Johns Hopkins University Applied Physics Lab
Cybertech Seminar Series

Java Technology Day

The Real-Time Specification for

Java™

Greg Bollella, Ph.D.

Senior Staff Engineer

Sun Microsystems Laboratories
greg.bollella@east.sun.com

10/10/00

The Real-Time Specification for Java
The Java Community Process

JSR-1 expert group
Guiding Principles

Scheduling

Memory Management
Synchronization

Asynchronous Event Handling
Asynchronous Transfer of Control
Asynchronous Thread Termination
Physical Memory Access

10/10/00

The Java Community Process

A community-wide, software development method for
extending Java APIs

Java specification request

Engineers nominated by participating organizations
Lead participant named

Specification lead forms expert group

Specification developed

Participant review

Public review

Reference implementation and test suites

%
*
*
*
*
*
*
*

10/10/00

JSR-1 EG Primary Team

Greg Bollella, Sun Labs (formerly IBM)
Ben Brosgol, Aonix

#* Peter Dibble, Microware

#* Steve Furr, QSSL

#* James Gosling, Sun Microsystems

David Hardin, alile Systems

Mark Turnbull, Nortel Networks

10/10/00

JSR-1 EG Consultants

Apogee, Wolfgang Pieb Rockwell- Collins, Ray Kaman
Carnegie Médllon, Rg Rajkumar Schneider, Rudy Belliardi

L ockheed Martin, Doug L ocke Thomson- CSF, Jean- Michel

L ucent, Larry Rau Meignien

MITRE, E. Douglas Jensen Wind River, Currently

Mitsubishi Electric, Masahiro Unassigned
Kuroda Honorary, Russ Richards

Motorola, Edward Wentworth Emeritus, George Malek

NSICom, Alexander K atz Emeritus, Chris Y urkowskKi

NIST, Alden Dima Emeritus, Mike Schuette
Emeritus, Simon Waddington

10/10/00

Guiding Principles

Temporally Predictable Execution
Support Current Real-Time Application Development Practice
Backward Compatibility

The RTSJ maps the Java Language Semantics (JLS)
semantics to appropriate, required instances

RTSJ Appropriate for any Java™ Platform
WOCRAC (like WORA but different)
Write Once Carefully Run Anywhere Conditionally

Support Leading Edge RT Application Development and the
Real-Time Scheduling Academic Community

No Syntactic Extension

Allow for Implementation Trade-offs
Toys to Cruise Missiles
Incentive for RTOS vendors

10/10/00

"
i
S
o3
EIS
"

&'I

¥ Scheduling
$
; # Schedul er

Abstract base class

Contains methods for feasibility analysis, admission control,
dispatching, and asynchronous event handling mechanism

Can be considered distinct from the dispatcher
#* Schedul abl e

An Interface

Any object implementing Schedul abl e is scheduled by a
Schedul er

In the RTSJ Real t i1 neThr eads and
AsyncEvent Handl er s implement Schedul abl e

The RTSJ encourages implementations to extend the notion
of a schedulable object

Each Schedul abl e object has a reference to a Schedul er

a

10/10/00

Scheduling

PrioritySchedul er ext ends Schedul er

Required scheduler, i.e., this function will be available on all
Implementations of the RTSJ

Actually more like a dispatcher

Fixed-priority, preemptive

Priority assignment by application logic

At least 28 priority levels for RealtimeThreads
E.9., RMASchedul er extends Schedul er

E.9., EDFSchedul er extends Schedul er

10/10/00

i * & RealtimeThread extends Thread

Managed by a scheduler
May use memory other than the heap

Participate in asynchronous transfer of control and thread
termination

May access physical memory

NoHeapReal ti meThr ead ext ends
Real ti neThr ead

Not allowed to read or write to objects on the heap

Not allowed to manipulate references to objects on the heap
Must be created with a scoped memory area

May immediately preempt the garbage collector

10/10/00

v Scheduling

4

r F ':'.._
S
o3
EIS
"

&'I

a

Abstract base class for eligibility metric

PriorityParameters
Traditional priority

ImportanceParameters
Importance field for overload situations

7 # ReleaseParameters
Abstract base class for release characteristics
PeriodicParameters
AperiodicParameters
SporadicParameters

#* MemoryParameters
o) Defines a schedulable object's memory demands
% # ProcessingGroupParameters

Used to manage many aperiodic or sporadic threads as a meta-
level periodic thread

10/10/00

Memory Management

We note that the JLS is curiously silent on the subject
of automatic memory reclamation (aka garbage
collection)

Saying anything about gc seemed to require saying
more than the Java™ Programming Language
Inventors wanted to say

#* The JLS allows programmatic allocation of memory
(new) but has no programmatic way to deallocate
memory

The RTSJ is also mostly silent on the matter of
garbage collection

10/10/00

10/10/00

Automatic

Predictability

Increasing

10/10/00

Periautomatic

Automatic
RTSJ

M anual
RTSJ

Automatic

Predictability

Increasing

Memory Management

RTSJ changes the notion of object lifetime
(l.e., when an object is a candidate for
collection)

Manual: Lifetime controlled by program logic
Automatic: Lifetime controlled by visibility

RTSJ Memory Types: Lifetime controlled by
syntactic scope
Objects live until control flows out of scope

When control leaves scope finalizers execute and
complete before the memory area is accessed

10/10/00

Memory Management

#* Memory Areas
Objects not managed by collector

Immortal Memory Area
One ImmortalMemory object per JVM™
Pre-allocated at JVM start

Effective scope Is larger than the program, i.e., no
control in the program can ever leave the scope of
the immortal memory area

Used for sharing between real-time threads and
sharing between real-time and non-real-time
threads

10/10/00

Memory Management

Scoped Memory Areas

10/10/00

Associated with one or more scopes (closure or
thread)

Scopes may have more than one associated
memory area with one primary (where objectsare
created by default)

LTMemory - execution time of new Is linear in
object size

VTMemory - execution time of new is variable

Memory Management

Assignment Rules, based on object lifetimes

Heap &= Heap

Heap <= Immortal

Collector can traverse immortal area and be safely preempted
thus we can allow object in the immortal memory area to hold
references to objects in the heap

Immortal <= Immortal
Scoped == |mmortal
Scoped == Scoped (in outer or same scope)

Partial static analysis for assignment safety is
possible (classfiles so marked)

Runtime checks necessary for unanalyzed or
unanalyzable code

10/10/00

Synchronization

Priority Inversion Control

Default behavior of synchronized must be that of the
priority inheritance algorithm

Other priority inversion avoidance algorithms can be
set for either all or particular monitors

Synchronized problematic between regular Java
threads and real-time threads

NoHeapRealtimeThreads have implicit execution
priority higher than the collector

Correct implementation of any priority inversion avoidance
algorithm is impossible if execution priority of NHRT Is
honored

The RTSJ provides three Wait-free Queue classes
10/10/00

Walt-free Queues

Unidirectional data flow and non-blocking
read/write methods

#* Thewite() method of the
Vi t FreeW i t eQueue is the ‘real-time’ end

#* \Wait-free write queue
Number of entries fixed at creation time

Internal objects are allocated from appropriate
memory area

Real-time writer does not block on queue-full or
gueue-empty conditions (instead: application logic
determines action (toss, overwrite, etc.))

10/10/00

Asynchronous Event Handling

Real-time and Embedded Systems are typically
tightly coupled to the REAL-WORLD

Events in the real-world are asynchronous to
program execution

Asynchronous events may also arise internally within
the JVM™ (i.e., programmatically)

The RTJS provides a mechanism to bind a
schedulable object to the occurrence of an event

\When the event occurs the object’s run state
changes to ready-to-run and is scheduled wrt its
parameter objects

Mechanism designed for tens of thousands of events
and handlers, I.e., very lightweight

10/10/00

Asynchronous Event Handling

AsyncEvent

AsyncEvent Handl er | npl enent s
Schedul abl e

An instance of AsyncEvent represents
something that can happen

An instance of AsyncEvent Handl er has a
method (handl eAsyncEvent ()) which

contains the logic that should execute when
the event occurs

Handlers are bound to events by
AsyncEvent . addHandl er (AsyncEvent Handl er a);

10/10/00

Asynchronous Event Handling

An instance of AsyncEvent may be bound to
an external event using
AsyncEvent . bi ndTo(String s)

There are two ways AsyncEvents occur
The method AsyncEvent . fire() Isinvokedoor
an external event occurs

The execution of handlers is required to be

semantically equivalent, wrt scheduling, to
Instances of Real t1 neThr ead

10/10/00

Asynchronous Transfer of Control

The Real-Time for Java™ Consultants requested the
RTSJ include a concept for allowing the
asynchronous transfer of the flow of execution to
some predetermined, syntactically defined point in
the program

The ATC mechanism is similar to exception handling
In the JLS (Java exceptions are synchronous).

The prime directive for ATC (from ourselves) Is:

Code written without a priori knowledge of
possible interruption must not be interrupted

How does the RTSJ accomplish the prime
directive?
10/10/00

P&
[!F
L

i

"?
ﬁ'
#

-

Asynchronous Transfer of Control

Asynchr onousl yl nt errupt edExcepti on

Only the code within a method with AIE In
Its throws clause is interruptible

Ti med
#*/ nterrupti bl e (an interface)

Classes which implement can be given to
Ti med constructor

10/10/00

Asynchronous Transfer of Control

How does logic asynchronously transfer
control?

10/10/00

j avax. Real ti meThread. i nterrupt () has
additional semantics

when t.interrupt() is executed an AlE is thrown at
thread t and then If:

control is in any method with AIE in its throws clause
then control will transfer to the calling method with an AIE

control is in any method without AIE in its throws clause
or in any synchronized block/method the method or block
will complete normally and the AIE is set to pending

¥ Interruptible /O Methods

The consultants required that the RTSJ
should allow a mechanism which would
preclude indefinitely blocked 1/O calls.
* % & Methodsin j ava.i 0. * now throw
|OException, however,

#* [WO cases:

The device (and thus its stream) is no longer
needed (or the device no longer exists).

Timed, non-blocking I/O calls (when the device
and its associated streams remain viable).

10/10/00

L ¥ Interruptible /O Methods

Case 1: Device no longer needed or

gone.
Semantics of st ream cl ose() and the
/O methods are required to be modified.

Blocked I/O calls are to throw
appropriate instances of | Oexcept i on when

stream cl ose() is called on the stream on
which they are blocked.

10/10/00

¥ Interruptible /O Methods

Case 2: Timed, non-blocking I/O calls
for devices and their streams which
remain viable.

Programming pattern

A simple non-timed, non-blocking I/O call can
be easily built from two AsyncEvents and their
handlers.

10/10/00

j’ Non-Blocking I/O

nonbl ocki ngRead () {
/|| setup, etc.

ael.fire();
}
handl eAsyncEvent () {
h I f 1
/] handler for ae handl eAsyncEvent () {
C = streamread();

/'l handl e | OExcepti on

/1 handler for ae2

/] get c
/'l put c sonewhere

ae2.fire();

/'l do sonething with ¢

10/10/00

Asynchronous Thread Termination

To asynchronously terminate a thread Is a
requirement from the consultants

#* Arbitrary thread termination is as unsafe as.is
arbitrary asynchronous transfer of control
thus the same prime directive applies

ATT typically implies that logic can cause a
thread to terminate when some external
happening occurs

The RTSJ allows ATT by use of the
asynchronous event handling and
asynchronous transfer of control mechanisms

10/10/00 30

Physical Memory Access

Requirement by consultants and industry
Input

Generalized abstraction of such access Is
beyond the scope of the charter of the Real-
Time for Java Expert Group (RTJEG)
(actually, we thought that we did not really
know enough about all of the various memory
types to create a useful abstraction)

The RTJEG chose to specify a low-level
mechanism useful for building higher-level
abstractions

10/10/00

j Physical Memory Access

#» Menor yAr ea
| nmort al Menory
| nmort al Physi cal Menory

ScopedMenory
LTMenory
ScopedPhysi cal Menory
VTiMenory

Physi cal Menor yFact ory
Rawivenor yAccess
RawMenor yFl oat Access

10/10/00

Physical Memory Access

Two styles of access

Ablility to set and get bytes of physical memory
Useful for device control
RawMemoryAccess
RawMemoryFloatAccess

#* Ability to allocate objects in physical memory
Programmer managed object cache
ImmortalPhysicalMemory
ScopedPhysicalMemory

Programmers use the physical memory factory to
create instances of the three classes

10/10/00

Summary

The RTSJ addresses seven areas:
Scheduling, Memory Management,
Synchronization, Asynchronous (Event
Handling, Transfer of Control, Thread
Termination), and Physical Memory Access

Current version always available at

Comments to:

#* “The Real-Time Specification for Java”,
Addison-Wesley, June 2000

Reference implementation target mid-2001

10/10/00

% Code Examples
?‘
ﬁ

. #»RealtineThread
| #* Per i odi cThr ead
! * % Schedul er
#* ScopedMenory
#* AsyncEvent
* TI nmer
Asynchronousl yl nt errupt edExcept | on

10/10/00

Real t1 neThr ead

'public cl ass Recei veThread extends Real ti meThread {
public void run() {

/* logic for receive thread */}

publ i c voi d exanmpl e() {

Real ti meThread rt = new Receil veThread();
1 f (!rt.getSchedul er().isFeasible())
t hrow new Exception("Watever..."),;

rt.start();

10/10/00

‘* PeriodicThread

: publlc cl ass Periodi cThread extends Real ti neThread {
% F@rlod|cThread(NyPerlodlcParaneters PP,

MenoryParanmeters np, Runnable r) {

super (pp.sp, pp, nmp, null, null, r);

10/10/00

¥ Periodic Thread

4

ﬁ"'-public MyPer i odi cPar anet er s(Rel ati veTi ne peri od,
Rel ativeTi me cost) {

super(null, /* no start tine */
peri od,
cost,
null, /* deadline == period */
null, /* no overrun handl er */
null); /* no mss handler */

A

E;. sp = new PriorityParanmeters(deternminePriority());}}

10/10/00

s
.

% : new MyPeri odi cPar anet ers(new Rel ati veTi ne(50, 0),

: det er mi neCost ()),

b
P
o

j PeriodicThread

Real ti neThread rt = new Peri odi cThr ead(

SRR
-

o
S b o

new Runnabl e() {
public void run() {
Real ti meThread t;
try {
t =
(Real ti meThr ead) Thr ead. current Thread() ;
do {
/* thread logic. */
} while (t.waitForNextPeriod());

} catch (C assCast Exception e) {}}});
10/10/00

j Finding a New Scheduler

publ i c cl ass Schedul er Exanpl e {
% public static Schedul er findScheduler(String policy) {
¢ String className = System get Property(
"Javax.real tine.scheduler." + policy),;
Cl ass clazz;
try {
I f (classNane != null
&% (clazz = O ass.forNane(classNane)) !'= null){
return (Schedul er)cl azz. get Met hod(
"I nstance", null).invoke(null,null);
}
} catch (/* lots of exceptions */) {
return null;

10/10/00

j Finding a New Scheduler

Schedul er schedul er = findSchedul er (" EDF") ;
i f (scheduler !'= null) {
i Real ti meThread t1 = new Real ti meThread(nul |,
new Peri odi cPar anet er s(
null, new Rel ativeTi ne(100, O0),
new Rel ativeTi ne(5, 0),
new Rel ativeTi ne(50, 0), null,
nul l),
null,null,null,null) {
public void run() {
/* thread processing */
1}
t 1. set Schedul er (schedul er);
tl.start();

}

10/10/00

ok
i
E B
b

i

H ':'.._
i

¥ ScopedMemory

4

ScopedMenory scope = new LTMenory(1024, 16 * 1024);
scope. enter (new Runnabl e() {
public void run() {

/[* Do sone tine-critical operations */

try {
/* To allocate fromthe heap */
HeapMenory. i nst ance()
. new nst ance(d ass. f or Nane(" Foo")) ;
/* Al ocate fromthe previ ous scope*/
scope. get Qut er Scope()
. new nst ance(d ass. f or Nane(" Foo")),

} catch (d assNot FoundException e) {

} catch (11l egal AccessException ia) {

} catch (InstantiationException ie) {

1)

10/10/00

ScopedMemory

final ScopedMenory scope =
new LTMenory(0, 16 * 1024);

Realti meThread t1 =

new Real ti neThread(null, null,

new MenoryPar anmet er s(100000, 0), scope, null,

new Runnabl e() {

public void run() {
[* do some stuff */

1)

10/10/00

AsyncEvent | nput Ready = new AsyncEvent ();
AsyncEvent Handl er h = new AsyncEvent Handl er () {
public void handl eAsyncEvent () {
Systemout.print("The first Handl er ran!'\n");

}
;
| nput Ready. addHandl er (h) ;
Systemout.print("Test 1\n");
| nput Ready. fire();
Thread. yi el d();
Systemout.print("Fired the event\n");

10/10/00

b

Schedul i ngParaneters | ow = new
PriorityParanmeters(PrioritySchedul er
.getMnPriority(null));
| nput Ready. set Handl er (new AsyncEvent Handl er (| ow,
null, null, null, null) {
public void handl eAsyncEvent () {
Systemout.print("The low priority handl er
rant\n");}}),;
Schedul | ngPar aneters hi gh = new
PriorityParanmeters(PrioritySchedul er
.get MaxPriority(null));
| nput Ready. addHandI er (new AsyncEvent Handl er (hi gh,
null, null, null, null) {
public void handl eAsyncEvent () {
Systemout.print("The high priority handl er
ran'\n");}});

10/10/00 45

¥ AsyncEvent

»
9

Systemout.print("\nTest 2\n");
| nput Ready. fire();
Systemout.print("After the fire\n");
Thread. sl eep(100);
Systemout.print(“"After the sleep\n");

10/10/00

% AsyncEvent Output

ﬁ'

d ..
Test 1

#;h The first handl er ran!

,é'i Fired the event
jest 2
The high priority handl er ran!
After the fire
The low priority handl er ran!

After the sleep

10/10/00

4

- Y Timer

it

public class TinmerExanpl e {
private static final
Schedul i ngParaneters highPriority = new
) PriorityParaneters(PrioritySchedul er.get MaxPriority(null));
= private static void TestTinmer(String title, Tiner t) {
; Rel easeParaneters rp = t.createRel easeParaneters();

rp. set Cost (new Rel ativeTi ne(10, 0));
t . addHandl er (new

AsyncEvent Handl er (hi ghPriority, rp, null, null, aufl) {
public void handl eAsyncEvent () {
Systemout.print(" Timer went off at
+ (SystemcurrentTineMIlis() - TO) + "\n");}});
t.start();

/ | USE
Test Ti mer (" One Shot ",
: " new OneShot Ti mer (new Rel ativeTi ne(100, 0), null))
%@ Test Ti mer (" Peri odi c",
by new Peri odi cTi ner (new Rel ati veTi ne(100, 0),
new Rel ativeTi me(100, 0), null));

10/10/00

i) = Y,

ok
o3
E B I
b

¥ eption
£ OB
public void exanple() {
Myl nterrupt aie = new Myl nterrupt();
al e.dolnterruptible(new Interruptible() {
public void runNonlnterruptible() {
/* do sonmething that can't be interrupted */
}
public void run(Asynchronousl yl nterrupt edException e)
t hrows Asynchronousl yl nt errupt edException {
/* This nethod can be interrupted at any point in tine */
runNonl nterrupti bl e();
e. di sabl e();
e. enabl e();
}
public void interruptAction(
Asynchr onousl yl nt errupt edException e) {
/* code which executes if run() nethod interrupted */

1)

10/10/00

