. These changes are reflected in the section
describing I0ONodeLeaf, which was removed from a subsequent revision of this doc-
ument.

4. Add an exchangelnterruptNumber() method to IONodeLeaf. This has the effect of
replacing the value of the interrupt number associated with the IONodeLeaf object.
Thereplacement is atomic with respect to invocations of the createlnterrupt()
method. This changeis reflected in the section describing IONodeLeaf, which was
removed from a subseguent revision of this document.

5. Remove the length argument of the IONodeLeaf.createlOxxx() method. Instead, com-
pute the length based on the value of the “range” attribute of the corresponding entry
within the |ODeviceDescription object. This changeis reflected in the section describ-
ing IONodeLeaf, which was removed from a subsequent revision of this document.

6. When creating an 1/0 channel using the createlOxxx() method, clarify the meaning
of aspecial slash character (‘') within the entry_name argument. In particular, the
decimal digits that follow the slash shall represent an offset relative to the base
address of this1/O channel, which offset is measured in terms of the data transfer
size associated with this channel (i.e. an offset of 3 for a32-bit channel represents a
byte-offset from the base memory address of 12). Further, modify the specification
so that when creating an 1/O channel using the specia slash character entry naming
convention, the created 1/0O channel represents only a single data value rather than
an array of data values. This change is reflected in the section describing IONode-
Leaf, which was removed from a subsequent revision of this document.

7. Throughout the document, use the phrase “memory-mapped access” to describe
access to memory-mapped 1/O channels, use the phrase “I/O-space access” to
describe access to I/O ports residing in 1/O space, and use the term “I/O channel” to

114 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

10.

11.

12.

13.

represent either or both. These changes are reflected throughout the document.
Appropriate definitions were added to Section 2.2 (starting on page 2).

Analogous to the “timer” attribute for IONodeLeaf.createPeriodic() and the “trigger”
attribute for IONodeLeaf.createSporadic() methods, define a specia “trigger” attribute
for IONodeLeaf.createlnterrupt(). This attribute shall either have the value “Interrupt-
Event”, or it shall hold the name of a class that extends from InterruptEvent. This
changeisreflected in the section describing IONodeLeaf, which was removed from a
subsequent revision of this document.

Add the IOImplicit and IOExclusive symbolic constants back into the definition of the
IOInterface interface. These are provided for convenience of the application devel-
oper and have no meaning insofar as built-in APIs are concerned. Add a symbolic
constant named I0ArrayAccess which identifies 1/O channelsthat can be treated as I/
O arrays. These changes are reflected in the sections describing IONodeLeaf and
IOInterface, both of which were removed from a subsequent revision of this docu-
ment.

Add enable() and isEnabled() methods to I0Interface and the classes that implement
thisinterface. This change isreflected in the sections describing I0Interface and
IOChannel, both of which were removed from a subsequent revision of this docu-
ment.

Add a constructor to allow new I0DeviceDescription objects to be created and added
to the system dynamically. Also, add a method to alow such dynamically added
IODeviceDescription objects to be removed from the system. These capabilities need
not be supported by all conforming implementations. If dynamic manipulation of
the I0DeviceDescription database is not supported, invocations of the constructor and
removal method throw CoreOperationNotPermittedException. Further, add a
dynamic_devices variable to the Configuration class and a static dynamicDevices()
method to the I0DeviceDescription class which represent whether or not this system
allows IODeviceDescription objects to be added while the system is running. These
changes are reflected in the section describing I0DeviceDescription, which was
removed from a subsequent revision of this document, and Section 3.17.20 (starting
on page 81).

Add clarification re: address arithmetic for IOChannel nodes. In particular, base
memory and 1/O addresses are expressed in terms of byte addresses. However,
when using the forward slash convention to name an entry argument for a cre-
atelOxxx() invocation, the offset number is expressed in terms of the channel size.
So, for example, if the I0DeviceDescription entry named dma_buffer represents 512
32-bit integers, and an application invokes createlO8Bit(), with “dma_buffer/8" asits
first argument, the resulting 108Bit object refersto the ninth integer in the
dma_buffer, which is found at byte offset 32 relative to the beginning of the
dma_buffer address range. For another example, suppose that we create an 108Bit
object to represent the entire dma_buffer by invoking createlO8Bit() with “dma_buffer”
asitsfirst argument. Invoking read(8) on the resulting I08Bit object fetches the ninth
integer (found at byte offset 32 from the base address) of the dma_buffer memory
range. These changes are reflected in the section describing IONodeLeaf, which was
removed from a subseguent revision of this document..

Add clarification re: endian behavior of 1/0 operations. In particular, all multi-byte
values are transmitted to and from 1/0O channels using the representation that is
most natural for a given platform. Add alittle_endian variable to the Configuration

Real-Time Core Extensions 115

History

class and a static littleEndian() method to the I0DeviceDescription class, both of which
aretrue if the natural representation on this platform is little-endian, and false other-
wise. These changes are reflected in Section 3.17.20 (starting on page 81) and the
section describing 10DeviceDescription, which was removed from a subsequent revi-
sion of this document.

14. On the cover page, removed “draft” from the title and other cover material, and
added trademark symbol and trademark attribution for the Java trademark.
Removed the word “draft” from the document’s abstract.

15. Throughout the document, changed the footer to say Copyright 1999, 2000 on all
even-numbered pages.

16. Renamed thesadDevice() method taupdate(). Renamed theriteDevice() method to
flush().

17. Assorted typographic errors were corrected.

A.9 Revision 1.0.6

In response to comments received at the Jan. 14, 2000 meeting of the Real-Time Java
Working Group, the following additional revisions were made to this specification.

1. Clarify that thelOEventHandlerinterface.setEvent() method is called automatically
before callingOEventHandlerInterface.work() each time an event triggers execution
of this event handler. Add a protected methoetadicEvent to allow subclasses to
trigger the start of each new period. These changes are reflected in the sections
describingOEventHandlerInterface andPeriodicEvent, both of which were removed
from subsequent revisions of this document.

2. Do not require that 1-bl©Channel objects be implemented using implicit reading
and writing. This change is reflected in the section descriBi@igannel, which was
removed from a subsequent revision of this document.

3. Create newOChannel sub-classes to represent block-transfer I/O operations, as an
addition (not a replacement) to existing capabilities. For example:

class I08BitArray {
public byte[] value();
public void value(byte [] b);
}
These changes are reflected in sections describing the various sub-classes of
IOChannel, all of which were removed from a subsequent revision of this document.

4. For the various I/O proxy classd®Channel and all of its descendants), rename the
existingread() andwrite() methods to beeadDevice() andwriteDevice() methods. Then
add the following methods to the subclasses:

a. read(): has effect of atomically performingeadDevice() operation followed by
avalue() operation.

b. read(offset): has effect of atomically performingeadDevice(offset) operation
followed by avalue() operation.

c. write(value): has effect of performing\alue(val) operation followed by arit-
eDevice() operation.

d. write(value, offset): has effect of performing\alue(val) operation followed by a
writeDevice(offset) operation.

116 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

These changes are reflected in the sections describing |0Channel and its subclasses,
all of which were removed from a subsequent revision of this document.

5. Establish better consistency between the use of interfaces and the use of classes.
Note that we have |IOEventHandlerInterface which isimplemented by SporadicTask,
PeriodicTask, and InterruptTask; and we have |OEventinterface which isimplemented
by InterruptEvent, SporadicEvent, and PeriodicEvent. We should also have [OInterface
which isimplemented by I0Channel. These changes are reflected in the sections
describing I0Interface and I0Channel, both of which were removed from a subse-
guent revision of this document.

6. Add adisable() method to |OInterface and |OChannel. This change isreflected in the
sections describing I0Interface and I0Channel, both of which were removed from a
subsequent revision of this document.

7. Useaspecia subclass of IONode named IONodeLeaf to represent leaf nodes within
the IONode hierarchy. These are different from interior nodes in the following
respects:

a. Only leaf nodes have an associated I0DeviceDescription object.

b. Only leaf nodes keep track of which interrupt numbers are associated with the
node. Since multiple interrupts may be associated with a given device, this
information is represented as a string, encoded in the leaf IONode’s constructor
according to the conventions demonstrated in the following example:

int-1:int-2:int-3=5:1:1
This example shows three interrupts, nannétl, int-2, andint-3, which are
associated with interrupt numbers 5, 1, and 1 respectively. The corresponding
IODeviceDescription object should have entries by these same names, with each
entry having an attribute namégpe”, for which the associated value is “Inter-
rupt”.
c. When leaf nodes are constructed, they do not need to specify mem_range and

io_range arguments. These ranges are instead represented in the corresponding
IODeviceDescription object.

d. Only leaf nodes are allowed to create IOChannel proxies (instantiate subclasses
of 10Channel).

These changes are reflected in the sections describing IONode and IONodeLeaf, both
of which were removed from a subsequent revision of this document.

8. Replace the IONodeLeaf.createlO() method with multiple methods, each one return-
ing an instance of a different IOChannel subclass. Each of these methods takes argu-
ments indicating:

a. Whether readDevice() and writeDevice() operations on the IOChannel object are
implicit or explicit.

b. Whether the I0Channel object represents read permission.

c. Whether the I0OChannel object represents write permission.

d. Whether the I0OChannel object represents exclusive access to the given channel.

Further, remove implicit and exclusive mode information from the 10DeviceDescrip-
tion representation.

These changes are reflected in the sections describing IONode and I0Interface, both
of which were removed from a subsequent revision of this document.

Real-Time Core Extensions 117

History

9. Fix the descriptions of IONode.createlOxxx() and IONode.createlnterrupt(). The current
revision says createlO() instantiates an InterruptEvent and createlnterrupt() instantiates
asubclass of I0Channel. Reverse these. These changes are reflected in the section
describing IONodeLeaf, which was removed from a subsequent revision of this doc-
ument.

10. For al of the IONodeLeaf.createlOxxx() operations, use the entry-name within the
corresponding |0DeviceDescription to identify the I/O channel to be created. Allow a
forward slash followed by a sequence of decimal digitsto be appended to the end of
the entry name. If present, this sequence of digits represents an offset from the base
address associated with the channel range. For example, the following two code
seguences are equivalent:

I Version 1
I01Bit m_proxy = IONodeLeaf xx.createlO1Bit(“entry-name”, ...);
m_proxy.readDevice(7);

I Version 2
I01Bit n_proxy = IONodeLeaf xx.createlO1Bit(“entry-name/7”, ...);
n_proxy.readDevice();

This change is reflected in the section describing IONodeLeaf, which was removed
from a subsequent revision of this document.

11. Add anew constructor for IONode and IONodeLeaf which does not include argu-
mentsto specify theio_offset and io_range arguments. If these are not specified, they
default to 0 and the size of parent nod@srange respectively. For the root node,
which doesn’t have a parent, these default to represent the beginning and end of the
range of valid I/O-space addresses for the host platform. These changes are
reflected in the sections describiliNode andIONodeLeaf, both of which were
removed from a subsequent revision of this document.

12. Add anlONodeLeaf.createPeriodic() method. Among its arguments is an entry name.
The named entry must have an attribute nattyee’ with value “Periodic”. Addi-
tionally, the entry must have an attribute named “timer” for which the string argu-
ment isthe name of the class to be instantiated. If the class is named “PeriodicEvent”,
the created PeriodicEvent shall use the default system timer. Otherwise, the named
class must be a subclass of PeriodicEvent, and may use adifferent timer than the sys-
tem default. The public constructor for PeriodicEvent has been removed. This
changeisreflected in the section describing IONodeLeaf, which was removed from a
subsequent revision of this document.

13. Add an IONode.createSporadic() method. Among its argumentsis an entry name. The
named entry must have an attribute named “type” with value “Sporadic”. Additionally,
the entry must have an attribute named “trigger” for which the string argument is the
name of the class to be instantiated. If the class is hot named “SporadicEvent”, the
named class must be a subclass of “SporadicEvent”. The public constructor for Spora-
dicEvent has been removed. This change is reflected in the section describing ION-
ode, which was removed from a subsequent revision of this document..

14. Change the conventions for representation of information within I0DeviceDescrip-
tion.

a. For entriesthat represent 1/0O proxies, there shall be no required attribute
named “address”. Instead, there shall be an attribute named “offset’, whose value
isthe byte offset relative to the corresponding IONode’s base address of this

118 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

15.

16.

17.

18.

19.

20.

21.

channel, encoded as a sequence of lower-case hexadecimal digits with alead-
ing “0x” prefix. If thislODeviceDescription’s “mode” attribute has the IOMemory-
Mapped bit set, the “offset” field is computed relative to the IONode’s base
memory address. Otherwise, th#iset” field is computed relative to the ION-
ode’s base I/O address.

b. For entries that represent I/O proxies, ‘thede” attribute shall encode only the
values of the I01Bit, I08Bit, I016Bit, I032Bit, I064Bit, IOReadPermission, IOWriteP-
ermission, and IOMemoryMapped bit fields. It shall not represent the values of the
IOImplicit and I0Exclusive fields.

c. If aparticular entry represents an interrupt vector, it must have an attribute
named “type” with value equal to “Interrupt”. The interrupt number associated
with thisinterrupt shall be determined by the corresponding IONode’s represen-
tation.

These changes are reflected in the sections desci@egiceDescription andlOlnt-
erface, both of which were removed from a subsequent revision of this document.

IODeviceDescription should specify the range of memory and 1/0O addresses relative
to the parent’s respective base addresses. Thus, there is no need to supply range
arguments when constructing a leaf node of@h\ede hierarchy. These changes

are reflected in the sections describi@jyodeLeaf andlODeviceDescription, both of
which were removed from a subsequent revision of this document.

Make the Core Verifier be required in any conforming implementation of the Core
development environment. In particular, Core Verification must be performed on
each Core program before execution of that program. These changes are reflected
in Section C.4 (starting on page 138) and Section 3.5.1 (starting on page 18).

Change the behavior @breTask.setPriority(). If the task for whictsetPriority() is
invoked is running within a priority ceiling context whgaPriority() is invoked, the
effect ofsetPriority() shall be deferred until after that task leaves its priority ceiling
context. This change is reflected in Section 3.17.23 (starting on page 88).

The previous revision of the specification states that time slicing shall be inhibited
while the currently executing task executes within a priority ceiling context. While
this is a reasonable implementation, it is not the only feasible way to implement the
desired semantics. The key requirement is to enforce that priority ceiling regions
are executed with mutual exclusion, and leave it to the discretion of implementors
to enforce this behavior. This change is reflected in Section 3.8 (starting on page
21).

The constructor fointerruptTask should not take aATCEventHandler argument,

since thdnterruptTask’s work method always runs to completion with asynchronous
event handling deferred. This change is reflected in Section 3.17.24 (starting on
page 94).

ChangescopedException to extendCoreException instead oforeError. This change is
reflected in Section 3.17.27 (starting on page 100).

Add enable() anddisable() methods tccopedException. These have the following
semantics:

a. If an ATCEventHandler attempts to throw &copedException that has been dis-
abled, the effect is to simply return from #ECEventHandler (returning to the
code that had been executing so it can resume execution, as if the event had
never been signaled).

Real-Time Core Extensions 119

History

b. Theactivation frame from within which a ScopedException is enabled repre-
sents the only scope that can catch the exception. A catch clause contained
within any other invoked method’s activation frame is unable to see this
scoped exception. If an object is enabled multiple times, the most recent
enabling is the one that establishes its context. Enabling and disab8og of
pedException objects does not nest.

c. When aScopedException is instantiated, it is automatically enabled in the con-
text from within which the object was constructed.

d. Whenever a method'’s activation frame is removed from the run-time stack, all
of the ScopedException objects that are enabled for that specific activation
frame are automatically disabled. This is done atomically with respect to han-
dling of nested ATC events.

These changes are reflected in Section 3.17.27 (starting on page 100).

22. Update Table 1 on page 35 to represent all of the methods of all classes in the Core
API libraries.

23. Several typographic errors were corrected.

A.10 Revision 1.0.5

During the week of Jan. 10, 2000, members of the Real-Time Java Working Group were
asked to review revision 1.0.4 and the public review comments in preparation for final-
izing the specification. This revision results from observations made by participants of
the Real-Time Java Working Group during this review period. This revision has not
been approved by the Real-Time Java Working Group membership.

1. The core NIST requirements state that the core specification must identify the
resource requirements associated with services provided within the real-time core
execution environment. This has been missing from previous versions of the core
specification. Add it. This change is reflected in Section 3.14.2 (starting on page
34).

2. Exchange the definitions @oreTask.stackSize() andCoreTask.stackDepth(). This
change is reflected in Section 3.17.23 (starting on page 88).

3. Add asizeof() method taCoreObject. This change is reflected in Section 3.17.1
(starting on page 60).

4. Add anallocated() method tcAllocationContext. This change is reflected in Section
3.17.8 (starting on page 68).

5. Change the signature AfiocationContext.available() to returnlong. This change is
reflected in Section 3.17.8 (starting on page 68).

6. Clarify description of constructor féfTCEventHandler. This change is reflected in
Section 3.17.14 (starting on page 75).

7. Clarify description of constructor féfTCEvent. This change is reflected in Section
3.17.15 (starting on page 76).

8. Modify behavior ofCoreRegistry.publish() to assure that the memory used to repre-
sentCoreRegistry data structures is not released prematurely.

9. MakePeriodicTask implement thdOEventHandlerInterface. Remove itexecutionPe-
riod() andnumberOverruns() methods. These changes are reflected in the section

120 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

describing PeriodicTask, which was removed from a subsequent revision of this doc-
ument.

Add the numberOverruns() method to PeriodicEvent. In the same class, modify the
return type of the handler() method to be PeriodicTask. This changeisreflected in the
section describing PeriodicEvent, which was removed from a subsequent revision of
this document.

In I0Eventinterface, rename SoftwareEventCode to be SporadicEventCode. Rename
TimerEventCode to be PeriodicEventCode. Replace mention of SoftwareEvent with
SporadicEvent. Revise the signature of exchangeHandler() to throw CoreOperationNot-
PermittedException. These changes are reflected in the section describing IOEventint-
erface, which was removed from a subsequent revision of this document.

Add agetType() method to IOEventHandlerinterface. Define symbolic constantsin this
same classfor SporadicTaskCode, InterruptTaskCode, and PeriodicTaskCode. Definethe
getType() method for SporadicTask, InterruptTask, and PeriodicTask. These changes are
reflected in sections describing IOEventHandlerInterface, PeriodicTask, SporadicTask,
and InterruptTask, all of which were removed from a subsequent revision of this doc-
ument.

Correct the description of I0Channel.mode() to properly identify that 7 bits are
required to represent the channel width. This change isreflected in the section
describing 10Channel, which was removed from a subsequent revision of this docu-
ment.

Make clear in the description of CoreTask that the start() and _start() methods do not
result in immediate execution of the work() method for PeriodicTask, InterruptTask,
and SporadicTask subclasses. This changeisreflected in Section 3.17.23 (starting on
page 88).

Change the signature of SporadicEvent.handler() to return SporadicTask. This change
isreflected in the section describing SporadicEvent, which was removed from a sub-
sequent revision of this document.

Remove the constructors for InterruptEvent and all IOChannel subclasses. These
changes are reflected in sections describing InterruptEvent, IOChannel, and all of the
IOChannel subclasses, all of which were removed from a subsequent revision of this
document.

Add createlO() and createlnterrupt() methods to the IONode class. These changes are
reflected in the section describing I0Node, which was removed from a subsequent
revision of this document.

Add a symbolic constant named |OExclusive to the IOChannel class. This changeis
reflected in the section describing I0Channel, which was removed from a subse-
guent revision of this document.

Remove attributeConstants() from the lODeviceDescription class. Add entryNames() and
modify the definition of attributeNames(). These changes are reflected in the section
describing 10DeviceDescription, which was removed from a subsequent revision of
this document.

Remove arminterrupt() and disarminterrupt() from the InterruptEvent class. These
changes are reflected in the section describing InterruptEvent, which was removed
from a subsequent revision of this document.

Remove the value(x) method from all read-only subclasses of I0Channel. Remove
the value() method from all write-only subclasses of I0Channel. Require that 1-bit I/

Real-Time Core Extensions 121

History

22.

O objects be configured for implicit I/0. These changes are refl ected in the sections
describing I0Channel and its subclasses, all of which were removed from a subse-
guent revision of this document.

Miscel laneous typographic, spelling, and punctuation fixes, along with improve-
ments to indexing.

A.11 Revision 1.0.4

A meeting of the Real-Time Java Working Group was held on Jan 7, 2000. At this meet-
ing, the group surveyed the changes incorporated in Revision 1.0.3. A few minor editing
changes were requested, which are incorporated in Revision 1.0.4.

1.

Remove al references to DeviceRegistry and DeviceCapability as these classes have
been removed from the specification.

Add cross references to point 34 of Section A.12 (starting on page 122).
Fix afew typographic and formatting errors.

A.12 Revision 1.0.3

A meeting of the Real-Time Java Working Group was held on Dec. 7, 1999. The pur-
pose of this meeting was to review comments received during the public review period
for Revision 1.0.2. Revision 1.0.3 was prepared in response to the received comments.
Specific issues with the 1.0.2 revision which have been addressed in the 1.0.3 revision
arelisted here.

1.

The prohibition on string catenation in Core components is too severe. We need to
allow catenation of string literals, aslong as the catenation is performed by the
Baseline Compiler. This change is reflected in paragraph 6 of Section 3.2 (starting
on page 8) and paragraph 18 of Section 3.5 (starting on page 15).

Therequirement that entry into and departure from a synchronized context not alo-
cate memory needsto generalize to apply to locking and unlocking operations per-
formed on Mutex objects as well. This change is reflected in paragraph 2 of Section
3.8 (starting on page 21).

The prohibition on use of synchronized statements to lock Atomic objects other than
this needs to generalize to apply to all Core objects. Furthermore, the wording of
this requirement needs to be edited so asto allow the synchronized statement to lock
this object. This change is reflected in paragraph 3 of Section 3.8 (starting on page
21).

The discussion of synchronization issues must include the possibility that a blocked
task becomes runnable because some other task signals an asynchronous event to
this blocked task. This changeisreflected in paragraph 4 of Section 3.8 (starting on
page 21).

Introduce the notion of asynchronoustransfer of control, asit has been proposed for
inclusion in the Core specification. These changes are reflected in newly drafted
Paragraph 5 of Section B.2 (starting on page 127), Section C.17 (starting on page
146), Section 3.17.14 (starting on page 75), and “The Event Class” (since
removed); and in modifications of Section 3.17.23 (starting on page 88) and Sec-
tion 3.17.27 (starting on page 100).

122 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

10.

11.

12.

13.

14.

15.

16.

Mention that atask may become runnabl e because some other task signals an asyn-
chronous event. This change is reflected in Section 3.8 (starting on page 21), para-
graph 4.

Add away to timeout a Mutex.lock() invocation. This is handled by introduction of
the asynchronous transfer of control mechanism (See paragraph 5).

Add a CoreTask.join() method, along with away to timeit out. This change is
reflected in Section 3.17.23 (starting on page 88). The timeout capability is pro-
vided by the asynchronous transfer of control mechanism (See paragraph 5).

Say that when CoreObject.notifyAll() awakens multiple tasks of equal priority, they
are awakened in FIFO order. This change isreflected in Section 3.8 (starting on
page 21), paragraph 4.

The special treatment given to thrown CoreError objects during execution of afinally
statement that is part of the cleanup associated with asynchronous abortion of atask
needs to generalize to all exceptions thrown during execution of finally statements
executing in this cleanup mode. Generalizing this behavior allows the Core specifi-
cation to relax its prohibition on invoking other methods from within finally state-
ments. Accompanying this change, we need to modify the Core specification to
allow Core finally statements to invoke other methods. This change is reflected in
paragraph 4 of Section 3.11 (starting on page 25).

Add discussion regarding asynchronous abortion that execution of finally statements

is “abort deferred”. If an asynchronous abort request is received during execution
of afinally statement, the executing thread does not respond to the abort request until
after thefinally statement has completed its execution. (This is consistent with the
general notion thdinally statements are always executed to termination, and are
never aborted by asynchronous requests.) This change is reflected in Section 3.11
(starting on page 25).

Allow for the possibility that some implementations of the Core specification do

not support time slicing. tcksPerSlice() returns zero, that means time slicing is dis-
abled. These changes are reflected in Section 3.17.20 (starting on page 81) and Sec-
tion 3.17.23 (starting on page 88).

Make clear that if a multi-dimensional array is considered tstdnkable, all

dimensions are considereidckable. This change is reflected in Section 3.12 (start-
ing on page 27).

Explain why the inner-class stack-allocation example presented by Aonix is not a
valid Core program, and consequently why the example does not represent a loop-
hole in the Core specification. These changes are reflected in Section C.6 (starting
on page 141) and Section 3.12 (starting on page 27).

Delete the requirement that “support for the Core specification and all profiles be
all or nothing. This is confusing and misleading. In the same paragraph, and
throughout the document, substitute “conform to” for “comply with”. To many
readers, “comply with” suggests the Sun Microsystems style of conformity assess-
ment, which depends on demonstrating compatibility with a “reference implemen-
tation”. Instead, the J Consortium defines conformance in terms of the
specification, as demonstrated through execution of appropriate test suites. These
changes are reflected in paragraph 3.f of Section B.2 (starting on page 127).

State that all run-time error exceptions that are thrown by official Core API librar-
ies are pre-allocated. It is important to establish this in order to assure deterministic

Real-Time Core Extensions 123

History

execution of Core applications. These changes are reflected throughout the docu-
ment, in the descriptions of each method that might throw an exception. Summary
overview comments are provided in Section 3.17.27 (starting on page 100).

17. Specify the Core priority semantics in terms of “Base” and “Active” priorities, as
suggested in comments submitted by Aonix. These changes are reflected in Section
3.7 (starting on page 21).

18. Specify exactly when @oreTask’s allocation context is released, so that its memory
may be reclaimed. FdreriodicTask, InterruptTask, andSporadicTask, the task’Alloca-
tionContext is released after the taskisp() method has been executed. EoreTask
tasks which do not extend from any of the above three subclasses, the allocation
context is released upon termination of woek() method, which may be triggered
by several different events. These changes are reflected in Section 3.17.8 (starting
on page 68).

19. Specify forAllocationContext that if the size is specified when thkocationContext is
created, the allocation region will be contiguous and allocation requests will be
served in constant time. These changes are reflected in Section 3.17.8 (starting on
page 68).

20. For AllocationContext, provide an option to allow programmers to specify the loca-
tion, in memory, of the allocation region. For example, the application developer
may desire that particul&tlocationContext regions reside in fast local memory.

These changes are reflected in Section 3.17.8 (starting on page 68).

21. The priority interleave stuff is too confusing and probably not sufficiently general.
Replace priority interleave with an array that provides a one-way map from core
priorities to operating system priorities. These changes are described in Section
3.17.20 (starting on page 81) and Section 3.17.23 (starting on page 88). See the
descriptions ofonfiguration.system_priority_map andCoreTask.systemPriorityMap().

22. Make the Core Static Linker reject invocationsidbadClass() andloadClass().
(Developers who are using the Core Static Linker are not supposed to be using
dynamic class loading and unloading.) These changes are reflected in Section
3.17.6 (starting on page 65). See the descriptions ddati@ass() andunloadClass()
methods oforeClass.

23. Throughout the document, replace uses of the word “prototype” with the word “sig-
nature” in all contexts that are speaking of Java source code. This change is
reflected throughout the document.

24. Get rid ofOngoingTask. UseCoreTask to implement the behavior originally intended
for OngoingTask. This change is reflected in Section 3.17.23 (starting on page 88).

25. Define aSporadicTask class, which extends fro@oreTask. This is likelnterruptTask
except it is intended to be triggered by software and it does not require execution-
time analyzable implementations of thek() method. This change is reflected in
Section 3.17.25 (starting on page 97).

26. Allow the _start() Core Baseline method f&eriodicTask, InterruptTask, andSporad-
icTask in addition to allowing this fo€oreTask. This change is reflected in Section
3.17.23 (starting on page 88).

27. RemovependingCount() andclearPendingCount() from Interrupt. Also, removehardwa-
renterruptBuffer(). These are not necessarily portable across all targeted platforms.
These changes are reflected in the section descitifigngptEvent, which was
removed from a subsequent revision of this document.

124 Copyright 1999, 2000 J Consortium, All Rights Reserved

History

A.13

28.

29.

30.

31.

32.

33.

34.

Explain that by default, all interrupts (which are armed at startup) are handled by
interrupt handlers that provide implementation-defined behavior. This changeis
reflected in the section describing InterruptEvent, which was removed from a subse-
guent revision of this document.

For the Unsigned class, rename the equal() method as eq(). Add ge(), le() and neq()

methods to the Unsigned class. These changes are reflected in Section 3.17.22 (start-

ing on page 85).

Be more explicit in describing overflow conditions for the Unsigned class’soByte(),
toShort(), andtoInt() methods. These changes are reflected in Section 3.17.22 (start-
ing on page 85).

For interrupt handlers, support an atomichangeHandler() method to allow atomic
changing of the routine responsible for handling interrupts. (Atomicity is measured
with respect to triggering of the interrupt. Each trigger is handled either by the orig-
inal handler or the new handler. No triggers are ignored, and no trigger is handled
by multiple handlers.) This change is reflected in the section deschimapt-

Event, which was removed from a subsequent revision of this document.

Create a neWoreTask constructor that allows the option of specifying the size of
the default allocation context for the task. Be sure to define appropriate variants of
this constructor foPeriodicTask, InterruptTask, andSporadicTask. These changes are
reflected in Section 3.17.23 (starting on page 88), the sections desésbiug

icTask andInterruptTask, both of which were removed from a subsequent revision of
this document, and Section 3.17.24 (starting on page 94).

For Core profiles, specify that official J Consortium profiles are named using the
org.j-consortium prefix rather than therg.rtjiwg prefix. This change is reflected in
Section 3.17.16 (starting on page 76).

Refine the definition of thE®©Channel system for improved compatibility with the
Real-Time Access profile. These changes are reflected in a number of sections
which were removed from a subsequent revision of this document.

Revision 1.0.2

Revision 1.0.2 of this document was published September 27, 1999. This was the first
revision intended specifically for official public review.

Real-Time Core Extensions 125

Requirements for the Core Specification

Annex B

Requirements for the Core Specification

B.1

The Working Principles of the Real-Time Java Working Group

The Real-Time Java Working Group’s working principles follow:

1.

Real-time Java programs written in Core notations must support limited coopera-
tion with programs written in the Baseline language on the same Java virtual
machine. The specification for Core extensions shall enable implementations in
which execution of Core components in cooperation with Baseline components
does not degrade the performance of either the Core or Baseline components.

Programs written for the Core extensions must support limited cooperation with
programs written according to the specifications for higher level real-time Java pro-
files (subject to resource availability and contention issues) in environments that
implement these optional real-time profiles. The specification for Core shall enable
implementations in which execution of Core components in cooperation with com-
ponents written for higher-level real-time profiles does not degrade the perfor-
mance of either the Core components or the higher-level real-time profile
components.

Core extensions offer “minimal latency”, where latency means the least upper
bound on the time (the longest time) required by a Core interrupt handler to respond
to an asynchronous event. We quantify our expectation for minimal latency as fol-
lows: The semantics of the real-time core shall be sufficiently simple that interrupt
handling latencies and context switching overheads for programs running in the
Core Execution Environment can match the latencies and context switching over-
heads of today’s RTOS products running programs written in C or C++. As a point
of reference, we expect that commercial implementations of the Core extensions
shall demonstrate that this objective has been achieved.

Core real-time extensions shall offer “maximal throughput”. Support for maximal
throughput means the Core specification shall enable implementations that offer
throughputs that are essentially the same as are offered by today’s optimizing C++
compilers, except for semantics differences required, for example, to check array
subscripts.

Real-time Java programs that are written using Core extensions need not incur the
run-time overhead of coordinating with a garbage collector. Among the overheads
that shall not be required by the Core specification are (1) read and write barriers on
access to dynamically allocated objects and stack locations, (2) garbage collection
scanning of run-time stacks, and (3) pointer identification information required to
support garbage collection.

Baseline components and components written for yet-to-be-defined higher-level
real-time profiles shall be able to read and write the data fields of objects that reside
in the Core “object space”, where access could be restricted to accessor and setter
methods. Code written for the Core Execution Environment need not be able to
read or write the data fields of objects that live in the Baseline object space.

In the Core domain, it might not be possible for the programming language com-
piler or run-time environment to enforce compliance with protocols that enable reli-
able coordination between independent software components. Protections shall be
put in place to prevent programmers who are using Baseline programming nota-

126

Copyright 1999, 2000 J Consortium, All Rights Reserved

Requirements for the Core Specification

tions from compromising the reliability of components written to use the Core
extensions.

Components written for execution in the Core environment shall run on awide
variety of different operating systems, with different underlying CPUs, and inte-
grated with different supporting Baseline virtual machine implementations. Fur-
thermore, it isimportant to enable the creation of applications that are composed of
a combination of Core and Baseline components. Therefore, there shall be away
for Baseline components to load and execute Core components. There shall be a
documented entry point which allows Core components to be run without change
on competing platforms adhering to this Core specification. (e.g. Browsers have the
Applet as acode entry point, and a Browser supports more than one Applet concur-
rently. We need to have something like an Applet, but GUI-less.)

Program components written for execution in the Core Execution Environment can
be dynamically loaded and unloaded within Dynamic Core Execution Environ-
ments.

B.2 Additional Requirements

Subsequent to the RTIWG Meeting in which the original nine working principles were
identified, additional requirements were introduced into the group’s set of constraints.
These are identified here:

1.

The Core specification shall support the ability to perform stack allocation of
dynamic objects under programmer control. It is implementation-defined whether
particular implementations of the Core Execution Environment honor programmer
requests to allocate objects on the stack.

The Core specification shall be designed to support a small footprint, requiring no
more than 100K for a typical Static Core Execution Environment.

The Core specification shall enable the creation of profiles which expand or sub-
tract from the capabilities of the Core foundation.

a. The description of each profile must clearly identify whether it resides in the
Core Execution Environment (e.g. safety critical) or in the Baseline virtual
machine (e.g. real-time garbage collection), or both.

b. The Core specification shall provide support both for profiles officially sup-
ported by the J Consortium and proprietary or 3rd party profiles.

c. Profiles shall be named using reverse domain hame conventions (e.g.
com.aonix.high_integrity).

d. There shall be an API available to Baseline programmers to allow Baseline
components to determine which profiles are supported by a particular Core
Execution Environment.

e. There shall be an API available to Core programmers to allow Core compo-
nents to determine which profiles are supported by a particular Core Execution
Environment.

f. If a particular Core Execution Environment claims to conform to the Core
specification, it shall support all features of the Core specification. If a particu-
lar Core Execution Environment claims to support a particular profile, it shall
support all features of that profile’s specification.

Real-Time Core Extensions 127

Requirements for the Core Specification

g. Each profile may add to or disable certain specified capabilities of either or
both of the Core or Baseline domains. The description of the Core specification
shall enumerate which of the specified capabilities might be disabled by
“acceptable profiles” (e.gAllocationContext.release(), stackable, disabling of
stack overflow checking, configuration of tick and time slice duration, support
for suspending and resuming tasks).

h. A cursory review (perhaps the registration authority provides a registry of
which profiles are known to disable capabilities, and all profiles not identified
by the registration authority must be considered “unknowns”) of the profiles
supported by a particular Core Execution Environment reveals whether the
profiles disable particular capabilities. A correctly written Core application
shall run on any Core Execution Environment for which none of the supported
profiles disables any of the officially specified Core capabilities. For each pro-
file that is known to disable particular Core capabilities, a mechanism shall be
available for determining exactly what capabilities are missing from the Core
Execution Environment.

4. The requirements for Core dynamic class loading facilities are as follows:

a. Support for dynamic class loading in a Core Execution Environment shall be
optional.

b. The dynamic class loader for the Core Execution Environment shall be imple-
mented as a Baseline component. This means that dynamic class loading shall
not be available in Core Execution Environments that are not paired with a
Baseline virtual machine.

c. The Core APIs for dynamic class loading shall support flexibility regarding
where and how dynamic classes are loaded. Integrators of Core Execution
Environments shall be able to configure the Core Execution Environment to
specify where to search for and how to obtain the class files that are to be
dynamically loaded.

d. The Core dynamic class loader need not be as sophisticated or general as the
Baseline class loader. In particular, we do not anticipate the need for applica-
tion-specific core class loaders. Instead, the Core dynamic class loader shall
allow integrators to define an implementation-specific core class loader that
serves all core class loading needs of a particular implementation of the Core
Execution Environment.

e. All Core classes shall be fully resolved and initialized at the time they are
dynamically loaded.

5. Requirements for Core asynchronous transfer of control are as follows:

a. Asynchronous transfer of control shall apply only when the affected code per-
mits asynchronous transfer of control. Asynchronously transferring control out
of code that was not designed for the possibility of asynchronous transfer of
control might introduce program logic inconsistencies.

b. There shall be a mechanism to allow Core application programmers to estab-
lish syntactic contexts within which asynchronous transfer of control shall be
deferred. If some other task requests asynchronous transfer of control while
this task is executing within a deferral context, the control transfer is delayed
until this task completes execution of the code contained within the deferred
context.

128 Copyright 1999, 2000 J Consortium, All Rights Reserved

Requirements for the Core Specification

c. Theasynchronous transfer of control mechanism shall support common pro-
gramming idioms, such as abortion of atask, timing out of a code sequence
(including nested timeouts), mode change for a particular task, and software
interrupt during code.

d. Theasynchronous transfer of control mechanism shall prevent unintended
catches of any exceptions that are used in the implementation of asynchronous
transfer of contral, if the asynchronous transfer of control mechanism relies
upon exceptions.

e. Theasynchronous transfer of control mechanism must address the question of
whether nested timeouts work properly.

f. Theasynchronous transfer of control mechanism shall be easy for Core pro-
grammersto use and understand.

g. Therun-timeimplementation costs of asynchronoustransfer of control shall be
paid primarily by those components that make use of this mechanism. The run-
time overhead imposed by the asynchronous transfer of control implementa-
tion on Core components that do not use this feature shall be minimal.

h. Theasynchronoustransfer of control mechanism shall provide away to protect
against stack overflow caused by asynchronous event handling by stack-lim-
ited Core tasks.

i. Theasynchronous transfer of control mechanism shall provide away for Core
application programmers to establish contexts within which particular context-
specific asynchronous event handlers are relevant and enabled.

j- Itisrequired that the asynchronoustransfer of control mechanism support
abortion of the currently executing task. It is desirable (but not required) that
asynchronous transfer of control support resumption semantics (for which the
origina Core component is resumed following execution of the event handler).

Real-Time Core Extensions 129

Background and Rationale

Annex C

Background and Rationale

Cl1

C.l1

C.2

Historical Background

Since June of 1998, the U.S. National Institute of Standards and Technology has been

hosting regular meetings of the “Requirements Group for Real-time Extensions for the
Java™ Platform”. This group includes representatives from 37 different companies. For
additional information on the NIST requirements group, refer to its web pioé:
www.nist.gov/rt-java.

Using a consensus-based approach, the NIST-sponsored group has drafted a document
detailing requirements for real-time extensions for the Java platform. These require-
ments represent the collective input of technology suppliers, technology users, and the
academic research community.

NIST Requirements for the Real-Time Core

Members of the NIST-sponsored group recognize that the needs of the real-time indus-
try are varied and diverse. Satisfying all of the needs of the entire prospective user com-
munity will require monumental effort. Further, the needs of particular constituencies
conflict with the needs of others. In recent meetings of the NIST group, the consensus
position has been to partition real-time extensions into a real-time core and a collection
of optional real-time profiles. Throughout this document, we use the term “Core” to rep-
resent the APl and special syntaxes and restrictions associated with the real-time core.
According to consensus positions reached at the NIST meetings, key characteristics of
the real-time core are:

1. The real-time core shall provide services of the sort that are typically provided by
commercially available real-time operating systems. The core shall not endeavor to
“advance the state of the art” in development of real-time software.

2. The real-time core shall be simpler to implement than the full range of capabilities
that are required by the NIST group’s requirements document.

3. The real-time core shall provide a foundation upon which more sophisticated
higher level real-time capabilities would be constructed as optional profiles.

It should be noted that the real-time core does not address all of the requirements of the
NIST document. It is specifically intended to address only the above subset of the full
set of requirements. The intent is that the many NIST requirements that have not been
addressed in the core requirements will be addressed by higher level real-time profiles
which supplement the real-time core.

The consensus positions resulting from the NIST requirements meetings are described
in Reference 1.

NCITS Principles for Real-Time Core

On January 11, 1999 (before the formation of the J Consortium), a subcommittee of the
Real-Time Java Working Group met to discuss the core requirements of the NIST

requirements group and to begin work on a straw man specifi&amme of the results

130

Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

of that meeting was a document titled “Consensus Positions of the Real-Time Java
Working Group: Scarecrow (1/11/99)". That document, which describes the group’s
general recommendations for a specification for Core real-time extensions, was submit-
ted to the NCITS R1 committee, and was assigned document reference number R1/99-
007.

Document R1/99-007 was prepared in anticipation of NCITS approval of proposed
standardization work for real-time Core. However, on January 15, 1999, NCITS
announced that its members had voted to reject the proposed standards activities.
Among the reasons cited by those who voted against the effort, the principal objections
were as follows:

1. There was a question of whether it would be possible to create a specification for
real-time Core which did not infringe on Sun Microsystems’ intellectual property
rights.

2. Concern was raised that if it were possible to create a real-time Core specification
that does not infringe on Sun Microsystems’ intellectual property, the specification
would necessarily be sub-optimal in comparison with a specification that might be
developed by Sun Microsystems, which would not have to work around possible
intellectual property issues.

3. Concern was raised that Java standardization work carried out within NCITS might
fragment the Java marketplace.

Even though NCITS rejected the proposed standardization work, members of the Real-
Time Java Working Group felt it was important to continue work on refining a draft
specification for Real-Time Core Extensions for the Java Language in order to address
the concerns that had been raised by the NCITS voting membership.

This specification grows from the NCITS R1/99-007 document. In this document, we
expand and clarify on the points of R1/99-007. Additionally, this document reflects
changes to the recommendations of R1/99-007 as have been motivated by feedback col-
lected as part of the public review process.

The Real-Time Java Working Group recognized that there was considerable flexibility
in fulfilling the NIST group’s core requirements. In order to narrow the breadth of
opportunity, this group formulated a list of principles for real-time Core. These princi-
ples, which are described in Section B.1, are intended to supplement and clarify the
NIST requirements.

In general, the Real-Time Java Working Group took the position that real-time Core
would address the needs of a particular important class of real-time programs that are
characterized by the following attribute:

1. At that time, the Real-Time Java Working Group was a group of companies who shared a common interest in advancing the art of
real-time programming with the Java language. Most of the core members of the Real-Time Java Working Group a so participated
in the NIST meetings that produced the NIST requirements document and have now joined the J Consortium to continue work
under its sponsorship.

Real-Time Core Extensions 131

Background and Rationale

Nearly all dynamic memory isallocated during initialization of the program, and
following initialization of the program, no further dynamic memory management is
required.

The significance of this observation is mainly to justify the exclusion of real-time gar-
bage collection from the Core specification. It is not to say that the Core specification
should not provide any support for any form of dynamic memory management. The
Core specification shall not be prohibited from providing support for dynamic memory
management, and to the degree that limited forms of dynamic memory management can
be supported without compromising other guiding principles, that is desirable.

Specific comments and rationale for each of the guiding principlesis presented here:

1. Regarding guiding principle number 1, we emphasize that neither the semantics nor
the typical implementation of the Baseline language is appropriate for rea -time
programming. Though it might be possible to redefine the semantics of the Base-
line language to make it more appropriate for real-time programming, it is the posi-
tion of the RTIWG that this would not be practical. A key obstacle isthe legacy
now supported by the Baseline language. This legacy aready includes millions of
lines of existing Java source code and hundreds of licensees of Sun’s Java technol-
ogies, most of whom have little interest in the specialized niche needs of the real-
time community. For this reason, we make a strong distinction between Baseline
programming and Core programming, and we state the requirement that these two
worlds be able to cooperate with each other.

2. Though the J Consortium has not yet defined the services to be provided by each of
the higher level real-time profiles mentioned in this paragraph, the NIST Require-
ments document (See Reference 1) states that high-level profiles shall support
deadline driven task scheduling; so-called negotiating components; and accurate,
defragmenting, paced garbage collection.

Of key importance is the observation that satisfying the first working principle is
significantly easier than satisfying the second. One reason for this is that the gar-
bage collection requirements for the Baseline platform are very lax in comparison
with the likely garbage collection requirements for a high-level real-time profile.
The more sophisticated garbage collection required by high-level real-time profiles
generally imposes higher penalties on both latency and throughput.

3. As originally introduced to the NIST requirements group, the intent of Core exten-
sions is to provide services equivalent to what is currently offered by commercially
available off-the-shelf real-time operating systems. During the past decade, real-
time operating system vendors have been pushed by their customers to compete in,
among other areas, interrupt response times and context switching efficiency. In
order to satisfy these same customers who drove this marketplace competition, we
felt it important to address these same requirements.

Feedback received in response to distribution of the R1/99-007 document has
requested that we characterize minimal latency and maximal throughput in terms of
Java overheads rather than describing the total cost resulting from the combination
of RTOS services with Java overheads. In those terms, this principle essentially
states that the Core extensions shall be defined such that implementations are possi-
ble in which the scheduling and context switching overhead of real-time Core tasks

is zero.

132 Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

4. Thisobjective, likethe onethat precedesit, is motivated by theintent to addressthe
demands of current users of real-time operating systems.

We recognize that there are certain semantic differences between the Java language

and C++. One example is the behavior of array subscript operations. In the Java

language, the array subscripting operation implies an array subscript bounds check.

In C++, it doesn't. Thus, this operation has different semantics between the Java
and C++ languages. Given that the operation has different semantics, we do not
expect equivalent performance; the two languages are doing different things. How-
ever, the Core specification shall enable implementations of instance method invo-
cation and field access for dynamically allocated objects that perform with
performance equivalent to that of C++.

Feedback received in response to distribution of the R1/99-007 document has
requested that we characterize minimal latency and maximal throughput in terms of
Java overheads rather than describing the total cost resulting from the combination
of RTOS services with Java overheads. In those terms, this principle essentially
states that Core extensions shall be defined such that implementations are possible
in which the run-time overhead of coordinating real-time Core tasks with the gar-
bage collector and with other components of the Java virtual machine is zero in
comparison with the costs of comparable services on typical commercially avail-
able real-time operating systems.

5. A decision made by the Real-Time Java Working Group was that programs written
using Core extensions need not incur the overhead of garbage collection. This was
motivated by (1) the recognition that the target constituency for the Core extensions
is programs that allocate nearly all memory during startup and have no subsequent
dynamic memory allocation needs, (2) the objective that the Core extensions sup-
port maximal throughput, and (3) the objective that the Core extensions support
minimal latency.

While we recognize that garbage collection is a key benefit of the Java language,
we also perceive that garbage collection imposes significant costs in terms of run-
time efficiency and system complexity. There are large classes of real-time soft-
ware components (e.g. typical interrupt handlers and device drivers) that derive lit-
tle benefit from having automatic garbage collection and our group felt that
imposing the burden of garbage collection on those components would only dis-
courage the use of the Java language as an appropriate technology for implementa-
tion of those components.

In comparison to the current state of the art in development of real-time software,
which tends to favor the C language, we see numerous benefits in the use of the
Java language beyond the benefits of garbage collection alone. In particular:

a. Portable binary code representations

b. Ability to leverage widely available off-the-shelf Java development environ-
ments

c. Good object-oriented programming language features facilitate maintenance
and reuse of software

d. Strong compile- and load-time type checking

e. [Familiar syntax and development environments to the many developers who
have already developed skills as Java programmers

Real-Time Core Extensions 133

Background and Rationale

f. Straightforward integration and access to all of the APIs of the Baseline plat-
form (though these Baseline APIswill not necessarily promise real-time per-
formance)

g. Support for secure dynamic loading

Note, in the statement of this objective, our choice of the words “need not”. The
significance of this wording is to emphasize that there may exist implementations
of the Core extensions that do incur the respective garbage collection costs. How-
ever, it is our intent to make sure the definition of the core semantics allows more
efficient implementations.

In order to allow compile- and load-time enforcement of partitioning between the
Core domain and the Baseline domain, the Core specification partitions all APIs
and application-specific methods between those methods that are available to Base-
line components and those that are only available to the Core tasks. Below, we
identify a number of the reasons for this partitioning of APIs.

a. The existing Baseline API definitions and implementations are not “real-time
ready”. You cannot, for example, safely abort a thread that is in the middle of
executing a Baseline library function. And the synchronization semantics that
we intend to carefully define for the use of real-time components are different
and incompatible with large bodies of existing Java library code. Another diffi-
culty is that existing Baseline library routines are not resource predictable in
terms of memory or CPU time requirements. In summary, you cannot calculate
a worst-case execution time, and you cannot abort the code if the routine runs
too long.

b. Almost all of the Baseline libraries assume the presence of a garbage collector.
(Though a developer may discover through inspection of the source code
implementations of Baseline libraries that certain of these libraries do not allo-
cate temporary objects, there is no general assurance that future implementa-
tions of the same libraries will not allocate memory.) In our initial discussions
about the Core extensions, the consensus position was that we did not want to
rely on real-time garbage collection. Instead, we had identified as our constitu-
ency the important class of problems that allocates memory during startup and
thereafter simply makes use of previously allocated objects. This is the class of
problems for which we “tuned” the Core specification. Given that we felt it
essential to avoid the burden of a real-time garbage collector in the Core
domain, the use of existing Baseline libraries from within the Core domain was
viewed as inappropriate, because nearly all existing Baseline libraries depend
on automatic garbage collection for reliable operation.

c. One of the requirements for the Core extensions is that the resource require-
ments of each “service” supported by Core extensions be precisely defined. If
we want to include the full Baseline API, we need to analyze and constrain the
resources required to implement each method of the complete Baseline API.
That task appears impractical, especially considering the rapid rate at which
Baseline libraries continue to evolve. It is much more practical to define a
small set of API libraries for use by Core components, and to carefully define
the resource requirements of these libraries.

d. Given that one of the objectives of the Core extensions is to provide maximal
throughput, it is important that the implementation of Core methods not incur
the overhead of coordinating with garbage collection. This means, for exam-

134 Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

ple, that a method that isinvoked from a Core task does not need to incur the
overhead of read or write barriers when accessing the fields of an object whose
reference is passed into the method as an argument. Since the implementation
of this method does not include read and write barrier overheads, it isimpor-
tant that this method not be invoked with a reference to a garbage-collected
object asits argument. Thus, a protocol that allows clear distinction between
methods that deal with garbage collected objects and methods that deal only
with Core objects (so-called Core methods) is required. In order to minimize
the performance impact of enforcing this protocol, it is desirable for differenti-
ation between Core and Baseline methods to be based on static (compile-time)
information rather than run-time checks.

e. Another benefit of partitioning the APIsinvolves the ability to shrink memory
footprints of embedded real-time applications. By restricting the Core APl to a
small set of primitive services, we enable tremendous shrinkage of the Java
footprint. The Baseline libraries are huge in comparison to typical embedded
software systems. Static linking techniques have been demonstrated that prune
large amounts of the standard Baseline libraries from an embedded product’s
load image. However, if a system must support dynamic loading, the static
linking approach does not work and very little of the Baseline API can be
pruned from the load image without violating Sun's specifications for the Base-
line virtual machine. With a limited-library Core Execution Environment, we
have the opportunity to build a very small footprint configuration without sac-
rificing the ability to support dynamic loading of Core components. Such sys-
tems can be designed so that the Baseline side is totally static, and can thus be
reduced in size using static-link-time pruning. Only Core components would
be dynamically loaded in this configuration.

6. Given the desire to support limited cooperation between Baseline components and
Core components, and given that Core programs shall not support garbage collec-
tion, we felt it very important to provide mechanisms to facilitate information shar-
ing and synchronization between components written for execution in the Core and
Baseline environments respectively.

In terms of intended functionality, think of the Core components as comprising an
operating system kernel, and think of the Baseline components as comprising the
application space. In traditional operating system environments, the kernel is
allowed access to user space, but user applications are not allowed access to kernel
memory. Here, we reverse these restrictions.

The reason we do not want Core components to have direct access to Baseline
objects is because those objects are subject to garbage collection. If the Core
objects were to have access to garbage collected objects, then dispatching of Core
tasks would have to coordinate with the Baseline garbage collector, and this would
likely have a negative impact on the latency of Core tasks. An additional difficulty
with allowing Core tasks to access garbage-collected objects is that this would
make it more difficult for the garbage collector to know when objects are dead. Not
only would the garbage collector have to examine the thread state of each Baseline
thread, but it would also have to examine the thread state of each Core thread. And
in order to enable the garbage collector to examine the thread state of a Core task,
additional bookkeeping overhead would have to be inserted into the protocols asso-
ciated with running of Core tasks. This would have a negative impact on the
throughput performance of Core tasks.

Real-Time Core Extensions 135

Background and Rationale

We do allow Baseline threads to access Core objects. Because of the Javalan-

guage'’s strong type checking and support for secure data encapsulation, this does
not compromise the integrity of the Core components. There is no way for a Base-
line application to see or modify data contained within Core objects unless the pro-
grammer of the Core components makes that data available by providing
appropriate accessor or setter methods.

Note the restriction that access to the fields of Core objects be directed by way of
accessor or setter methods. Though we can envision implementations that would
not require this restriction, it was the sentiment of the group that imposing this
restriction would offer greater flexibility to implementors of the Core Execution
Environment. We expect this choice will not impose a performance penalty, given
the ability to in-line methods.

7. Writing Core applications is like writing device drivers for an operating system ker-
nel. Consistent with current practices of commercial real-time operating system
users, programmers who write Core applications have access to very powerful
tools, and accidental or malicious misuse of these tools could compromise integrity
of the system. For this reason, only trusted expert real-time programmers should
author Core components. These programmers are responsible for considering glo-
bal resource contention issues and for following recommended coordination proto-
cols.

It is our intent that security mechanisms shall be available to help programmers
avoid accidents. Wherever possible, these security mechanisms should be enforced
at compile- and load-time rather than at run time. Doing so reduces the run-time
overhead of the security enforcement protocol. Though we intend to build upon
existing Java type-checking mechanisms to eliminate many common programming
errors, we recognize that there are certain kinds of errors that cannot be prevented
by these mechanisms. Thus, we acknowledge in stating this objective that insofar as
Core programming is concerned, we would prefer to allow the use of these “dan-
gerous tools” in spite of the risks they engender, rather than prohibit all such tools
in order to assure elimination of all such risks.

It is our expectation that the amount of code written in the Core notations is typi-
cally only a small fraction of any particular real-time software system. The great
majority of code in a typical system would be written either as Baseline threads, or
using the higher level real-time profiles. Core extensions are intended for imple-
mentation of components that require extreme efficiency, either in throughput or
response latency, or both.

Though we allow sharing of objects between Core and Baseline components, we
require that the specification for the Core extensions provide protection mecha-
nisms to ensure that Baseline components do not compromise the integrity of Core
components. This is because developers of Baseline applications are not necessar-
ily “trusted experts”.

8. The intent is that there shall be a documented way for Baseline software compo-
nents to cause Core components to be loaded and executed. Further, this implies
that the Core API definitions are precise enough to allow creation of portable Core
components (which will run in a wide variety of different Java virtual machines,
each produced by a different vendor).

136 Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

C.3

9. Notethat the security requirements of Core components may be different than the
security requirements of the Baseline language, and may be context specific. Secu-
rity checking for Core components, if any, is implementati on-defined.

Rationale for Partitioning of Memory

In order to provide high reliability and allocation efficiency, certain garbage collectors
relocate objects as part of a memory defragmenting effort. We specify that Core objects
shall not be relocated to emphasize that thisis part of the semantics of Core objects.
Thisis an important behavioral constraint because it means that Core objects may be
shared with non-Javatasks (if memory sharing is supported by the host operating sys-
tem), with non-Java interrupt handlers, and with hardware DMA devices.

We impose the restriction that Core methods shall not in general be invoked by Baseline
components because the implementation of Core methods may not include synchroniza-
tion code for coordination with garbage collection. If Baseline threads were to invoke
these Core methods, passing as arguments references to Baseline objects, this would
lead to the possibility of the following sorts of problems: (1) the garbage collector might
reclaim an object while the Core method is trying to accessit, or (2) the Core method
copies the Baseline reference into a Core data structure, introducing the likelihood that
the Baseline garbage collector will reclaim the object at some future time while the
object is still visible to the Core domain.

Conceptually, each Core object shall have two method tables. One of the method tables
isused exclusively by Core components. The other method table is used exclusively by

Baseline components. Baseline components do not need to understand the internal orga-
nization of Core objects because they are not allowed to directly access any datafields.

They are only allowed to invoke methods.

Instead of allowing Baseline direct access to the instance variables of Core objects, the
object partitioning protocol requires that al such access be made by way of accessor
and setter methods (the so-called Core-Baseline methods).

Note that we prohibit Core-Baseline methods from modifying the pointer fields of Core
objects, even indirectly through invocation of a setter method. If we were to allow Core-
Baseline methods to modify the pointer (reference) fields of Core objects, we would
introduce the possibility that the reachability of particular Core objects could be modi-
fied by execution of Core-Baseline methods. That in turn would require a more sophisti-
cated garbage collection interaction protocol between the Core and Baseline domains.
In the interest of simplicity and run-time efficiency (avoiding write barriersin the
implementation of Core-Baseline methods), we chose to prohibit Core-Baseline meth-
ods from modifying pointer instance and heap variables.

The Core Verifier shall reject asinvalid any classes that make reference to StringBuffer
objects. Thisis because StringBuffer objects create scratch memory that must be
reclaimed by a garbage collector, and the Core Execution Environment does not have a
garbage collector.

Real-Time Core Extensions 137

Background and Rationale

C4

C5

Core objects shall be accessible to Baseline threads. For this reason, it is not possible to

support explicit deallocation. Otherwise, a Core task might deallocate an object while

the Baseline world is still trying to make use of the object. Thisis why we have

designed a protocol that allows cooperation between garbage collection and explicit

dynamic memory management. In particular, the Core task “releases” a collection of
objects after it is done using the objects. We trust the developers of Core components to
correctly manage their dynamic memory. The effect of the allocation context’s release
operation is to make the objects eligible for garbage collection (and possible relocation).
The objects shall not be reclaimed, however, until the garbage collector verifies that the
objects are unreachable from the Baseline domain.

Comments Regarding the Core Verifier

Use of a Core Verifier is required in the deployment of any conforming Core applica-
tion. Core developers might ask: “What are the risks in the absence of a Core Verifier?”
If a system did not enforce these restrictions, this would introduces a number of possible
risks. Here we list some of the risks that might arise in the absence of enforcement.

1. Interrupts might remain disabled for too long
2. Memory leaks might result from temporary object allocation in Core tasks

3. Objects might be reclaimed by the garbage collector while a Core or Baseline task
is still looking at the objects

4. The garbage collector might become confused because of premature deallocation of
objects, resulting in fatal termination of the Core Execution Environment, or of the
Baseline Virtual Machine

5. Arequest to abort a task doesn't really abort the task, because the task does not
cooperate with the abort request

Comments on Syntactic Core Extensions

During early development of the Core Specification, two optional syntax extensions
were proposed for inclusion in the specification. Subsequently, it was decided by the
Real-Time Java Working Group to remove these syntax extension from the Core Speci-
fication and to describe the proposed technologies for possible implementation and use
within vendor-specific Core development tools. The Core development architecture is
shown in Figure 4 on page 139.. In this figure, the components drawn with solid black
outlines are described in Section 3.4 (starting on page 12). The components drawn with
dashed blue outlines are special components that are not defined by this specification.
Rather, these represent technologies and tools that independent tool developers might
implement to simplify the development and maintenance of Core software components.
The special components are:

1. Syntactic Core Source Files: Syntactic Core Source Files are Java 1.1 source files
written to take advantage of special syntaxes that have been designed to simplify
the development of Core Components. In particular, Syntactic Core Source Files
make use of two special keywordgckable andbaseline, which are not a part of
the traditional Baseline syntax.

2. CorePreprocessor: A Core Preprocessor transforms Syntactic Core Source Files
to Java 1.1 source files which do not contain any uses bashkne andstackable
keywords.

138

Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

Figure 4. Overview of Real-Time Core Development Architecture

r———n Stylized
| r o 1 5 Core
||||—————| Source \
| 1 syneic | Files Baseline
Core i
|_| | Source | A7 e e
. bl (Core _p» | (e.g.javac)
L \Preprocessor,

|

|

L — — 1 /
\

Core
Verifier

— T T~
Core \— Core - 4
N goninle_r J Class
Files
Static Core

Execution
Environment

Core
Class
Libraries

. Stat_ick Core
ore Linker Native Compiler

Dynamic Core
Execution
Environment

Baseline

Virtual
Static Machine
Core
Executable Native-Targeted
Load Image Core
Class Files

3. Core Compiler: The Core Compiler trandates Syntactic Core Source Filesto real-
time Core Class Files. At the sametime, it performsall of the verification checking

that is performed by the Core Verifier.

Real-Time Core Extensions

Background and Rationale

The baseline keyword would be used to identify Core-Baseline methods. Rather than

inserting an invocation of CoreRegistry.registerBaseling() as part of the class’ static initial-

izer (as described in “CoreRegistry.registerBaseline()” on page 77), a Core programmer
who chooses to use the Core Compiler or Core Preprocessor might instead insert the
baseline keyword into the declaration of the method’s prototype, as suggested by the fol-
lowing example:

public baseline void foo(int i, float x) {

}

Special Notations for Syntactic Core Source Code. Syntactic Core Source Code is code
written for the Core Execution Environment which is intended to be compiled by a spe-
cial Core Compiler. This compiler provides all of the functionality of a traditijamad
compiler, with the following additional functionality:

1. Foreach class file produced by this special compiler, the Core Compiler shall insert
an invocation oforeRegistry.registerCoreClass() as the first executable code in the
static initializer for the class.

2. The Core Compiler shall allow the spediaseline keyword as an attribute for
method definitions. For each method that is identified as a Core-Baseline method
(by the presence of tthaseline keyword), the Core Compiler catenates the name
and signature of this method into teeString argument for this class’s invocation
of CoreRegistry.registerBaseline(). For each class compiled by the Core Compiler that
has at least one Core-Baseline method, the Core Compiler shall insert an invocation
of CoreRegistry.registerBaseling() into the static initializer for the class immediately
following the invocation o€oreRegistry.registerCoreClass).

3. The Core Compiler shall allow the speditackable keyword as an attribute for
local variable and argument definitions. For each variable or parameter that is iden-
tified as stackable (by the presence ofdtekable keyword in its declaration), the
Core Compiler inserts the variable or parameter name int@oth8tring argument
for the invocation oforeRegistry.registerStackable() method as the first executable
line of code in the method.

4. For any class that fails to identify which class it extends, the Core Compiler gener-
ates code to indicate that the class extgavddang.Object, with the understanding
that the Core Class Loader shall replace the refereraeitang.Object with a ref-
erence targ.rtjwg.CoreObject.

5. All throw statements;atch statements, and method declarations from which excep-
tions are thrown are understood to refer to objects extendingofgatjwg.Core-
Throwable, and type checking is performed to enforce conformance with this
understanding. However, the class file produced by the Core Compiler replaces ref-
erences t&€oreThrowable with references tfava.lang.Throwable, references t€ore-
Exception with references tfava.lang.Exception, and references to
CoreRuntimeException with references tf@ava.lang.RuntimeException, with the under-
standing that the Core Class Loader will replace each of these types with its original
representation.

6. All string constants are treated @seString objects for purposes of type consis-

tency checking. The Core Compiler shall represent string constants as Baseline
String_ CONSTANT objects in the class-file constant pool, recognizing that the Core

140 Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

Class Loader shall replace all String_ CONSTANT objects with appropriate CoreString
replacements representing the same sequence of characters.

7. Eachvariable that is declared to be of type array is treated as a variable of type
CoreArray (or an appropriate subclass of CoreArray). See Section 3.17.7 (starting on
page 66) for additional description of the CoreArray class. Each allocation of a new
array object istreated asif it produced an instance of the CoreArray class (or the
appropriate subclass of CoreArray). The Core Compiler shall enforce type consis-
tency checking by using the appropriate CoreArray type as the type of each allocated
array and of each variable that is declared to hold a reference to an array object. In
the class-file representation that is emitted from the Core Compiler, each CoreAr-
ray type isrepresented as a Baseline array type. The Core Class L oader shall
replace each reference to a Baseline array type with areference to an appropriate
derivative of CoreArray when it loads the class.

8. Except for the specific exceptions described above, the Core Compiler shall
enforce all of the requirements of the Java 1.1 language specification as described
in Reference 5. Further, except for the specific exceptions described above, the
translated output from the Core Compiler shall be compatible with the output pro-
duced by existing Baseline Compilers and shall comply with the existing conven-
tions for translation of the Java language as described in References 5 and 8.

9. The Core Compiler shall ensure that the translated Core Class Files that it produces
conform with all of the rules and constraints described in Section 3.5. If the Core
source codeis such that complying with these constraintsis not possible, the Core
Compiler shall issue appropriate implementation-defined diagnostic messages and
shall not produce atranslation of the offending source program.

C.6 Clarification and Rationale re: Stack Allocation

Note that being able to alocate objects on the run-time stack might benefit the Baseline
language as well. The motivations for supporting stack allocation in Core are several
fold: (1) to enable better throughput performance, (2) to enable dynamic allocation (and
dedllocation) of temporary objectsin the absence of a garbage collector, and (3) to facil-
itate creation and verification of certified software for safety critical applications.

Certification agencies, such as the Nuclear Regulatory Commission, the Federal Avia-
tion Administration, and the Food and Drug Association, are generally very conserva
tive. The general sense among companies who have been involved in certification of

safety critical software isthat automatic garbage collection is much more complicated
that stack allocation, both to implement correctly and to prove implemented correctly.

In order to safely allocate objects on the run-time stack, we must assure that no refer-
ences to a stack-allocated object survives beyond disappearance of the stack activation
frame within which the object is alocated. The various restrictions described in Section
3.12, all of which can be enforced at compile and link time, are sufficient to guarantee
that all references to stack-allocated objects disappear by the time the stack-allocated
object is reclaimed from its run-time stack.

In general, objects should only be stack allocated if it has been verified that all of the
special restrictions and conditions for stack allocation described in Section 3.12 have
been satisfied. The process of verifying compliance with these conditionsis intention-

Real-Time Core Extensions 141

Background and Rationale

ally conservative, meaning that there may exist situationsin which amore sophisticated
anaysis would conclude that particular objects are stack allocatable even though the
rules of the Core specification do not so permit. We prefer a conservative approach in
that it makes very clear to Core programmers exactly which objects shall be alocated
from the run-time stack.

A careful reader of the Core specification suggested that the following sample code rep-
resents aloopholein the specification:

import org.rtjwg.*;
class C extends CoreObject { Il core class
static void foo() {
stackable final int [] intarray = new int[100];
class MyTask extends CoreTask { Il declaration of an inner class
public void work() {
sleep(1000);
I refer to elements of intarray

}
}

MyTask mt = new MyTask();
mt.start();
return;

static { Il static initializer for this class
foo();
}
}

When C isloaded, foo() will be invoked by the static initializer. This constructs an
instance of MyTask, assigning areference to itslocal variable mt, and starts this task up.
Then foo returns, releasing the activation frame within which the stackable array of inte-
gersintarray. However, the mt task is still running and is continuing to access the stack-
allocated intarray object.

The above example appears to demonstrate that the safeguards designed to prevent the
existence of dangling pointers are insufficient to serve this purpose. The fact is, how-
ever, that the above exampleis not a valid Core program. The reason for thisis as fol -
lows:

1. MyTask is a “member class” of cla€s

2. WhenC.foo() creates a neWyTask, the Baseline Compiler silently inserts code at
the constructor call to pass a copy of ith&ray reference intdlyTask’s constructor.

3. MyTask’s constructor silently saves its copy of thiarray reference in a hidden
member field. According to the Java Language specification, this is permitted if
and only if the object referenced injarray is declared to bfinal.

142

Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

C.7

C.8

(OR?)

C.10

It appears from examination of Java source code that this sample program conformsto

all of the requirements for a Core application. However, examination of the correspond-

ing classfile revea s that this program does not conform to the Core class-file specifica-

tion. In particular, this program passes as an argument to a method (MyTask’s

constructor) a reference to a stackable object, and the formal argument is not declared to
bestackable. Even if this implicit argument were declared to be stackdlyiggsk’s con-
structor would not be allowed by the Core restrictions on uses of stackable variables to
copy theintarray reference into a “hidden member field” of a heap object.

Motivation for Special Class Loading Semantics

The Baseline specification requires that classes be initialized upon first access. Imple-
mentation of these semantics is burdensome, requiring run-time checks on frequently
used operations and/or self-modifying code. Self-modifying code does not work well
for code executing out of ROM. Furthermore, code that resolves and initializes itself on
the fly is difficult to analyze with respect to execution time.

Clarifications re: Execution Time Analyzability

Section 3.14 describes a number of constraints on the byte-code generator for the Core
Compiler. Clearly, it would be desirable to impose these same requirements on the
Baseline Compiler. However, the specification for compliant behavior of Baseline Com-
pilers is in the hands of Sun Microsystems and the J Consortium does not control how
that might evolve. To the extent that Baseline Compilers continue to conform to the
requirements stated in Section 3.14, it will continue to be possible to use Baseline Com-
pilers for development of Core Class Files.

Note that the restrictions on analyzable loops are more strict than is really necessary.
Certainly, it would be possible to analytically determine the worst-case execution times
for more loops than satisfy our fairly restrictive criteria. Our main objective, however, is
to provide reliable support for execution-time analysis of a restricted subset of the Java
language, and we want to make sure that programmers can easily understand the rules
(though not necessarily the implementation) that characterize this restricted subset.

Rationale for Core Class Loading Requirements

The rationale for requiring that the dynamic Core Class Loader be implemented as a
Baseline component is that class loading is a complicated activity, and it is desirable for
the Core Class Loader implementation to take full advantage of the Baseline language’s
high-level benefits, such as garbage collection and the full breadth of Baseline APIs.
Further, the expectation is that Core class loading is relatively rare (thus, it is not perfor-
mance critical) and does not have stringent timing constraints. For these reasons, we felt
there was no need for the Core Class Loader to run within the Core Execution Environ-
ment.

Comments on Run-Time Differentiation between Core and Baseline Tasks

In the NIST requirements document (see reference 1), Section 5, core requirement 8
states: “The RTJ specification must provide a mechanism to allow code to query
whether it is running under a real-time Java thread or a non-real-time Java thread.”

Real-Time Core Extensions 143

Background and Rationale

c1

The Core APIs do not provide any run-time mechanism to address this requirement.
Instead, Core programmers distinguish code intended for execution in a Baseline thread
from code intended for execution as a Core task with static (Syntactic) notations. In par-
ticular, al of the methods of any class for which the static initializer code starts with an
invocation of the CoreRegistry.registerCoreClass() method that are not identified as Core-
Baseline methods are executed as Core tasks. Any other methods are executed as Base-
line tasks.

Comments re: the PCP Interface

One of the key benefits of using the Priority Ceiling Protocol for task synchronization is
that it enables non-blocking implementations of synchronization. Whenever any task
hasthe lock, its priority is automatically increased to the highest priority of any task that
might attempt to lock the object. Thus, any other task that might attempt to access the
same object shall not be allowed to run (because of priority) while a particular task has
the monitor locked. Another way to think of this: For any given task, if the system
scheduler has dispatched the task for execution, the task can be assured that no other
task owns access to any of the monitor locks that this task might want to use.

Given the specification as drafted, the implementation of Priority Ceiling Protocol does
not require a queue of objects waiting for access to the monitor’s lock. This allows for a
small-memory, easy-to-analyze implementation of synchronization locks.

Though the current specification does not address the special needs of multiprocessor
systems, it is important to recognize that the specification is designed to generalize to
such targets in the future. It is the intent that a future variant or profile of this specifica-
tion will provide support for an N-processor SMP computer, in wA&h synchroniza-

tion shall block the currently running task no longer than the time required for each of
the other N-1 processors in the system to execute at most one segment of code associ-
ated with the sameCP object. Further, it is desirable to avoid deadlock conditions

which might arise when multiprocessors attempt to enter multiple sh@reprotected
contexts in different orders. For this reason, the specification requires that the priority
ceilings associated with nestBdP contexts be strictly increasing.

Note that we allow the system to disable time slicing while any task is executing with a
PCP lock. Otherwise, some other task of equal priority might attempt to access the same
monitor lock and would necessarily block. This would require that each lock maintain a
gueue of waiting tasks.

Note that we prohibit Core tasks from executing blocking operations while they hold a
PCP lock. Otherwise, a task might block while it holds B@® lock, making it possible

for some other task of equal or lower priority to run and attempt to lock the same
resource. In this case, the new task would have to block on a queue, waiting for the first
task to complete its I/O operation and release the lock. But this contradicts our assertion
that no queues are required in the implementation of priority ceiling locks.

Note also that we prohibit nestingREP locks. Otherwise, a multiprocessor implemen-
tation of the Core specification would likely experience deadlock for programs that run
correctly on a single-processor implementation of the Core specification.

144

Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

c.12

C.13

C.14

C.15

Rationale for the CoreString and DynamicCoreString Specifications

At the March 30, 1999 meeting of the Real-Time Java Working Group, there were sev-
eral requests to make CoreString very simple. However, there were also people who
desired to retain a broader set of capabilities for CoreString. To satisfy both audiences,
the API supports two classes: CoreString and DynamicCoreString. CoreString isintended to
support string constants, as required for error messages and interactive user prompts.
DynamicCoreString, which extends CoreString, supports additional capabilities. The
expectation is that the DynamicCoreString class would be pruned from the load image in
static applications for which it is not needed.

Rationale for Semaphores to Complement Built-In Java Primitives

Note that wait() and notify() are not appropriate signaling mechanismsfor use from within
interrupt handlers. The difficulty with using notify() from within an interrupt handler is
that the interrupt handler must acquire the monitor lock before it can invoke the notify()
operation. Sinceinterrupt handlers aretriggered by hardware (and not necessarily by the
system dispatcher), it is not possible for interrupt handlersto block waiting for accessto
the monitor.

Rationale for the Mutex Class

Thereason for providing Mutex lock() and unlock() operationsin addition to providing the
built-in locking mechanisms for synchronized statements s that the use of synchronized
statements requires all locks to be released in LIFO order. There are particular algo-
rithms that require locks to be released in a different order than LIFO.

Furthermore, though it would be possible for Core programmersto implement their own
Mutex class by building upon the built-in synchronization wait() and notify() mechanisms,
it would not be possible for application devel opersto implement priority inheritance for
their Mutex implementation.

Comments on Loading and Starting Core Tasks from Baseline Domain

With a Dynamic Core Execution Environment, the Baseline domain is responsible for
starting up the Core Execution Environment. It does so by instantiating a BaselineCore-
ClassLoader object using either one of the two constructors for this class (See Section
4.1). For example:

org.rtjwg.BaselineCoreClassLoader bcel = new BaselineCoreClassLoader();

Having created the primordial instance of BaselineCoreClassLoader, the Baseline compo-
nent obtains a reference to the primordial instance of the org.rtjwg.CoreDomain class by
executing code of the following form:

java.lang.Class cdc = becel.findSystemClass(“org.rtjwg.CoreDomain®);
org.rtjwg.CoreDomain cd = null;
cd = cd.core;

The Baseline component uses the CoreDomain object to load and instantiate Core
objects. The following code sequence, for example, loads a Core class named Sam-

Real-Time Core Extensions 145

Background and Rationale

C.16

Cc.17

pleCoreClass and instantiates it, assigning the instantiated object’s referencedo the
variable. This code template assumes $aatpleCoreClass extendsrg.rtjwg.CoreTask.

org.rjwg.CoreClass cc = cd.loadClass(“SampleCoreClass”);
org.rjwg.CoreTask ct = (org.rtjwg.CoreTask) cd.instantiate(cc);

To cause the newly instantiated ct task to begin running, the Baseline component
invokesits Core-Baseline _start() method, as in the following code sample:

ct._start();

Note that the Baseline domain can only start CoreTask tasks. It cannot directly start peri-
odic or interrupt-driven tasks. To start up other kinds of tasks, the Baseline domain cre-
ates a proxy CoreTask object to start up the periodic or interrupt-driven task, and then
starts up the proxy CoreTask object.

Comments on Explicit Memory Management

By default, all memory allocated within a particular Core task is automatically released

when that Core task terminates. Thisrequires great care by Core programmers to make

sure that no other task is allowed to see references to the objectsit allocated. Otherwise,

that other task will end up with a dangling pointer to the reclaimed object's memory.
There are a few programming practices that are recommended to Core programmers:

1. Keep all references to objects allocated by your task local to your task, or
2. Make sure that your task runs forever, so its memory will never be released, or

3. Whenever it is necessary to allocate objects that must be visible to other tasks, allo-
cate those objects from spedidbcationContext regions which persist as long as the
objects continue to be referenced.

Rationale and Discussion Regarding Asynchronous Transfer of Control

Asynchronous transfer of control describes the ability for one Core task to cause the
control flow of some other Core task to change, asynchronously. We say this change is
asynchronous because the affected task does not know or exert any control over when
the control transfer takes place.

Asynchronous transfer of control is a common programming tool for dealing with real-
world processes and events. As motivation for providing this programming language
feature, consider the many ways that humans handle asynchronous events:

1. A telephone rings and we suspend whatever we are doing to answer it. Following
completion of the phone call, we resume the previously suspended task.

2. A fire alarm sounds at work. In response, we abort the task on which we are cur-
rently working, lock our confidential papers into a fireproof safe, and leave the
building.

3. While we are driving a car, we hear a siren. In response, we check rear view mirror
and scan the road ahead for flashing lights. None is seen so we continue driving our
established course.

146

Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

4. A student istaking atimed college entrance examination. She is notified that only
five minutes remains for completion of the test. She abandonswork in progress and
begins darkening circles for the computer answer sheet.

5. Whilewe aredriving a car, we hear asiren. In response, we check the rear view
mirror and scan the road ahead for flashing lights. A firetruck is seen in the rear
view mirror so we pull to the side of the road and wait for it to pass. Once passed,
we pull into the road and continue driving towards our intended destination.

6. A researcher isworking on a 3-year federally funded project. Two yearsinto the
project, his administrative assistant informs him that he is 40% over the proposed
spending budget. In response, the researcher modifies the remainder of the research
plan in order to bring the project back into budget before proceeding with the last
year’s research efforts.

7. In acrowded meeting room, a cell phone rings. Five different people check to see if
it is theirs. Only one interrupts his work to answer the phone. The others resume
whatever activity they were already participating in.

8. A team of five developers is working on a six-month engineering project. Two
months into the project, they are notified that funding cuts force the project to be
abandoned. Each of the five developers is reassigned to other efforts.

These examples highlight the importance of supporting two forms of asynchronous
transfer of control: (1) abortion and (2) resumption. The abortion form abandons what-
ever work was in progress when the asynchronous event is triggered. The resumption
form allows a certain amount of work to be performed in response to the asynchronous
event, following which the original work which was preempted is resumed.

An earlier revision (1.0.2) of the Core specification provided no general purpose asyn-
chronous transfer of control mechanism. Instead, it provided explicit timeout forms of
particular Core Library methods. During the public review period of that draft specifica-
tion, the absence of general asynchronous transfer of control support was identified as a
shortcoming in the Core specification. In discussing whether to add asynchronous trans-
fer of control at our Dec. 7, 1999 meeting, the Real-Time Java Working Group consid-
ered the following:

1. Against adding asynchronous transfer of control:

a. This would complicate the implementation of the Core Execution Environ-
ment, especially the implementations of operating system services that might
block a Core task (e.g. a semaphore operation that must be timed out).

b. This would represent a significant change to the Core specification, delaying
publication of the final specification and probably requiring another public
review period.

2. Infavor of adding asynchronous transfer of control:

a. The Core specification as originally drafted already required that blocking
operating system services be timed out. Thus, the burden of implementing full
asynchronous transfer of control is not perceived to be significantly greater
than the burden of implementing the originally described specification.

b. The group felt it would be better to have a stronger specification later than a
weaker specification earlier.

Real-Time Core Extensions 147

Background and Rationale

c. Having fully genera asynchronous transfer of control increases the relevance
of the Core specification to abroader set of potentia users. It also improvesthe
expressive power available to Core programmers, making it easier to solve par-
ticular classes of programming problems.

d. Using asynchronous transfer of control in place of explicit timeout arguments
for particular methods replaces many special-case situations with a single gen-
eral-purpose solution. This makesit easier for programmers to use and main-
tain software components that interact with timeouts.

In the end, the Real-Time Java Working Group decided in favor of adding asynchronous
transfer of control to the Core specification, provided that the various identified require-
ments could be satisfied to the mutual satisfaction of the member organizations.

There has been discussion and conflicting viewpoints on certain topics related to the
design of the asynchronous transfer of control mechanism. In particular:

1. Why defer asynchronous event handling during execution of finally statements? The
main observation is that finally statements generally represent cleanup code that is
necessary to maintain the integrity of shared data structures and system-wide logi-
cal invariants. If an asynchronous event results in abortion of a particular code seg-
ment, all of thefinally statements associated with that code segment will be executed
asaside effect of the abort operation. If an asynchronous event is delivered during
execution of afinally statement, we have two options:

a. Wecould immediately interrupt the finally statement to execute the event han-
dler, and resume execution of the finally statement after the interrupt handler
completes, or

b. We could defer execution of the event handler until after the finally statement
completes its execution.

In either case, the finally statement runs to completion. However, thefirst option
introduces the risk that certain shared data structures may bein aninconsistent state
during execution of the asynchronous event handler. For this reason, we chose to
pursue the second option for the Core specification.

2. Why not defer asynchronous event handling during execution of all synchronized
contexts? Programmers who are accustomed to programming real-time systemsin
the Ada programming language have come to expect that all synchronization is
“abort deferred”. A primary objection to adopting the Ada semantics is that dead-
lock situations cannot be remedied by aborting the offending tasks. For this reason,
the Core specification does not defer asynchronous event handling during execu-
tion of synchronized code. We note that the type(s) of programming for which the
Core specification is intended are more general than typical Ada applications (hav-
ing more dynamic behavior, and using priority inheritance in addition to priority
ceiling protocols for synchronization), which is part of the reason that we feel a dif-
ferent approach toward abortion of synchronized contexts is appropriate. Given that
there do not currently exist any legacy Core applications, there is relatively low
cost in adopting a different semantics than has been used for the Ada programming
language.

Among the requirements for asynchronous transfer of control (See paragraph 5 of Sec-
tion B.2 (starting on page 127)) is the ability to support common asynchronous pro-

148 Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

gramming idioms, such as abortion of atask, timeouts and nested timeouts for particular
code sequences, software interrupts, and application mode changes. Here, we discuss
how each of these idioms would be addressed with the proposed asynchronous transfer
of control mechanism.

Abortion of a task. To abort a running Core task t, invoke its abort() method, as shown
here:

t.abort();

Timing out a sequence of code. To establish a timeout on the sequence of code repre-
sented by the method named arbitraryCode(), structure the code as shown below:

class ScopedTimeoutException extends ScopedException { }

class TimeoutEvent extends ATCEvent {
CoreThrowable exception;

public TimeoutEvent(CoreThrowable scoped_exception) {
exception = scoped_exception;

}

public void defaultAction() throws CoreThrowable {
throw exception;

}
}

Given the ScopedTimeoutException and TimeoutEvent classes defined above, the following
code fragment demonstrates how to run the arbitraryCode() method with a watchdog tim-
eout to abort its execution if it runs too long:

ScopedTimeoutException timeout_x = new ScopedTimeoutException();
TimeoutEvent timeout_e = new TimeoutEvent(timeout_x);
Alarm alarm;
alarm = timer.createAlarm();
try {
alarm.setAlarmRelative(Time.ms(3), timeout_e);
this.arbitraryCode();
} catch (ScopedTimeoutException z) {
System.out.printin(“Code timed out after 3 ms.”);

}Hinally {
alarm.cancelAlarm();

}

In this sample code, we assume that this thread has an asynchronous event signal han-
dler which simply invokes the defaultAction() of whatever event is signaled to this task.
We also assume the existence of an application-defined timer object and application-
defined Alarm class, the definitions of which are not provided here. The timer object sup-
ports a createAlarm() factory method, which creates an instance of Alarm that is bound to
this particular timer object. The returned Alarm object is used by thisthread to register
requests for the timer object to deliver asynchronous timeout events at appropriate future
momentsin time. The Alarm class supports a setAlarmRelative() method, which takes as

Real-Time Core Extensions 149

Background and Rationale

arguments a long integer specifying the number of nanoseconds from the current timein
which the timer service should send the asynchronous timeout event to this task and a
reference to the scope-specific timeout event object that the timer serviceisto send at
the appropriate time. Setting of the alarm by the setAlarmRelative() method is atomic in
the sense that if execution of this method is aborted because this thread receives an
asynchronous transfer of control signal, we are guaranteed that either the alarm has been
completely set or that it has not been set. The Alarm class a so supports a cancel()
method, which has the effect of turning off the alarm if it was previously set. A side
effect performed by the Alarm.cancelAlarm() method is to re-signal all “active” alarms.
An active alarm is an alarm that was previously signaled and has not yet been canceled.
The reason for specifying this behavior ¢ancelAlarm() is to simplify the handling of
nested timeouts.

Nested timeouts. The approach described immediately above for implementing timeouts
works properly for nested timeouts. Suppose, for example, that the implementation of
this.arbitraryCode() includes code to set a nested timeout, using the same protocol detailed
above. The possible interplay between nested timeouts is described by the following
four scenarios:

1. If the inner-nested timeout occurs first, the infiseoutEvent object will be sig-
naled to the task, and this will trigger event handling associated with the inner
scope. The outer timeout remains pending.

2. If the outer-nested timeout occurs first, the olit@eoutEvent object will be sig-
naled to the task, and this will trigger event handling associated with the outer
scope. BecausBmeoutEvent objects us&copedTimeoutException objects for their
implementation, we are assured that a timeout event corresponding to an outer
nested scope will not be mistakenly processed by an inner scope’s timeout event
handler. When exception handling for the outer timeout’s exception unwinds the
context within which the inner timeout context was established, the inner timeout is
canceled.

3. Suppose the inner timeout occurs first, and then the outer timeout occurs while we
are still “handling” the inner timeout’s event. There are two cases to consider:

a. If the defaultAction() method has already thrown éeception object, handling of
the outer nested timeout is deferred until after all ofitlaly statements asso-
ciated with handling of the thrown exception have completed their execution.
Note that the timeout contextatch clause will not be allowed to execute.

b. If the defaultAction() method has not yet thrown its exception object, the outer
timeout’s event handler immediately preempts the inner timedeaigsltAc-
tion() method and throws its exception object. In this case, the inner timeout
event handler never gets a chance to throw its exception, because the outer tim-
eout aborts the inner timeout's event handler.

4. Suppose the outer timeout occurs first, and then the inner timeout occurs while we
are still “handling” the outer timeout’s event. There are two cases to consider:

a. If the outer timeout'defaultAction() method has already thrown its exception
object, handling of the inner nested timeout is deferred until after all of the
finally clauses associated with handling of the thrown exception have completed
their execution. In the process of unwinding the stack for the outer timeout, we
cancel the alarm and disable SsepedTimeoutException object for the inner
nested timeout. When the inner timeout's event handler is eventually executed,

150 Copyright 1999, 2000 J Consortium, All Rights Reserved

Background and Rationale

Cc.18

it will throw the disabled ScopedTimeoutException. This has the effect of simply
resuming the code that immediately follows the context of the outer-nested
timeout exception.

b. If the outer timeout'slefaultAction() method has not yet thrown its exception
object, the inner timeout’s event handler preempts the outer timeout's event
handler. When the inner timeoutisfaultAction() method throws itScopedTime-
outException object, this causes the stack to unwind to the point of the inner
timeout’s context. That contextfmally clause causes the alarm to be canceled.
Execution ofalarm.cancel() causes the outer context's timeout event to be re-
signaled.

Software interrupts. The idea of software interrupts is to allow one Core task to cause
some other Core task to execute a special code sequence (an “interrupt handler”) and
then resume whatever code was previously executing.

It is straightforward to implement software interrupts using the asynchronous transfer of
control system described in this specification. To cause another task to execute its “soft-
ware interrupt handler” (also known as its event handler), invoke the saslkidsync()
method, passing as an argument a reference AbGivent object that provides what-

ever application-specific information is required as parameters to the event handler.

The task to which the event is signaled must provide an appropriate asynchronous event
handler which executes the desired interrupt handling code and then returns. Upon
return from the asynchronous event handler, the code within the task that was executing
when the asynchronous event was signaled is resumed.

System mode changes. The notion of a system mode change is that a complex system
comprised of many cooperating tasks may operate in multiple modes. For example, the
control software for a fighter aircraft may have modes dedicated to such independent
activities as takeoff, cruise, evade incoming missiles, engage enemy aircraft, and land.
Each time the system transitions from one mode to another, multiple tasks need to be
informed of the transition.

The two most common ways of supporting mode changes in complex software systems
comprised of multiple cooperating tasks are:

1. Eachtask s required to periodically poll a system state variable which reports when
the system is transitioning to another mode. Each task is independently responsible
for performing whatever work is necessary to effect the transition.

2. When a mode change is required, a supervisor activity signals this requirement by
delivering an asynchronous event to each of the cooperating tasks. Each task’s
asynchronous event handler is responsible for performing whatever work is neces-
sary to effect the transition.

Comments re: low-level |/O Services

A previous draft of this specification included a much more sophisticated collection of
I/O services. The design of that earlier set of services was patterned after the Real-Time
Data Access profile, which is currently under development within a working group of
the J Consortium. A July 2000 teleconference call involving the memberships of both

Real-Time Core Extensions 151

Background and Rationale

the Real - Time Java Working Group and the Real-Time Access Working Group con-
cluded that it would be best to remove the Real - Time Data A ccess compatibility from
the Core specification. The main reason for this change was that the Real-Time Data
Access profile is maturing and evolving independently of the Core specification, and it
isvery difficult to keep the two documents synchronized. Instead, it wasfelt that the
Real-Time Data Access profile could be written so as to complement the Core specifica-
tion. Ultimately, we expect the Real-Time Access Working Group to produce two vari-
ants of the Real-Time Data Access profile - one describing extensions to the Baseline
environment, and the other describing extensions to the Core.

Having removed the generality of the Real-Time Data A ccess services, it was necessary
to replace these with simpler primitive API libraries. Thus, the IOPort, ISR_Task, and
SporadicTask classes were introduced.

152

Copyright 1999, 2000 J Consortium, All Rights Reserved

Implementation Suggestions

Annex D

Implementation Suggestions

D.1

D.2

Comments on the Implementation of Partitioned Heaps (Section 3.3)

There are many possible implementations for the memory management system
described in this section. Here, we offer comments describing one possible implementa-
tion.

1. When aCore object isallocated, it is allocated from aregion of memory that is nor-
mally garbage collected using mark-and-sweep (non-relocating) techniques. Note
that techniques are available to alow coexistence of mark-and-sweep garbage col-
lection with copying garbage collection.

2. At the moment a Core object is allocated, a reference to the object is stored into a
Baseline hash table. Aslong as this reference to the object continuesto exist in the
hash table, the object shall not be garbage collected. Since the object was allocated
from a mark-and-sweep region, the object shall not be relocated.

3. Thegarbage collector marks and scans the anchored Core object, treating it like
every other object in the mark-and-sweep region. The object shall not be treated as
garbage because we know the hash table holds a live pointer to the object.

4. When a Core task releases an allocation context, the referencesto all of the objects
belonging to that allocation context which were stored into the Baseline hash table
in step 2 above are removed from the hash table. If garbage collection is active at
the moment the allocation context is released, al of the newly released objects are
marked as live for purposes of this pass of the garbage collector. At this point, the
released objects are now eligible to be garbage collected.

The reason the object must be marked as live for this pass of the garbage collector

is because the recent actions of the Core tasks are not necessarily visible to the gar-

bage collector. Recent Core actions may have affected the pointer paths by which

this object is known to be reachable (i.e. live). After an object’s allocation context

has been released, any further changes to the object’s reachability graph must be
performed by Baseline components, all of which implement appropriate read and
write barriers. Thus, subsequent passes of the garbage collector shall be able to

identify the object as unreachable and reclaim its memory.

Comments on Implementation of Multiple Method Tables (Section 3.3)

Each Core object must implement two method tables, one to support the Core-Baseline
methods and the other to support the Core methods. There exist many different possible
implementations of Core object method tables. Here, we describe one possible imple-
mentation.

Note that each Core object must support two different interfaces. Within Core tasks, the
Core object must support the Core API (all the Core methods). If the Core object is pub-
lished to the Baseline world, the Core object must also support the Baseline API (every-
thing inherited from the Baselij@va.lang.Object class, plus any Core-Baseline methods
declared for that object or its Core superclasses). One way to efficiently implement the
two different method interfaces is to augment the traditional virtual method table so that
it represents two tables in a single data structure, using positive offsets to represent the

Real-Time Core Extensions 153

Implementation Suggestions

Baseline method table, and using negative offsets to represent the Core method table, as
illustrated in Figure 5 on page 154.

Figure 5.

Method Tables for Core Objects

Method Table for
Core Object

Methods for
A Core Object 15 A | Core Domain

Headers 4

Method Table Pointer

0 Methods for
4 Baseline

8 Domain

\J

Instance Variables

Method Table Offsets

D.3 Comments on Implementation of Stack Allocation

Once aclass loader has determined which objects are stack allocatable, there are at |east
two possible approaches for the implementation of the new memory allocation requests
that correspond to the stack allocatable objects. Assume that the Core Class L oader
replaces new invocations with a specia stack-new operation for each new memory allo-
cation request that assigns its result to a stackable variable.

Dynamic stack allocation. One possible approach toward stack allocation is to imple-
ment the stack-new operation using the same implementation that is typical for imple-
mentations of the C alloca() service. In particular, each time the stack-new operation is
invoked, the stack is expanded to make space for the new stack-allocatabl e object and
the object is allocated and initialized from the newly available stack space.

Static stack allocation. An alternative approach toward stack allocation of objectsisto

have the Core Class Loader arrange for space in the method'’s stack activation frame to
represent one copy of each stack-allocatable object forseakimew operation found

within the method. The memory for these objects shall be initialized at the moment the
correspondingtack-new operation is executed. Note that stack-allocation of arrays
whose size is not known until run-time must uses a form of dynamic stack allocation.

154

Copyright 1999, 2000 J Consortium, All Rights Reserved

Index

A

Aborting a Task 25
Acknowledgments 109
Active Priority 4
Allocation Context 3
AllocationContext 69
allocated() 39
available() 39, 71
constructors 39, 70

release() 39, 71

Analyzability 33

Architectural Overview of the Core Implementation 12
illustration 13, 140

Asynchronous Transfer of Control 3, 25, 26, 26
ATCEvent 77
ATCEventHandler 76
rationale 147

ATC 3

ATCEvent 77
constructor 43, 77
defaultAction() 43, 77

ATCEventHandler 76, 102
constructor 43, 77
handleATCEvent() 43, 77

Atomic 73

B

Base Priority 4

Baseline 2

baseline 5

Baseline APl 104
Core Execution Profiles 105
semaphore operations 105

Starting up a CoreTask 105
Baseline APIs

Starting up a Core Execution Environment 105

Baseline Compiler 13, 13
baseline keyword 5
Baseline Virtual Machine 13

BaselineCoreClassLoader 105
constructors 105
semantics 106

C

C/Native APl 57
can (as anormative term) 2

Class Initialization 29

Class Loading 29

Class Resolution
rationde 144

Configuration 82
default_stack_size 83
little_endian 84
min_core priority 83
stack_overflow_checking 83
system_priority_map 83
tick_duration 83
ticks_per_slice 83
uptime_precision 83

Conformity Assessment 6

Cooperation between Core and Baseline components 127

Cooperation between Core and High-Level Rea-Time
Profiles 127

Core 3

CoreClassFile 6,12, 13,15
Core ClassFiles 6,12, 15
Core Class Libraries 13, 14

Core Class Loader 15, 18, 66, 144
Initialization and Class Loading 29
unloading classes 66

Core ClassLoading 57

Core Compiler 140

Core Components 3

Core Execution Environment 14
Core Memory Model 24

Core Methods 3

Core Native Compiler 13,14
Core Native Interface Compiler 8
Core Objects 8

Core Preprocessor 139

Core Priorities 21

Core Source File 12

Core Static Linker 15

Core Task Execution Model 24
Core Throwable Types 101

Core Verifier 6, 13, 14, 18
rationae 139

CoreArithmeticOverflowException 56, 104
CoreArray 67
atGet() 39, 69

atPut() 39, 69
constructors 39

length() 39, 69
CoreArraylndexOutOf BoundsException 56, 103
CoreAT CEventsl gnoredException 56, 104

Real-Time Core Extensions for the Java™ Platform aoff

Index

CoreBadArgumentException 56, 103
CoreBadPriorityException 56, 103
Core-Baseline Methods 3, 24
CoreBaselineException 108
constructors 108
getCoreException() 109
CoreBaselineRuntimeException 108
constructors 108
getCoreException() 108
CoreBasdlineThrowable 107
constructors 107
getCoreThrowable() 108
CoreBoolArray 56, 68
CoreByteArray 56, 68
CoreCharArray 56, 68
CoreClass 65
forName() 37, 65
getComponentType() 37, 65
isArray() 37, 65
isAssignableFrom() 37, 65
islnstance() 37, 65
isinterface() 37, 66
isPrimitive() 37, 66
loadClass() 38, 66
newlnstance() 38, 66
toString() 38, 66
unloadClass() 38, 66
verification() 38, 66
CoreClassFormatError 56, 103

CoreClassinUseException 56, 104
CoreClassLoader 57

CoreClassNotFoundException 56, 104
CoreDomain 106

core 106

defineClass() 106

instantiate() 107

loadClass() 107

lookup() 106

profiles() 107
CoreDoubleArray 56, 69
CoreEmbeddedConflictException 56, 103
CoreException 56, 64, 101

constructors 36, 64
CoreFloatArray 56, 68

CorelllegalM onitorStateException 56, 103

CorelntArray 56, 68

corelnterruptLevels() 56, 58
CoreLongArray 56, 68
CoreObject 61

arrayAddress() 35, 62

clong() 35,61

constructor 61

constructors 35

equals() 35, 61

getClass() 35, 61

hashCode() 35, 62

notify() 35, 62

notifyAll() 35, 62

sizeof() 35, 63

toString() 35, 62

wait() 35, 62
CoreObjectNotAddressableException 56, 104
CoreOperationNotPermittedException 56, 103
CoreOutOfM emoryException 56, 103
corePriorityMap() 56, 58
CoreRefArray 56, 69
CoreRegistry 77

coerce() 44, 78

profiles() 44, 79

publish() 45, 79

registerBaseline() 44, 78

registerCoreClass() 44, 78

registerStackable() 44, 78

stackAllocation() 44, 77

unpublish() 45, 79
coreRegistryLookup() 56, 57
CoreRuntimeException 36, 56, 63, 102

constructors 36, 63
CoreSecurityException 56, 103
CoreShortArray 56, 68
CoreString 74

_charAt() 40, 74

_hashCode() 40, 74

_length() 40, 75

charAt() 40, 74

constructors 40, 74

equals() 40, 74

hashCode() 40, 74

length() 40, 75
CoreTask 89

_start() 94

abort() 51,92

b of f Copyright 1999, 2000 J Consortium, All Rights Reserved

Index

abortWorkException() 51, 92
asyncHandler() 51, 92

constructor 50, 89

currentTask() 50, 90

defaultStackSize() 50, 90

join() 51, 92

maxBaselinePriority() 50, 90

maxCorePriority() 50, 90

maxSystemPriority() 50, 91

minBasdlinePriority() 50, 91

minCorePriority() 50, 91

minSystemPriority() 50, 91

numinterruptPriorities() 50, 91

resume() 51, 93

setPriority() 51, 93

signalAsync() 51, 93

sleep() 51, 94

sleepuntil() 51, 94

stackDepth() 51, 94

stackOverflowChecking() 50, 91

stackSize() 51,94

start() 51,94

stop() 51,94

suspend() 51, 95

systemPriority() 52, 95

systemPriorityMap() 50, 91

ticksPerSlice() 51, 92

work() 52, 95

yield() 52,95
CoreThrowable 63, 101

constructors 36, 37, 63

getMessage() 36, 37, 63
CoreUnsignedCoercionException 56, 104
CountingSemaphore 81

_count() 81

_numWaiters() 81

_Po 81

_v(81

constructor 47

count() 47, 81

numWaiters() 47, 81

P() 47,81

V() 47,81

D

Differences between CoreString and DynamicCoreString

rationde 146

Differentiating Core and Basdline Tasks 144
Dynamic Class Loading
eager resolution and initialization 29
rationale 138, 144
requirement 128, 129

Dynamic Core Application 6
Dynamic Core Development Environment 7
Dynamic Core Execution Environment 13, 15
dynamic properties 2
DynamicCoreString 75

_length() 41

concat() 41, 75

constructors 41, 75

getChars() 41, 75

length() 41

substring() 42, 76

toCharArray() 42, 76

toLowerCase() 42, 76

toUpperCase() 43, 76

E

enterSynchronized() 57, 59

Execution-Time Analyzable Code 29
clarification 144
specification of conforming behavior 29
exitSynchronized() 57, 60
Explicit Memory Management
rationale 147

Extended Basdline Virtual Machine 3

G

Garbage Collection Overhead
requirement 127

Green Threads 3

H

Historical Background 131

1/O Channel 4
1/O-Space Access 4

implementation defined (as a normative term) 2
Initialization of Core Classes 29

1oPort 99, 153
createlOPort() 54, 100

Real-Time Core Extensions for the Java™ Platform

coff

Index

readByte() 54, 100 Loading and Starting Core Tasks from Baseline domain 146
readint() 54, 101
readLong() 54, 101 M

readShort() 54, 100
writeByte() 54, 100
writelnt() 54, 101

maxBaselinePriority() 56, 58

maxCorePriority() 56, 58
Maximal Throughput

writeLong() 54, 101 rationale 134

writeShort() 54, 101 requirement 127
1oPort161 100 maximal throughput 127
loPort1610 100 may 1

may not 1

|oPort160 100 :
Memory footprint

loPort321 100 requirement 128
l0oPort3210 100 Memory-Mapped Access 4
l0Port320 100 minBaselinePriority() 56, 58
loPorte4l 100 minCorePriority() 56, 58
loporte4l0 100 Minimal Latency
IoPorte40 100 rationale 133
ioPori 100 minimal iatency 127
1oPortslo 100 Mutex 82
loPortso 100 _lock() 48, 82
ISR_Task 95, 153 _unlock() 48, 82
arm() 52 constructor 48
ceilingPriority() 52, 97 constructors 82
constructor 52, 96 lock() 48, 82
disarm() 52 unlock() 48, 82
serviced() 52, 97 Mutex Class
trigger() 52 rationale 146
work() 52, 97
ISR_Task.arm() 98
ISR_Task.disarm() 98 N
ISR_Task.trigger() 97 Native-Targeted Core Class File 13
Native-Targeted Core Class Files 14
NCITS Principles of the Real-Time Core 131
J Nested timeouts 151
Java 2 Never-Scheduled Priority 4
NIST Requirements for the Real-Time Core 131
L
Limited Cooperation between Core and Baseline O
requirement 127 ObjectNotFoundException 107

Limited Cooperation between Core and Baseline Java
requirement 127
Limited Cooperation between Core and High-Level Real-Time

overhead of coordinating with a garbage collector 127

Profiles P
retionale 133 o
Limited Cooperations between Core and Baseline Partitioning of Memory 9
rationale 133 comments on implementation 154
Limited Cooperations between Core and High-Level Real-Time

comments on implementation of multiple method tables 154
Perspective of the Baseline programmer 12
Perspective of the Core programmer 11

Profiles
requirement 127

doff Copyright 1999, 2000 J Consortium, All Rights Reserved

Index

rationale 134, 138
PCP 72
ceilingPriority() 73
Portability
retionale 137
requirement 128
Predictability of Core Execution Environment 34
Priority Ceiling Protocol

rationae 145

Profiles
requirement 128
Programming Language Security
retionale 137
requirement 127

R

Real-Time Java Working Group 127
RTOS 3

Run-time Queues
specification of behavior 21

S

Scope 1
ScopedException 64, 102
constructors 64
disable() 102
enable() 102
ScopedException.disable() 65
ScopedException.enable() 64

Semaphore Classes
rationale 146

semaphoreP() 56, 59
semaphoreV() 56, 59
semaphoreVall() 56, 59
Sending feedback to the J Consortium 1
shall 1
shall not 1
should 1
should not 1
SignalingSemaphore 80
_numWaiters() 80, 81
_Po 80
_v(80
_vall() 80
constructor 46
numWaiters() 46, 80
P() 46, 80
V() 46,80

vall() 46, 80
SpecialAllocation 71
context() 39, 71
execute() 39, 72
run() 39, 71
SporadicTask 98, 153
clearPending() 53,99
constructor 53, 98
pendingCount() 53, 99
trigger() 53, 99

work() 53,99
Stack Allocation 27

comments on implementation of 155
retionae 142

requirement 128

specification of behavior 27

stackable 5
stackable keyword 5
Static Core Application 6
Static Core Development Environment 6
Static Core Executable Load Image 7, 13, 14
Static Core Execution Environment 13, 14
Static Core Linker 7, 13
static properties 2
Stylized Core Source Code
special notations 20
Stylized Core Source File 12, 13, 20

Synchronization Issues 21
Synchronizing and Coordinating Between Core and
Baseline 59

Syntactic Core Extensions 139
Syntactic Core Source Code
special notations 141

Syntactic Core Source Files 139

T

Terminology 1
The Core Verifier 18
Time 84
day() 49, 84
h() 49, 84
hertz() 49, 85
m() 49, 85
ms() 49, 85
ns() 49, 85
() 49, 85
tickDuration() 49, 84

Real-Time Core Extensions for the Java™ Platform eoff

Index

toString() 49, 85
uptime() 49, 86
uptimePrecision() 49, 84
us() 49, 86

U

undefined behavior 2
Unsigned 86
compare() 55, 86
eq() 55, 87
ge() 55, 86
gt() 55, 86
le() 55,87
It() 55, 87
neg() 55, 87
toByte() 55, 88
toHexString() 55, 89
tolnt() 55, 88
toLong() 55, 88
toShort() 55, 88
toString() 55, 88
unsigned integers 86, 99
unspecified behavior 2

w

WCET 29

Working Principles of the Real-Time Java Working Group 127

fof f

Copyright 1999, 2000 J Consortium, All Rights Reserved

	1.0 Scope 1
	2.0 Terminology Conventions 1
	3.0 The Specification 6
	4.0 Baseline API 103
	5.0 Acknowledgments 108
	6.0 Informative References 108
	Annex A History 109
	Annex B Requirements for the Core Specification 126
	Annex C Background and Rationale 130
	Annex D Implementation Suggestions 153
	Real-Time Core Extensions
	1.0 Scope
	2.0 Terminology Conventions
	2.1 Normative Terms
	Shall
	Shall not
	May
	May not
	Should
	Should not
	Can
	Implementation-defined
	Unspecified behavior
	Undefined behavior

	2.2 Program Language and Technical Terminology
	Static properties
	Dynamic properties
	Java
	Baseline
	Core
	Extended Baseline Virtual Machine
	Core Components
	Core Methods
	Core-Baseline Methods
	Allocation Context
	Asynchronous Transfer of Control (ATC)
	Green Threads
	RTOS
	Base Priority
	Active Priority
	Never-Scheduled Priority
	I/O Channel, Memory-Mapped Access, and I/O-Space Access

	2.3 Architectural Components
	2.4 Notational Shorthand

	3.0 The Specification
	3.1 Conformity Assessment
	3.1.1 A Conforming Core Class File
	1. Uses the same format as Java 1.1 class files, as described in reference 3.
	2. Adheres to a more stringent set of programming constraints, as described in Section 3.5 (start...

	3.1.2 A Conforming Static Core Application
	1. Is represented as one or more Java Virtual Machine class files, according to the class file fo...
	2. Adheres to all of the special restrictions identified in section 3.5 of this document.
	3. Does not contain any invocations of the CoreClass.loadClass() or CoreClass.unloadClass() metho...

	3.1.3 A Conforming Dynamic Core Application
	1. Is represented as one or more Java Virtual Machine class files, according to the class file fo...
	2. Adheres to all of the special restrictions identified in section 3.5 of this document.
	3. Contains at least one invocation of the CoreClass.loadClass() or CoreClass.unloadClass() metho...

	3.1.4 A Conforming Core Verifier
	1. Accepts as input a Core class file and verifies that the Core class file is of the proper form...
	2. The Core verifier may be packaged either as part of the Core Execution Environment or as a ded...

	3.1.5 A Conforming Static Core Development Environment
	1. Includes Core class file implementations of all of the class libraries described in Section 3....
	2. Includes a conforming Core Verifier.
	3. Includes a conforming Static Core Linker and whatever native components (also known as Static ...
	4. Does not necessarily implement support for stack allocation of local variables, but does imple...
	5. May, but need not, include a Core Native Compiler.
	6. May, but need not, include support for integration of native methods within Core applications....

	3.1.6 A Conforming Static Core Executable Load Image
	1. Is an executable program comprised of a Core application bound to the subset of Core API libra...

	3.1.7 A Conforming Dynamic Core Development Environment
	1. Includes Core class file implementations of all of the class libraries described in Section 3....
	2. Includes a conforming Core Verifier.
	3. Includes a Dynamic Core Java Execution Environment which includes implementations of the Basel...
	4. Does not necessarily implement support for stack allocation of local variables, but does imple...
	5. May, but need not, include a Core Native Compiler.
	6. May, but need not, include support for integration of native methods within Core applications....

	3.1.8 A Conforming Static Core Linker
	1. Must be able to process any collection of conforming Core class files, producing as output an ...
	2. May, but need not, provide the capability of linking native method implementations into the re...
	3. May, but need not, include support for integration of native methods within Core applications....

	3.1.9 A Conforming Core Native Interface Compiler
	1. Shall process any conforming Core class file and produce as output a C header file which ident...

	3.2 Core Objects
	1. Core objects shall not be relocated. Once the location of a Core object has been determined, t...
	2. There are two ways for software developers to author Core class files. Either they use a tradi...
	a. If they use a traditional Baseline Compiler and a Core Verifier, they express core concepts us...
	b. If they use a Core Compiler, they express concepts using notations that we characterize in thi...

	3. When a Core task does a new memory allocation, this never blocks or causes garbage collection ...
	4. Core tasks are only allowed to allocate instances of org.rtjwg.CoreObject and its sub- classes.
	5. Except for the special Core-Baseline methods described in paragraph 3 of Section 3.3, only Cor...
	6. In the Core methods, programmers shall not perform string catenation except for catenation of ...
	7. Every Core object is allocated within a particular Allocation Context. Each Core task has a de...
	8. A Core application may invoke the release() method of any Allocation Context to cause the Core...

	3.3 Partitioning of Memory
	1. Core classes are identified by the way they are loaded. There is no syntax to distinguish Core...
	2. Core methods shall not invoke methods of Baseline objects. Further, Core-Baseline methods shal...
	3. A special protocol is available to allow developers of Core components to identify the set of ...
	4. Note in Figure�1 on page�13 that there are several paths for deploying Core programs. Either t...
	5. A special registry shall allow Core Components to publish particular core objects so they may ...
	6. Since Core objects may become visible to the Baseline world (through the publish() service of ...
	7. Style guidelines prohibit Baseline threads from direct access to the instance and class variab...
	8. Style guidelines prohibit the Core-Baseline methods from modifying the pointer instance and po...
	9. No code within Core-Baseline methods is allowed to make any reference to Baseline objects. Not...
	10. Baseline threads are not allowed to allocate instances of org.rtjwg.CoreObject and its subcla...
	11. When the Core Execution Environment is bound to a Baseline virtual machine as part of an Exte...
	3.3.1 Partitioning Protocol from Core programmer’s perspective
	1. It is my responsibility to make sure I’m done with object X before I release the Allocation Co...
	2. It is my responsibility to make sure I release the Allocation Context for object X when I am c...
	3. Once I’ve released the Allocation Context for object X, I have no need to worry about object X...
	4. I realize that object X may be useful to other components in the system, and I have no assuran...

	3.3.2 Partitioning Protocol from the Baseline programmer’s perspective
	1. From my perspective, Core objects are garbage collected just the same as other objects.
	2. I can only access or modify Core objects by way of Core-Baseline methods.
	3. I am not allowed to modify the pointer (reference) fields of Core objects.

	3.4 Architectural Overview of the Core Development Architecture
	Figure 1. Overview of Real-Time Core Development Architecture
	Core Source Files
	Stylized Core Source Files
	Core Class Files
	Baseline Compiler
	Core Verifier
	Core Native Compiler
	Native-Targeted Core Class Files
	Core Class Libraries
	Core Execution Environment
	Static Core Execution Environment
	Static Core Executable Load Image
	1. That subset of the Core Class Files that the Core Static Linker determines to be necessary for...
	2. That subset of the Core Class Libraries that the Core Static Linker determines to be necessary...
	3. That subset of the Static Core Execution Environment that the Core Static Linker determines to...

	Core Static Linker
	Dynamic Core Execution Environment
	Core Class Loader

	3.5 Core Class Files
	1. Every Core class must extend from org.rtjwg.CoreObject.
	2. Every Core class must include a static initializer which contains, as its first line of execut...
	3. If the class contains any Core-Baseline methods, the next line of the class static initializer...
	4. For each Core method (excluding the Core-Baseline methods) of the class that contains referenc...
	5. For each reference to java.lang.Object from within a Core Class File, it is understood that ja...
	6. For each reference to java.lang.Throwable, it is understood that java.lang.Throwable is a plac...
	7. For each reference to java.lang.Exception, it is understood that java.lang.Exception is a plac...
	8. For each reference to java.lang.Error, it is understood that java.lang.Error is a placeholder ...
	9. For each occurrence of the anewarray and multianewarray byte-code instructions, it is understo...
	10. If a particular Core Class File defines the org.rtjwg.CoreObject class, that class definition...
	11. Within the class file’s constant pool, any constant of type CONSTANT_String is understood to ...
	12. After performing the substitutions described in Paragraphs 5 through 11 above, the Core Verif...
	13. For all methods of Core objects except for the Core-Baseline methods, these methods shall not...
	14. For all Core-Baseline methods of Core objects, these methods shall not invoke any method of a...
	15. For all Core-Baseline methods of Core objects, the arguments to these methods shall be either...
	16. Except for the Core-Baseline methods that have been defined for a particular Core class, the ...
	17. The code contained within the Core-Baseline methods of Core objects shall not write to any Co...
	18. The code contained within the methods of Core objects shall not include any string catenation...
	19. For each synchronized context that occurs within a Core class that is declared to implement t...
	20. The Core Class File shall only include byte-code representations of source code statements of...
	21. The code contained within finally statements of Core methods (this restriction does not apply...
	22. For each local and argument variable identified as stackable (see Section 3.12), the variable...
	23. For each class that extends org.rtjwg.ISR_Task, the implementation of the work() method shall...
	3.5.1 The Core Verifier
	1. The Core Verifier shall perform all of the standard checking that is described as “Class File ...
	2. The Core Verifier shall enforce all of the special constraints described in Section 3.5 of thi...

	3.5.2 The Core Class Loader
	1. Check to make sure that this class has a static initializer that contains as its first executa...
	2. For each reference to java.lang.Object within this class, replace it with a reference to org.r...
	3. For each reference to java.lang.Throwable within this class, replace it with a reference to or...
	4. For each reference to java.lang.Exception, replace it with a reference to org.rtjwg.CoreExcept...
	5. For each reference to java.lang.RuntimeException, replace it with a reference to org.rtjwg.Cor...
	6. If the name of the class being loaded is org.rtjwg.CoreObject, check to make sure the class pr...
	7. For each CONSTANT_String object contained within the constant pool of this class, replace it w...
	8. Check to see if the next executable code within the static initializer for this class is an in...
	9. For each method of this class except those methods that were marked in step 8 above as Core-Ba...
	10. For each invocation of CoreRegistry.coerce() that is found within this class, the Core Class ...
	11. If the class is to be loaded into an Extended Baseline Virtual Machine, for which it is neces...
	a. If a particular Core-Baseline method’s argument makes reference to a Core array type, the sign...
	b. If a particular Core-Baseline method throws CoreException, the signature of this method within...
	c. If a particular Core-Baseline method throws CoreRuntimeException, the signature of this method...
	d. If a particular Core-Baseline method throws CoreThrowable or some derivative of CoreThrowable ...

	3.6 Special Notations for Stylized Core Source Code
	1. If a Core programmer declares a variable to be of type array (or makes any reference to an arr...
	2. If a Core programmer declares a class to extend from java.lang.Throwable, it is understood tha...
	3. If a Core programmer uses a string constant, it is understood that this is really a constant o...
	4. If a Core programmer fails to indicate the type from which a class extends, it is understood t...
	5. Given that the Core programmer may be dealing with objects that extend from CoreObject but whi...

	3.7 Core Priorities
	3.8 Synchronization Issues
	1. The Core Execution Environment shall run only on single-processor computers. A future version ...
	2. The implementation of synchronized locks within the Core Execution Environment shall not alloc...
	3. An attempt to obtain a synchronized lock using a source-level construct such as the following:
	4. Queues for wait/notify monitors, Mutex locks, SignalingSemaphore and CountingSemaphore impleme...
	a. Each queue shall be maintained in priority order, with multiple entries of the same priority m...
	b. If a task’s priority drops due to loss of inherited priority, and consequently some other high...
	c. When a running task becomes preempted by a higher-priority task, the preempted task shall be p...
	d. When a running task’s time slice expires, the preempted task shall be placed onto the ready qu...
	e. When a blocked task becomes runnable, that previously blocked task shall be placed on the read...
	f. A running task can explicitly change its own priority or the priority of another task. If the ...
	g. When a running task yields by executing the CoreTask.yield() method, the task shall be placed ...
	h. At no other time shall the position of a task within a task priority queue be affected.
	i. a task that was blocked (e.g. in org.rtjwg.CoreObject.wait(), org.rtjwg.SignalingSemaphore.P()...
	ii. because the task was sleeping, and has slept the designated amount of time, or
	iii. because some other task awakens this task by invoking org.rtjwg.CoreObject.notify() or
	iv. because some other task awakens this task by invoking org.rtjwg.CoreObject.notifyAll(),

	5. There shall be no blocking and consequently no queue of waiting tasks in the implementation of...
	a. On entry into a PCP-synchronized context, the Core Execution Environment checks to make sure t...
	b. Assuming that entry into the PCP-synchronized context is not prohibited by the check performed...
	c. As long as this task continues to execute within the PCP-synchronized context, this task shall...
	d. The Core Execution Environment shall assure that only one Core task at a time executes within ...
	i. it is preempted by a higher priority task (a task with priority higher than the PCP ceiling pr...
	ii. it completes execution of the body of code that comprises the PCP-synchronized context.
	e. Upon exit from the PCP-synchronized context, the Core Execution Environment shall:
	i. Restore this task’s priority to its original value, queuing this task on the ready queue and d...
	ii. If there are no other Core tasks executing within PCP-synchronized contexts, the Core Executi...
	iii. If this CoreTask has received a stop() request, the Core Execution Environment shall begin p...

	3.9 Task Execution Model for Execution of Core-Baseline Methods
	1. All Core-Baseline methods shall execute with Base Priority equal to one, which is the lowest p...
	2. When a Core-Baseline method enters a synchronized context, all of which are governed either by...
	3. When a Core-Baseline method acquires a Mutex lock, its priority is automatically adjusted as r...
	4. If a Core-Baseline method acquires a Mutex lock and then returns without releasing the lock, o...
	5. If a Baseline thread uses the Core-Baseline Mutex._lock() method to acquire a mutual exclusion...

	3.10 The Core Memory Model
	3.11 Abort Mechanism and Asynchronous Transfer of Control in General
	1. Except for Core-Baseline methods, finally statements within Core methods shall not contain bre...
	2. Except for Core-Baseline Methods, finally statements shall not include throw statements.
	3. The Core Verifier and the Core Compiler shall enforce the above restrictions.
	4. If a CoreTask is executing finally statements as part of the cleanup associated with respondin...
	5. If a CoreTask is executing within a synchronized region of code that corresponds to an object ...
	3.11.1 Asynchronous Transfer of Control
	1. If the task is constructed to ignore asynchronous events and this transfer-of-control request ...
	2. If the task is currently executing within a deferral region, the task is allowed to continue e...
	a. The body of a synchronized statement contained within a class that implements the Atomic inter...
	b. The body of a finally statement is a deferral region.

	3. If this control-transfer request was triggered by an abort() invocation, go to step 8.
	4. Create a new activation frame on the task’s run-time stack for execution of its event handling...
	5. The event handler for the task would have been set by a prior action of one of the following f...
	a. At the time the task was constructed, one of the constructor arguments provides a reference to...
	b. Subsequently, the event handler may have been replaced by invoking the task’s asyncHandler() m...

	6. If the invoked handleATCEvent() method returns, control resumes within the interrupted method ...
	7. Otherwise, if the invoked handleATCEvent() method throws an exception, this exception is propa...
	8. This control-transfer request was triggered by invocation of the task’s abort() invocation. Th...
	9. The implementation-defined method that is invoked to handle the abort() request shall throw th...

	3.12 Stack Allocation of Dynamic Objects
	1. Within each Core method (excluding Core-Baseline methods), the programmer identifies which loc...
	a. Stylized Core source programmers concatenate the names of the variables into a string constant...
	b. Syntactic Core source programmers use the stackable keyword in the declarations of each variab...

	2. If a particular method has parameters (including this) which are declared to be stackable, the...
	3. Additional restrictions are of the form described below. Throughout this discussion, the word ...
	a. Each Core Execution Environment shall identify through the CoreRegister.stackAllocation() API ...
	b. For each variable that is declared as stackable, a new object request that assigns its result ...
	c. In order to allow the Core Execution Environment to blindly stack allocate each new object tha...
	i. There shall be no data path within the method that allows the value of any stackable variable ...
	ii. There shall be no data path within the method that allows the stackable variable’s value to b...
	iii. There shall be no data path within the method that allows the value of the stackable variabl...
	iv. There shall be no data path within the method that allows the stackable variable’s value to b...
	v. For each new operation that assigns its result to a stackable variable, the constructor shall ...
	vi. Any new operation that assigns its result to a stackable variable shall not appear within a l...
	vii. If a given Core Execution Environment does not implement stack allocation, any allocated obj...

	3.13 Initialization and Class Loading
	3.14 Execution-Time Analyzable Code
	1. A straight-line sequence (without conditional or unconditional branching and without method in...
	2. The athrow instruction shall be execution-time analyzable. Note that the Core Execution Enviro...
	3. The code represented by an invokestatic or invokespecial instruction is execution-time analyza...
	4. Given a program control flow consisting of a conditional branch and two alternative code flows...
	Figure 2. Analyzable Conditional Control Flow

	5. In Java byte code, both the lookupswitch and tableswitch instructions represent multiway condi...
	Figure 3. Analyzable Multi-Way Conditional Control Flow

	6. Within a class file’s method representation, try clauses are identified by the exception_table...
	7. As described in Reference 9, a natural loop is defined as follows:
	a. A basic block is a sequence of consecutive byte-code instructions into which control enters at...
	b. A flow graph is a collection of nodes representing basic blocks of a computer program which ar...
	i. There is a conditional or unconditional jump from the last instruction in the basic block repr...
	ii. The basic block represented by node B2 immediately follows the basic block represented by nod...
	c. We say that node d of a flow graph dominates node n if every path from the initial node of the...
	d. A back edge is a directed edge of a flow graph whose head dominates its tail. (Given a directe...
	e. Given a back edge nmd, the natural loop of that edge is the node d plus all nodes that can rea...
	a. We characterize a departure edge of natural loop N to be a directed edge for which the head is...
	b. For each departure edge, we call the node that represents the departure edge’s tail a departur...
	a. Every path within the flow graph from the loop header back to the loop header is execution-tim...
	b. There exists at least one departure node for the loop that exhibits the following properties:
	i. The departure node dominates each node within the loop that has a back edge to the loop’s head...
	ii. The condition upon which the departure node decides whether to depart from the loop is a simp...
	iii. Within the loop, there is only one assignment to the variable j. This assignment must be con...
	iv. There is only one definition of the variable j which reaches the header of the loop (See reac...

	3.14.1 Analyzability of Core Source Code
	1. A straight-line body of Core Source Code shall be translated by the Core Compiler into executi...
	2. A throw statement shall be translated by the Core Compiler into execution-time analyzable byte...
	3. An invocation of a static or final method shall be translated by the Core Compiler into execut...
	4. The Core Compiler shall translate if statements and if-else statements to execution- time anal...
	5. The Core Compiler shall translate switch statements to execution-time analyzable byte code if ...
	6. The Core Compiler shall translate for statements to execution-time analyzable byte code if the...

	3.14.2 Predictability of the Core Execution Environment
	1. The time required to execute all virtual machine instructions is constant, except for the foll...
	a. The time required to execute new, newarray, anewarray, and multianewarray instructions is impl...
	b. The maximum time required to execute the aastore, checkcast, and instanceof instructions shall...
	c. The maximum time required to execute an athrow instruction is proportional to the depth of the...
	d. The time required to execute an invokeinterface instruction is implementation- defined and nee...

	2. The CPU time and dynamic memory impact of each of the official Core API libraries, including C...
	TABLE 1. Predictability Requirements for Core API Libraries

	3. The CPU time and dynamic memory impact of the C/Native API libraries described in Section 3.16...
	TABLE 2. Predictability Requirements for the C/Native API

	4. The CPU time and dynamic memory impact of the Baseline API libraries described in Section 4.0 ...

	3.15 Core Class Loading API Overview
	3.16 C/Native API
	3.16.1 Obtaining Access to Core Objects
	coreRegistryLookup()
	3.16.2 Understanding Core Resource Needs and Contention

	maxCorePriority()
	minCorePriority()
	corePriorityMap()
	maxBaselinePriority()
	minBaselinePriority()
	coreInterruptLevels()
	3.16.3 Synchronizing and Coordinating with the Baseline Domain

	semaphoreP()
	semaphoreV()
	semaphoreVall()
	enterSynchronized()
	exitSynchronized()

	3.17 The Core API
	3.17.1 The CoreObject Class
	CoreObject Constructor
	CoreObject.clone()
	CoreObject.equals()
	CoreObject.getClass()
	CoreObject.hashCode()
	CoreObject.notify()
	CoreObject.notifyAll()
	CoreObject.toString()
	CoreObject.wait()
	CoreObject.arrayAddress()
	CoreObject.sizeof()
	3.17.2 The CoreThrowable Class

	CoreThrowable Constructors
	CoreThrowable.getMessage()
	3.17.3 The CoreRuntimeException Class

	CoreRuntimeException Constructors
	3.17.4 The CoreException Class

	CoreException Constructors
	3.17.5 The ScopedException Class

	ScopedException Constructors
	ScopedException.enable()
	ScopedException.disable()
	3.17.6 The CoreClass Class

	CoreClass.forName()
	CoreClass.getComponentType()
	CoreClass.isArray()
	CoreClass.isAssignableFrom()
	CoreClass.isInstance()
	CoreClass.isInterface()
	CoreClass.isPrimitive()
	CoreClass.newInstance()
	CoreClass.toString()
	CoreClass.verification()
	CoreClass.loadClass()
	CoreClass.unloadClass()
	3.17.7 The CoreArray Class
	TABLE 3. Core Array Representation Within Baseline Domain

	length()
	atGet()
	atPut()
	3.17.8 The AllocationContext Class
	1. If this is an ISR_Task or SporadicTask, the task is not considered to have “completed” executi...
	2. Otherwise, this must be a CoreTask. There are several ways for a CoreTask (which is not one of...
	a. It may return from its work() method.
	b. It may throw an uncaught exception, including the special exception returned from its abortWor...
	c. The task’s stop() method may be invoked, in which case the task is considered to have complete...

	AllocationContext Constructors
	1. The first shall take no arguments and shall create an AllocationContext object that is configu...
	2. The second constructor shall take an argument identifying the maximum total number of bytes au...
	3. The third constructor shall take an argument identifying the maximum total number of bytes aut...

	AllocationContext.available()
	AllocationContext.allocated()
	AllocationContext.release()
	3.17.9 The SpecialAllocation Class

	SpecialAllocation.context()
	SpecialAllocation.run()
	SpecialAllocation.execute()
	3.17.10 The PCP Interface
	1. If some task running at a priority higher than a particular PCP object’s ceiling priority atte...
	2. For any class that implements the PCP interface, it is improper to invoke the wait(), notify()...
	3. Obtaining a synchronization lock (whether it is a PCP object or a priority inheritance object)...
	4. When a task is executing with possession of a PCP object’s synchronization lock, the Core task...
	5. No queues shall be used in the implementation of a priority ceiling lock.
	6. PCP synchronization shall not cause the currently running task to block.
	7. No time slicing of tasks at equal or lower priority shall be allowed while the running task ho...
	8. Blocking I/O and synchronizing operations shall not be permitted while the current task holds ...
	9. Static and dynamic nesting of priority ceiling locks shall be permitted. However, entry into a...
	10. For PCP objects, third-party synchronization shall be prohibited. In other words, the code fr...
	11. The Core Execution Environment shall give special handling to the construction of objects tha...

	PCP.ceilingPriority()
	3.17.11 The Atomic Interface
	1. Only objects that implement the Atomic interface shall be allowed to set their priority ceilin...
	2. Each of the bodies of code that comprise the synchronized statements associated with an Atomic...
	3. If a task is executing synchronized code of an Atomic object (“Atomic synchronized code”) when...

	3.17.12 The CoreString Class

	CoreString Constructors
	CoreString.charAt()
	CoreString.hashCode()
	CoreString.equals()
	CoreString.length()
	3.17.13 The DynamicCoreString Class

	DynamicCoreString Constructors
	DynamicCoreString.concat()
	DynamicCoreString.getChars()
	DynamicCoreString.substring()
	DynamicCoreString.toCharArray()
	DynamicCoreString.toLowerCase()
	DynamicCoreString.toUpperCase()
	3.17.14 The ATCEventHandler class

	ATCEventHandler Constructor
	ATCEventHandler.handleATCEvent()
	3.17.15 The ATCEvent class

	ATCEvent Constructor
	ATCEvent.defaultAction()
	3.17.16 The CoreRegistry class

	CoreRegistry.stackAllocation()
	CoreRegistry.registerStackable()
	CoreRegistry.registerBaseline()
	CoreRegistry.registerCoreClass()
	CoreRegistry.coerce()
	CoreRegistry.profiles()
	1. A profile whose name begins with the substring “org.j-consortium” is considered to be an offic...
	2. All other profiles are considered to be proprietary, defined by particular individuals or indu...
	3. Any profile whose name ends with the special character “-” shall disable certain capabilities ...

	CoreRegistry.publish()
	CoreRegistry.unpublish()
	3.17.17 The SignalingSemaphore Class

	SignalingSemaphore.P()
	SignalingSemaphore.V()
	SignalingSemaphore.Vall()
	SignalingSemaphore.numWaiters()
	3.17.18 The CountingSemaphore Class

	CountingSemaphore.P()
	CountingSemaphore.V()
	CountingSemaphore.numWaiters()
	CountingSemaphore.count()
	3.17.19 The Mutex Class

	Mutex Constructors
	Mutex.lock()
	Mutex.unlock()
	3.17.20 The Configuration Class

	Configuration.tick_duration
	Configuration.ticks_per_slice
	Configuration.uptime_precision
	Configuration.default_stack_size
	Configuration.stack_overflow_checking
	Configuration.min_core_priority
	Configuration.system_priority_map
	Configuration.little_endian
	3.17.21 The Time Class

	Time.tickDuration()
	Time.uptimePrecision()
	Time.day()
	Time.h()
	Time.hertz()
	Time.m()
	Time.ms()
	Time.ns()
	Time.s()
	Time.toString()
	Time.uptime()
	Time.us()
	3.17.22 The Unsigned class

	Unsigned.compare()
	Unsigned.ge()
	Unsigned.gt()
	Unsigned.le()
	Unsigned.lt()
	Unsigned.eq()
	Unsigned.neq()
	Unsigned.toByte()
	Unsigned.toShort()
	Unsigned.toInt()
	Unsigned.toLong()
	Unsigned.toString()
	Unsigned.toHexString()
	3.17.23 The CoreTask Class

	CoreTask Constructor
	1. Whether or not asynchronous event handling other than abort() and stop() is enabled for this c...
	2. The size of this task’s run-time stack.
	3. The size and type of the default allocation context for this CoreTask.
	4. The task’s Base Priority.

	Static Methods
	CoreTask.currentTask()
	CoreTask.defaultStackSize()
	CoreTask.maxBaselinePriority()
	CoreTask.maxCorePriority()
	CoreTask.maxSystemPriority()
	CoreTask.minBaselinePriority()
	CoreTask.minCorePriority()
	CoreTask.minSystemPriority()
	CoreTask.numInterruptPriorities()
	CoreTask.stackOverflowChecking()
	CoreTask.systemPriorityMap()
	CoreTask.ticksPerSlice()
	Instance Methods
	CoreTask.abort()
	CoreTask.abortWorkException()
	CoreTask.asyncHandler()
	CoreTask.join()
	CoreTask.resume()
	CoreTask.setPriority()
	CoreTask.signalAsync()
	CoreTask.sleep()
	CoreTask.sleepUntil()
	CoreTask.stackDepth()
	CoreTask.stackSize()
	CoreTask.start()
	CoreTask._start()
	CoreTask.stop()
	CoreTask.suspend()
	CoreTask.systemPriority()
	CoreTask.work()
	CoreTask.yield()
	3.17.24 The ISR_Task Class

	ISR_Task Constructor
	1. The size of this task’s run-time stack.
	2. The size and type of the default allocation context for this CoreTask.
	3. The task’s Base Priority.
	4. The number of the interrupt that is to trigger execution of this ISR_Task.

	ISR_Task.serviced()
	ISR_Task.trigger()
	ISR_Task.work()
	ISR_Task.ceilingPriority()
	ISR_Task.arm()
	ISR_Task.disarm()
	3.17.25 The SporadicTask Class

	SporadicTask Constructor
	1. Whether or not asynchronous event handling other than abort() and stop() is enabled for this c...
	2. The size of this task’s run-time stack.
	3. The size and type of the default allocation context for this CoreTask.
	4. The task’s Base Priority.

	SporadicTask.trigger()
	SporadicTask.work()
	SporadicTask.pendingCount()
	SporadicTask.clearPending()
	3.17.26 The IOPort class

	IOPort.createIOPort()
	IOPort.readByte()
	IOPort.writeByte()
	IOPort.readShort()
	IOPort.writeShort()
	IOPort.readInt()
	IOPort.writeInt()
	IOPort.readLong()
	IOPort.writeLong()
	3.17.27 Core Throwable Types
	1. CoreThrowable: org.rtjwg.CoreThrowable extends org.rtjwg.CoreObject. Within the Core Execution...
	2. CoreException: org.rtjwg.CoreException extends org.rtjwg.CoreThrowable. Within the Core Execut...
	3. CoreRuntimeException: org.rtjwg.CoreRuntimeException extends org.rtjwg.CoreThrowable. Within t...
	4. ScopedException: org.rtjwg.ScopedException extends org.rtjwg.CoreException. A ScopedException ...
	a. A routine that anticipates the need to establish a special asynchronous event handler which wi...
	b. When the asynchronous ATCEventHandler is signaled, its handleATCEvent() method throws the prev...
	c. In processing this thrown exception, the Core Execution Environment does not allow any interve...
	d. If an ATCEventHandler attempts to throw a ScopedException that has been disabled, the effect i...
	e. The activation frame from within which a ScopedException is enabled represents the only scope ...
	f. When a ScopedException is instantiated, it is automatically enabled in the context from within...
	g. Whenever a method’s activation frame is removed from the run-time stack, all of the ScopedExce...
	TABLE 4. Core CoreThrowable Classes

	4.0 Baseline API
	Semaphore Operations
	CoreTask Operations
	Core Execution Profiles
	Starting Up a Core Execution Environment
	4.1 The BaselineCoreClassLoader Class
	BaselineCoreClassLoader Constructors
	BaselineCoreClassLoader semantics
	1. Insofar as the Baseline domain is concerned, the Baseline interface to all Core classes is rep...
	2. The BaselineCoreClassLoader class loader shall only load classes that correspond to Core objec...
	3. BaselineCoreClassLoader shall be a final class, meaning that it cannot be extended.
	4. The constructors for BaselineCoreClassLoader shall load org.rtjwg.CoreDomain, shown below, and...
	5. The BaselineCoreClassLoader class loader shall perform security manager checks on all class lo...

	4.2 The CoreDomain Class
	CoreDomain.lookup()
	CoreDomain.defineClass()
	CoreDomain.loadClass()
	CoreDomain.instantiate()
	CoreDomain.profiles()

	4.3 The ObjectNotFoundException Class
	4.4 The CoreBaselineThrowable Class
	CoreBaselineThrowable Constructors
	CoreBaselineThrowable.getCoreThrowable()

	4.5 The CoreBaselineRuntimeException Class
	CoreBaselineRuntimeException Constructor
	CoreBaselineRuntimeException.getCoreException()

	4.6 The CoreBaselineException Class
	CoreBaselineException Constructors
	CoreBaselineException.getCoreException()

	5.0 Acknowledgments
	6.0 Informative References
	1. Requirements For Real-time Extensions For the Java ™ Platform, edited by Lisa Carnahan and Mar...
	2. Java Language Reference, 2nd Edition, by Mark Grand, O’Reilly Publications, July 1997, ISBN 1-...
	3. Java Virtual Machine, by Jon Meyer and Troy Downing, March 1997, ISBN 1- 56592-194-1.
	4. The Java™ Programming Language, Second Edition, by Ken Arnold and James Gosling, Addison-Wesle...
	5. The Java Language Specification, by James Gosling, Bill Joy and Guy Steele, Addison-Wesley, Se...
	6. The Java Class Libraries Volume 1, Second Edition, by Patrick Chan, Rosanna Lee and Douglas Kr...
	7. The Java Class Libraries Volume 2, Second Edition, by Patrick Chan and Rosanna Lee, Addison-We...
	8. The Java Virtual Machine Specification, by Tim Lindholm, Frank Yellin, Bill Joy, and Kathy Wal...
	9. Compilers: Principles, Techniques, and Tools, by Alfred Aho, Ravi Sethi, and Jeffrey Ullman, 1...
	10. C ISO/IEC 9899:1990
	11. C++ ISO/IEC/14882: 1998
	12. Improving the Java Memory Model Using CRF, by Jan-Willem Maessen, Arvind, and Xiaowei Shen, i...
	13. Fixing the Java Memory Model, by William Pugh, in Proceedings of the ACM Java Grande Conferen...
	14. The Java Memory Model, Issues and Discussions hosted at http://www.cs.umd.edu/ ~pugh/java/mem...

	Annex A History
	A.1 Revision 1.0.14
	1. Removed the word Java from the title and from many of the notational terms used throughout the...
	2. Various small changes to correct misspellings, cut-and-paste errors, and to improve clarity. T...
	3. Reordered the document to move the edit history, requirements, rationale, and implementation s...
	4. Removed the notion of Syntactic Core extensions from the Core specification. The use of baseli...
	5. Revised the discussion of conformity assessment (Section 3.1 (starting on page 6)) to make con...
	6. Removed the entire “I/O Subsystem” section from the Core specification. This material was redu...
	7. Replaced CoreError with CoreRuntimeException and CoreBaselineError with CoreBaselineRuntimeExc...
	8. Added Section 3.9 (starting on page 24), which clarifies the required scheduling behavior for ...
	9. Added Section 3.10 (starting on page 24), which discusses briefly the need to clarify the Core...
	10. Added discussion of predictability requirements for the C/Native API and for the Baseline API...
	11. Replaced the C library function corePriorityInterleave() with corePriorityMap() in Section 3....

	A.2 Revision 1.0.13
	1. To remove unnecessary reference and dependency on the Baseline specification, and
	2. To further unify the Core specification with the evolving specification for the Real- Time Dat...
	1. Add a OneShotEvent class that is similar to PeriodicEvent class except that execution of the c...
	a. It shall be implementation-defined when a OneShotEvent handler’s work() method is invoked rela...

	2. For all kinds of events (PeriodicEvent, OneShotEvent, SporadicEvent, and InterruptEvent), any ...
	3. There are a number of contemplated changes regarding queueing and buffer overrun:
	a. For all kinds of events (PeriodicEvent, OneShotEvent, SporadicEvent, and InterruptEvent), add ...
	b. The meaning of Event.disable() is to prevent new events from being queued.
	c. For all kinds of events, the enable() and disable() methods may involve interaction with the o...
	d. The meaning of Event.disableQueue() is also to prevent new events from being queued. Additiona...
	e. Add an onError() method to each of the EventHandler classes.
	f. Add an error() method to each kind of event. This method returns an integer code representing ...
	g. If the work() method of an event handler is still running and the one of the Events that this ...
	h. Eliminate the numberOverruns() method from PeriodicTask.

	4. Add an IODescription class patterned after the class by the same name in the Real- Time Data A...
	5. Add an enumerate() method to IONodeLeaf, which returns an array of IODescription objects repre...
	6. Add an event handler to the IOChannel proxy objects. Specify this as an argument to the create...
	7. Add a Version class, which has the following final fields:
	8. Add an IOEventHandler class from which PeriodicTask, InterruptTask, and SporadicTask derive. T...
	a. Tentatively, add a reference to SymbolTable as an argument to the various createXX() methods. ...

	9. Move pendingCount() to EventHandler class and remove this method from Event classes.
	10. Give the IONode constructor an argument named driver_name, of type CoreString, which represen...
	11. A change is proposed to the range checking associated with the IONodeLeaf.createIO() method, ...

	A.3 Revision 1.0.12
	A.4 Revision 1.0.11
	1. In Section C.15 (starting on page 145), the sample code did not compile. We found it necessary...
	2. In Section C.17 (starting on page 146), we modified the sample timeout code and the descriptio...
	3. In Section 3.5 (starting on page 15), paragraph 20, removed mention of the Atomic interface. T...
	4. In the PeriodicEvent class description (since removed from this document), remove the numberOv...
	5. In the IONodeLeaf class description (since removed from this document), remove the readable an...
	6. In Section 4.2 (starting on page 105), we clarified that the constructor triggered by executio...
	7. A number of minor typographic errors were corrected.

	A.5 Revision 1.0.10
	A.6 Revision 1.0.9
	1. Allow nesting of PCP synchronization locks. This change is reflected in Section 3.17.10 (start...
	2. Removed the prohibition on invocation of methods from within finally clauses. This change is r...

	A.7 Revision 1.0.8
	1. Remove “draft” from the title of Section 3.0 (starting on page 6). Also, replace a number of o...
	2. Add IOEventInterface.PeriodicEventCode to the list of special cases associated with invocation...
	3. Replace IONodeLeaf.createIOxxx() with IONodeLeaf.createIO??(). This change is reflected in the...
	4. Add to description of IONodeLeaf.createIO??() that if the IOChannel object is created with imp...
	5. In the description of the IODeviceDescription class, which was removed from a subsequent revis...
	6. For IODeviceDescription objects that represent I/O channels, replace the “range” attribute wit...
	7. In the description of IOInterface.mode() (subsequently changed to IODescription.mode()), expla...
	8. Add a “Scope” section, as Section 1.0 (starting on page 1).
	9. A few typographic errors were corrected.

	A.8 Revision 1.0.7
	1. Add to IOEventHandlerInterface and to the classes that implement this interface a method named...
	2. Remove the explicit constructor from the InterruptEvent class. This change is reflected in the...
	3. Change the constructor for IONodeLeaf to take a single integer interrupt number rather than a ...
	4. Add an exchangeInterruptNumber() method to IONodeLeaf. This has the effect of replacing the va...
	5. Remove the length argument of the IONodeLeaf.createIOxxx() method. Instead, compute the length...
	6. When creating an I/O channel using the createIOxxx() method, clarify the meaning of a special ...
	7. Throughout the document, use the phrase “memory-mapped access” to describe access to memory-ma...
	8. Analogous to the “timer” attribute for IONodeLeaf.createPeriodic() and the “trigger” attribute...
	9. Add the IOImplicit and IOExclusive symbolic constants back into the definition of the IOInterf...
	10. Add enable() and isEnabled() methods to IOInterface and the classes that implement this inter...
	11. Add a constructor to allow new IODeviceDescription objects to be created and added to the sys...
	12. Add clarification re: address arithmetic for IOChannel nodes. In particular, base memory and ...
	13. Add clarification re: endian behavior of I/O operations. In particular, all multi-byte values...
	14. On the cover page, removed “draft” from the title and other cover material, and added tradema...
	15. Throughout the document, changed the footer to say Copyright 1999, 2000 on all even-numbered ...
	16. Renamed the readDevice() method to update(). Renamed the writeDevice() method to flush().
	17. Assorted typographic errors were corrected.

	A.9 Revision 1.0.6
	1. Clarify that the IOEventHandlerInterface.setEvent() method is called automatically before call...
	2. Do not require that 1-bit IOChannel objects be implemented using implicit reading and writing....
	3. Create new IOChannel sub-classes to represent block-transfer I/O operations, as an addition (n...
	4. For the various I/O proxy classes (IOChannel and all of its descendants), rename the existing ...
	a. read(): has effect of atomically performing a readDevice() operation followed by a value() ope...
	b. read(offset): has effect of atomically performing a readDevice(offset) operation followed by a...
	c. write(value): has effect of performing a value(val) operation followed by a writeDevice() oper...
	d. write(value, offset): has effect of performing a value(val) operation followed by a writeDevic...

	5. Establish better consistency between the use of interfaces and the use of classes. Note that w...
	6. Add a disable() method to IOInterface and IOChannel. This change is reflected in the sections ...
	7. Use a special subclass of IONode named IONodeLeaf to represent leaf nodes within the IONode hi...
	a. Only leaf nodes have an associated IODeviceDescription object.
	b. Only leaf nodes keep track of which interrupt numbers are associated with the node. Since mult...
	c. When leaf nodes are constructed, they do not need to specify mem_range and io_range arguments....
	d. Only leaf nodes are allowed to create IOChannel proxies (instantiate subclasses of IOChannel).

	8. Replace the IONodeLeaf.createIO() method with multiple methods, each one returning an instance...
	a. Whether readDevice() and writeDevice() operations on the IOChannel object are implicit or expl...
	b. Whether the IOChannel object represents read permission.
	c. Whether the IOChannel object represents write permission.
	d. Whether the IOChannel object represents exclusive access to the given channel.

	9. Fix the descriptions of IONode.createIOxxx() and IONode.createInterrupt(). The current revisio...
	10. For all of the IONodeLeaf.createIOxxx() operations, use the entry-name within the correspondi...
	11. Add a new constructor for IONode and IONodeLeaf which does not include arguments to specify t...
	12. Add an IONodeLeaf.createPeriodic() method. Among its arguments is an entry name. The named en...
	13. Add an IONode.createSporadic() method. Among its arguments is an entry name. The named entry ...
	14. Change the conventions for representation of information within IODeviceDescription.
	a. For entries that represent I/O proxies, there shall be no required attribute named “address”. ...
	b. For entries that represent I/O proxies, the “mode” attribute shall encode only the values of t...
	c. If a particular entry represents an interrupt vector, it must have an attribute named “type” w...

	15. IODeviceDescription should specify the range of memory and I/O addresses relative to the pare...
	16. Make the Core Verifier be required in any conforming implementation of the Core development e...
	17. Change the behavior of CoreTask.setPriority(). If the task for which setPriority() is invoked...
	18. The previous revision of the specification states that time slicing shall be inhibited while ...
	19. The constructor for InterruptTask should not take an ATCEventHandler argument, since the Inte...
	20. Change ScopedException to extend CoreException instead of CoreError. This change is reflected...
	21. Add enable() and disable() methods to ScopedException. These have the following semantics:
	a. If an ATCEventHandler attempts to throw a ScopedException that has been disabled, the effect i...
	b. The activation frame from within which a ScopedException is enabled represents the only scope ...
	c. When a ScopedException is instantiated, it is automatically enabled in the context from within...
	d. Whenever a method’s activation frame is removed from the run-time stack, all of the ScopedExce...

	22. Update Table�1 on page�35 to represent all of the methods of all classes in the Core API libr...
	23. Several typographic errors were corrected.

	A.10 Revision 1.0.5
	1. The core NIST requirements state that the core specification must identify the resource requir...
	2. Exchange the definitions of CoreTask.stackSize() and CoreTask.stackDepth(). This change is ref...
	3. Add a sizeof() method to CoreObject. This change is reflected in Section 3.17.1 (starting on p...
	4. Add an allocated() method to AllocationContext. This change is reflected in Section 3.17.8 (st...
	5. Change the signature of AllocationContext.available() to return long. This change is reflected...
	6. Clarify description of constructor for ATCEventHandler. This change is reflected in Section 3....
	7. Clarify description of constructor for ATCEvent. This change is reflected in Section 3.17.15 (...
	8. Modify behavior of CoreRegistry.publish() to assure that the memory used to represent CoreRegi...
	9. Make PeriodicTask implement the IOEventHandlerInterface. Remove its executionPeriod() and numb...
	10. Add the numberOverruns() method to PeriodicEvent. In the same class, modify the return type o...
	11. In IOEventInterface, rename SoftwareEventCode to be SporadicEventCode. Rename TimerEventCode ...
	12. Add a getType() method to IOEventHandlerInterface. Define symbolic constants in this same cla...
	13. Correct the description of IOChannel.mode() to properly identify that 7 bits are required to ...
	14. Make clear in the description of CoreTask that the start() and _start() methods do not result...
	15. Change the signature of SporadicEvent.handler() to return SporadicTask. This change is reflec...
	16. Remove the constructors for InterruptEvent and all IOChannel subclasses. These changes are re...
	17. Add createIO() and createInterrupt() methods to the IONode class. These changes are reflected...
	18. Add a symbolic constant named IOExclusive to the IOChannel class. This change is reflected in...
	19. Remove attributeConstants() from the IODeviceDescription class. Add entryNames() and modify t...
	20. Remove armInterrupt() and disarmInterrupt() from the InterruptEvent class. These changes are ...
	21. Remove the value(x) method from all read-only subclasses of IOChannel. Remove the value() met...
	22. Miscellaneous typographic, spelling, and punctuation fixes, along with improvements to indexing.

	A.11 Revision 1.0.4
	1. Remove all references to DeviceRegistry and DeviceCapability as these classes have been remove...
	2. Add cross references to point 34 of Section A.12 (starting on page 122).
	3. Fix a few typographic and formatting errors.

	A.12 Revision 1.0.3
	1. The prohibition on string catenation in Core components is too severe. We need to allow catena...
	2. The requirement that entry into and departure from a synchronized context not allocate memory ...
	3. The prohibition on use of synchronized statements to lock Atomic objects other than this needs...
	4. The discussion of synchronization issues must include the possibility that a blocked task beco...
	5. Introduce the notion of asynchronous transfer of control, as it has been proposed for inclusio...
	6. Mention that a task may become runnable because some other task signals an asynchronous event....
	7. Add a way to timeout a Mutex.lock() invocation. This is handled by introduction of the asynchr...
	8. Add a CoreTask.join() method, along with a way to time it out. This change is reflected in Sec...
	9. Say that when CoreObject.notifyAll() awakens multiple tasks of equal priority, they are awaken...
	10. The special treatment given to thrown CoreError objects during execution of a finally stateme...
	11. Add discussion regarding asynchronous abortion that execution of finally statements is “abort...
	12. Allow for the possibility that some implementations of the Core specification do not support ...
	13. Make clear that if a multi-dimensional array is considered to be stackable, all dimensions ar...
	14. Explain why the inner-class stack-allocation example presented by Aonix is not a valid Core p...
	15. Delete the requirement that “support for the Core specification and all profiles be all or no...
	16. State that all run-time error exceptions that are thrown by official Core API libraries are p...
	17. Specify the Core priority semantics in terms of “Base” and “Active” priorities, as suggested ...
	18. Specify exactly when a CoreTask’s allocation context is released, so that its memory may be r...
	19. Specify for AllocationContext that if the size is specified when the AllocationContext is cre...
	20. For AllocationContext, provide an option to allow programmers to specify the location, in mem...
	21. The priority interleave stuff is too confusing and probably not sufficiently general. Replace...
	22. Make the Core Static Linker reject invocations of unloadClass() and loadClass(). (Developers ...
	23. Throughout the document, replace uses of the word “prototype” with the word “signature” in al...
	24. Get rid of OngoingTask. Use CoreTask to implement the behavior originally intended for Ongoin...
	25. Define a SporadicTask class, which extends from CoreTask. This is like InterruptTask except i...
	26. Allow the _start() Core Baseline method for PeriodicTask, InterruptTask, and SporadicTask in ...
	27. Remove pendingCount() and clearPendingCount() from Interrupt. Also, remove hardwareInterruptB...
	28. Explain that by default, all interrupts (which are armed at startup) are handled by interrupt...
	29. For the Unsigned class, rename the equal() method as eq(). Add ge(), le() and neq() methods t...
	30. Be more explicit in describing overflow conditions for the Unsigned class’s toByte(), toShort...
	31. For interrupt handlers, support an atomic exchangeHandler() method to allow atomic changing o...
	32. Create a new CoreTask constructor that allows the option of specifying the size of the defaul...
	33. For Core profiles, specify that official J Consortium profiles are named using the org.j-cons...
	34. Refine the definition of the IOChannel system for improved compatibility with the Real-Time A...

	A.13 Revision 1.0.2

	Annex B Requirements for the Core Specification
	B.1 The Working Principles of the Real-Time Java Working Group
	1. Real-time Java programs written in Core notations must support limited cooperation with progra...
	2. Programs written for the Core extensions must support limited cooperation with programs writte...
	3. Core extensions offer “minimal latency”, where latency means the least upper bound on the time...
	4. Core real-time extensions shall offer “maximal throughput”. Support for maximal throughput mea...
	5. Real-time Java programs that are written using Core extensions need not incur the run-time ove...
	6. Baseline components and components written for yet-to-be-defined higher-level real-time profil...
	7. In the Core domain, it might not be possible for the programming language compiler or run-time...
	8. Components written for execution in the Core environment shall run on a wide variety of differ...
	9. Program components written for execution in the Core Execution Environment can be dynamically ...

	B.2 Additional Requirements
	1. The Core specification shall support the ability to perform stack allocation of dynamic object...
	2. The Core specification shall be designed to support a small footprint, requiring no more than ...
	3. The Core specification shall enable the creation of profiles which expand or subtract from the...
	a. The description of each profile must clearly identify whether it resides in the Core Execution...
	b. The Core specification shall provide support both for profiles officially supported by the J C...
	c. Profiles shall be named using reverse domain name conventions (e.g. com.aonix.high_integrity).
	d. There shall be an API available to Baseline programmers to allow Baseline components to determ...
	e. There shall be an API available to Core programmers to allow Core components to determine whic...
	f. If a particular Core Execution Environment claims to conform to the Core specification, it sha...
	g. Each profile may add to or disable certain specified capabilities of either or both of the Cor...
	h. A cursory review (perhaps the registration authority provides a registry of which profiles are...

	4. The requirements for Core dynamic class loading facilities are as follows:
	a. Support for dynamic class loading in a Core Execution Environment shall be optional.
	b. The dynamic class loader for the Core Execution Environment shall be implemented as a Baseline...
	c. The Core APIs for dynamic class loading shall support flexibility regarding where and how dyna...
	d. The Core dynamic class loader need not be as sophisticated or general as the Baseline class lo...
	e. All Core classes shall be fully resolved and initialized at the time they are dynamically loaded.

	5. Requirements for Core asynchronous transfer of control are as follows:
	a. Asynchronous transfer of control shall apply only when the affected code permits asynchronous ...
	b. There shall be a mechanism to allow Core application programmers to establish syntactic contex...
	c. The asynchronous transfer of control mechanism shall support common programming idioms, such a...
	d. The asynchronous transfer of control mechanism shall prevent unintended catches of any excepti...
	e. The asynchronous transfer of control mechanism must address the question of whether nested tim...
	f. The asynchronous transfer of control mechanism shall be easy for Core programmers to use and u...
	g. The run-time implementation costs of asynchronous transfer of control shall be paid primarily ...
	h. The asynchronous transfer of control mechanism shall provide a way to protect against stack ov...
	i. The asynchronous transfer of control mechanism shall provide a way for Core application progra...
	j. It is required that the asynchronous transfer of control mechanism support abortion of the cur...

	Annex C Background and Rationale
	C.1 Historical Background
	C.1.1 NIST Requirements for the Real-Time Core
	1. The real-time core shall provide services of the sort that are typically provided by commercia...
	2. The real-time core shall be simpler to implement than the full range of capabilities that are ...
	3. The real-time core shall provide a foundation upon which more sophisticated higher level real-...

	C.2 NCITS Principles for Real-Time Core
	1. There was a question of whether it would be possible to create a specification for real-time C...
	2. Concern was raised that if it were possible to create a real-time Core specification that does...
	3. Concern was raised that Java standardization work carried out within NCITS might fragment the ...
	1. Regarding guiding principle number 1, we emphasize that neither the semantics nor the typical ...
	2. Though the J Consortium has not yet defined the services to be provided by each of the higher ...
	3. As originally introduced to the NIST requirements group, the intent of Core extensions is to p...
	4. This objective, like the one that precedes it, is motivated by the intent to address the deman...
	5. A decision made by the Real-Time Java Working Group was that programs written using Core exten...
	a. Portable binary code representations
	b. Ability to leverage widely available off-the-shelf Java development environments
	c. Good object-oriented programming language features facilitate maintenance and reuse of software
	d. Strong compile- and load-time type checking
	e. Familiar syntax and development environments to the many developers who have already developed...
	f. Straightforward integration and access to all of the APIs of the Baseline platform (though the...
	g. Support for secure dynamic loading
	a. The existing Baseline API definitions and implementations are not “real-time ready”. You canno...
	b. Almost all of the Baseline libraries assume the presence of a garbage collector. (Though a dev...
	c. One of the requirements for the Core extensions is that the resource requirements of each “ser...
	d. Given that one of the objectives of the Core extensions is to provide maximal throughput, it i...
	e. Another benefit of partitioning the APIs involves the ability to shrink memory footprints of e...

	6. Given the desire to support limited cooperation between Baseline components and Core component...
	7. Writing Core applications is like writing device drivers for an operating system kernel. Consi...
	8. The intent is that there shall be a documented way for Baseline software components to cause C...
	9. Note that the security requirements of Core components may be different than the security requ...

	C.3 Rationale for Partitioning of Memory
	C.4 Comments Regarding the Core Verifier
	1. Interrupts might remain disabled for too long
	2. Memory leaks might result from temporary object allocation in Core tasks
	3. Objects might be reclaimed by the garbage collector while a Core or Baseline task is still loo...
	4. The garbage collector might become confused because of premature deallocation of objects, resu...
	5. A request to abort a task doesn’t really abort the task, because the task does not cooperate w...

	C.5 Comments on Syntactic Core Extensions
	Figure 4. Overview of Real-Time Core Development Architecture
	1. Syntactic Core Source Files: Syntactic Core Source Files are Java 1.1 source files written to ...
	2. Core Preprocessor: A Core Preprocessor transforms Syntactic Core Source Files to Java 1.1 sour...
	3. Core Compiler: The Core Compiler translates Syntactic Core Source Files to real- time Core Cla...
	Special Notations for Syntactic Core Source Code
	1. For each class file produced by this special compiler, the Core Compiler shall insert an invoc...
	2. The Core Compiler shall allow the special baseline keyword as an attribute for method definiti...
	3. The Core Compiler shall allow the special stackable keyword as an attribute for local variable...
	4. For any class that fails to identify which class it extends, the Core Compiler generates code ...
	5. All throw statements, catch statements, and method declarations from which exceptions are thro...
	6. All string constants are treated as CoreString objects for purposes of type consistency checki...
	7. Each variable that is declared to be of type array is treated as a variable of type CoreArray ...
	8. Except for the specific exceptions described above, the Core Compiler shall enforce all of the...
	9. The Core Compiler shall ensure that the translated Core Class Files that it produces conform w...

	C.6 Clarification and Rationale re: Stack Allocation
	1. MyTask is a “member class” of class C.
	2. When C.foo() creates a new MyTask, the Baseline Compiler silently inserts code at the construc...
	3. MyTask’s constructor silently saves its copy of the intarray reference in a hidden member fiel...

	C.7 Motivation for Special Class Loading Semantics
	C.8 Clarifications re: Execution Time Analyzability
	C.9 Rationale for Core Class Loading Requirements
	C.10 Comments on Run-Time Differentiation between Core and Baseline Tasks
	C.11 Comments re: the PCP Interface
	C.12 Rationale for the CoreString and DynamicCoreString Specifications
	C.13 Rationale for Semaphores to Complement Built-In Java Primitives
	C.14 Rationale for the Mutex Class
	C.15 Comments on Loading and Starting Core Tasks from Baseline Domain
	C.16 Comments on Explicit Memory Management
	1. Keep all references to objects allocated by your task local to your task, or
	2. Make sure that your task runs forever, so its memory will never be released, or
	3. Whenever it is necessary to allocate objects that must be visible to other tasks, allocate tho...

	C.17 Rationale and Discussion Regarding Asynchronous Transfer of Control
	1. A telephone rings and we suspend whatever we are doing to answer it. Following completion of t...
	2. A fire alarm sounds at work. In response, we abort the task on which we are currently working,...
	3. While we are driving a car, we hear a siren. In response, we check rear view mirror and scan t...
	4. A student is taking a timed college entrance examination. She is notified that only five minut...
	5. While we are driving a car, we hear a siren. In response, we check the rear view mirror and sc...
	6. A researcher is working on a 3-year federally funded project. Two years into the project, his ...
	7. In a crowded meeting room, a cell phone rings. Five different people check to see if it is the...
	8. A team of five developers is working on a six-month engineering project. Two months into the p...
	1. Against adding asynchronous transfer of control:
	a. This would complicate the implementation of the Core Execution Environment, especially the imp...
	b. This would represent a significant change to the Core specification, delaying publication of t...

	2. In favor of adding asynchronous transfer of control:
	a. The Core specification as originally drafted already required that blocking operating system s...
	b. The group felt it would be better to have a stronger specification later than a weaker specifi...
	c. Having fully general asynchronous transfer of control increases the relevance of the Core spec...
	d. Using asynchronous transfer of control in place of explicit timeout arguments for particular m...

	1. Why defer asynchronous event handling during execution of finally statements? The main observa...
	a. We could immediately interrupt the finally statement to execute the event handler, and resume ...
	b. We could defer execution of the event handler until after the finally statement completes its ...

	2. Why not defer asynchronous event handling during execution of all synchronized contexts? Progr...
	Abortion of a task
	Timing out a sequence of code
	Nested timeouts
	1. If the inner-nested timeout occurs first, the inner TimeoutEvent object will be signaled to th...
	2. If the outer-nested timeout occurs first, the outer TimeoutEvent object will be signaled to th...
	3. Suppose the inner timeout occurs first, and then the outer timeout occurs while we are still “...
	a. If the defaultAction() method has already thrown its exception object, handling of the outer n...
	b. If the defaultAction() method has not yet thrown its exception object, the outer timeout’s eve...

	4. Suppose the outer timeout occurs first, and then the inner timeout occurs while we are still “...
	a. If the outer timeout’s defaultAction() method has already thrown its exception object, handlin...
	b. If the outer timeout’s defaultAction() method has not yet thrown its exception object, the inn...

	Software interrupts
	System mode changes
	1. Each task is required to periodically poll a system state variable which reports when the syst...
	2. When a mode change is required, a supervisor activity signals this requirement by delivering a...

	C.18 Comments re: low-level I/O Services

	Annex D Implementation Suggestions
	D.1 Comments on the Implementation of Partitioned Heaps (Section 3.3)
	1. When a Core object is allocated, it is allocated from a region of memory that is normally garb...
	2. At the moment a Core object is allocated, a reference to the object is stored into a Baseline ...
	3. The garbage collector marks and scans the anchored Core object, treating it like every other o...
	4. When a Core task releases an allocation context, the references to all of the objects belongin...

	D.2 Comments on Implementation of Multiple Method Tables (Section 3.3)
	Figure 5. Method Tables for Core Objects

	D.3 Comments on Implementation of Stack Allocation
	Dynamic stack allocation
	Static stack allocation

	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W

