Ravenscar Java: A high-integrity
profile for real-time Java

Jagun Kwon, Andy Wellings and Steve King
University of York, UK.

For many, Javaisthe antithesis of a high-integrity
programming language. Its combination of object-oriented
programming features, its automatic garbage collection and its
poor support for real-time multi-threading, are al seen as
particular impediments.

Problems for Java and high integrity systems (HIS)
The role of the RTSJ

Learning from the Ada experience

A framework for high-integrity RTSJ-based systems
Ravenscar-Java

Javaand HIS

There is difficulty in applying static analysis techniques
due to the inherent dynamic nature of Java:

— run-time dispatching

— dynamic class loading

Problems compounded if the analysis has to be done at
the byte code level as opposed to language level

Problems with the Java Memory Model making it
difficult to define the semantics of multi-threaded
programs (being addressed by JSR - 133)

Lack of assertions (being addressed by JSR 41)

Particular minor problems
— Return values quietly discarded; side effect in expressions

— No support for subtypes and enumeration types (have to role
your own)

= We all know the problems here:
— poor support for real-time threads and real-time scheduling,
— lack of confidence in real-time garbage collection,

— non responsiveness of thread asynchronous interaction
mechanisms,

— inability to interact with interrupts and devices
— complex virtual machine
— and so on

s Because of this we have

— RTSJ
- J2ME

Probl ems W|th RTSJ

= Aimed at the more dynamic soft real-time market rather
than the HIS market

= Semantics not yet well defined
Adds to the complexity of the VM
Adds to the complexity of the programming model

Result is that static analysis of RTSJ programs is even
more problematic

Learnlng from Ada

= Although Ada does have many faults, it does have a
good technical solution for both real-time and high-

Integrity systems
= The SPARK Ada subset is very conservative, in

particular
— no tasking
— no OOP
= In recent years, the Ravenscar Ada Tasking profile has
become a de facto standard for HIS

— programs can be analysed for their schedulabilty
the run-time support is simple and can be engineered to a high-

level of integrity (e.g. Aonix’s Raven)
— will soon become part of the ISO standard

Raven scar Java

= Goal
— Produce a high integrity subset (profile) of Java and the RTSJ
— Fit within the J2ME framework
— Provide a high integrity Ravenscar VM (RVM)

= Approach

— Apply the U.S. NRC guidelines on the use of languages in HIS
(currently, it does not consider Java)

— Expand the guidelines to be more positive about concurrency

— Use the Ravenscar computational model to guide the definition
of the RTSJ profile

— Where necessary extend the language via annotations to allow:
WCET and other static analysis techniques

Offllne Target | ndependent Archltecture

RTSJ Program

Annotations

_/

+

’

Analysis Tools

>

Traditional Java
Compiler

Extensible l

Annotation Java Byte
Class Code

(* xacfile) (*.classfile)

Analysis Tools: E.g.

e Check profile conformance
e Perform high-level WCETA
e Escape analysis

 Model checking

Results of analysis stored in
xac file. In particular, JIBC
frequency vectors

Offl Ine Target Dependent Anal yS| S

s Takes a main class and a Java Path and constructs the
tree of objects created by the program

= Takes the timing characteristics of the target RVM
= Performs low-level WCET on the real-time threads
= Performs schedulability analysis

= In a semi static environment, this could be done by the
RVM after loading the main class

Online Architecture

— — B L m—
JBC
+ JBC JBC
XAC + +
l XAC XAC
Ravenscar VM l l
Safe Operating System Hardware Standalone

e.g. OSE Ravenscar VM Ravenscar VM

Computational Mode!

— — — S E— — WS e—

= Fixed priority pre-emptive scheduling
= Priority ceiling inheritance

= Periodic no-heap real-time threads

= Sporadic no-heap event handlers

= Two phases of program execution

Program Executlon

|

[main invoked]

v

Create initialiser
thread

e

v
K[main termi nate}

| nitialisation Phase

Load and initialise
al objects and
real-time threads

v

\

" Mission Phase)

4 New Thread

4'{ New Thread

Start al threads

/ *t New Thread],

-

”
-
-
f’
-

|mmortal Memory

Allocatable Memory y

. K
Scoped M emoryJJ

The Profile

Predictability of memory utilization
Predictability of timing
Predictability of control and data flow (not covered here)

The profile changes some of the access modifiers of the
classes, constructors, and methods in order to ensure they
cannot be used directly by the programmer. The changes are
always more restrictive and, hence programs, will always
execute on non-Ravenscar implementations.

The lnitializer Thread

package ravenscar,
| mport javax.realtine.*;

public class Initializer extends Real ti meThread

{
public Initializer()
{
super(new PriorityParaneters(

PrioritySchedul er. MMX PRIORITY), null, null,
| mrort al Menory. i nstance(),
null, null);

}

Typical Applicatio

| mport ravenscar. *;
public class M/Application extends Initializer

{

public void run()

{
/|l Create nenory areas (LTMenory areas)
/|l Create no heap real-tinme threads
/[l Al objects required by application nust be
/|l created here or in the constructors of objects
/| created.
[/ Start all threads.

}

public static void main (String [] args)

{

MyAppl i cation nyApp = new MyApplication();
myApp. start () ;
}
}

Memory Area Restrictions

= No nested calls to enter LTMemory areas

= No LTMemory areas shared between threads (all
communications via Immortal memory)

= Goal: to significantly reduce the complexity of the VM in
this area and (with escape analysis) to eliminate the
run-time checks

= Implication: memory management is done at the thread
level rather than the object level

moryArea Cla

Me

package ravenscar;
public abstract class MenoryArea
{
protected MenoryArea(l ong sizel nBytes);
protected MenoryArea(javax.realtine.SizeEstimator size),;
public void enter(java.lang. Runnabl e 1 ogic);
public void executel nArea(java. | ang. Runnabl e | ogi c)

t hrows | naccessi bl eAreaExcepti on;
public static MenoryArea get MenoryArea(j ava. | ang. Qbj ect obj ect)

public | ong nmenoryConsuned() ;
| nst anti ati onExcepti on;

public | ong nmenoryRenai ni ng() ;
public java.l ang. Cbject newArray(...)
throws |11 egal AccessExcepti on,
public java.l ang. Qbj ect newl nstance(j ava.l ang. O ass type)
throws |11 egal AccessException, InstantiationException;
| nst anti ati onExcepti on;

public java.l ang. Qbj ect new nstance(...)
throws Il 1 egal AccessExcepti on,

public long size();

public final class Immortal Menory extends MenoryArea

{
public static Inmmortal Menory i nstance();
}
public abstract class ScopedMenory extends MenoryArea
{

publ i c ScopedMenory(l ong size);
publ i c ScopedMenory(Si zeEsti nator size);

public void enter();
public int getReferenceCount();

}

public class LTMenory extends ScopedMenory

{
public LTMenory(l ong size);

public LTMenory(Si zeEsti mator size);
}

Predictability of Timing

G me—

= Computation model support only periodic threads and
sporadic event handlers

= No on-line scheduling analysis
= No overrun or deadline miss handlers

. Schedu_li ng

e EEEEER—

package ravenscar;
public interface Schedul abl e extends java.l ang. Runnabl e

{
}

public abstract class Schedul er

{
}

public class PrioritySchedul er extends Schedul er
{

public static final int MAX PRI CRITY;

public static final int MN PRI CRITY;

}

Release Parameters

package ravenscar;
public cl ass Rel easeParaneters

{
protect ed Rel easeParaneters();
}
public class Periodi cParaneters extends Rel easeParaneters
{

publ i ¢ Peri odi cPar anet er s(Absol uteTi ne start Ti ne,
Rel ati veTi me period);

protected Absol uteTinme getStartTi me();
protected Rel ativeTi ne getPeriod();

}

public class Sporadi cParaneters extends Rel easeParaneters

{

publ i c Sporadi cParaneters(RelativeTine mnlnterarrival);
protected RelativeTime getMnlnterarrival ();

}

Threads
SR — | — S — — — S mm———

package j ava. |l ang;
public class Thread i npl ements Runnabl e

{
Thread() ;

Thread(Stri ng nane);
void start();

}

eal-time Threads

A

package ravenscar;
public class Realti meThread extends java.l ang. Thread

| npl ement s Schedul abl e
{
Real ti meThread(PriorityParaneters pp,
Peri odi cParanmeters p);
Real ti meThread(PriorityParaneters pp,
Peri odi cParaneters p, MenoryArea nma);

public static RealtinmeThread currentReal ti neThread();

public MenoryArea get Current MenoryArea();

void start();
static bool ean wai t For Next Peri od();

No Heap Real-time Threads

public class NoHeapReal ti neThread extends Real ti neThr ead
{
NoHeapReal ti meThread(PriorityParaneters pp,
Menor yArea nma) ;
NoHeapReal ti meThread(PriorityParanmeters pp,
Peri odi cParaneters p, MenoryArea nm);

void start();

Periodic Threads

— — — N E—— W— S m——

package ravenscar;
public class Periodi cThread extends NoHeapReal ti neThr ead

{
public PeriodicThread(PriorityParaneters pp,
Peri odi cParaneters p, java.lang. Runnable | ogic);

public void run();
public void start();

}

Example | mplementation

B o ——

public class Periodi cThread extends NoHeapReal ti neThr ead

{

public PeriodicThread(...)
{ super(pp, p, Imortal Menory.instance());

appl i cationLogic = | ogi c;
}
public void run()
{
bool ean noProbl ens = true;
whi | e(noProbl ens) {
appl i cationLogic.run();
noPr obl ens = wai t For Next Peri od() ;
}
/|l Deadline mssed. If allowed, a recovery routine here
}
public void start()
{
super.start();
}

}

R See—

Asynchronous Event H andlers

E
1|\

package ravenscar;
public class AsyncEvent Handl er i npl enents Schedul abl e
{

AsyncEvent Handl er (Pri ori tyParaneters pp,
Rel easeParanmeters p, MenoryArea nm);

AsyncEvent Handl er (Pri ori tyParaneters pp,
Rel easeParaneters p, MenoryArea nma,
j ava. |l ang. Runnabl e | ogi c);

public MenoryArea get Current MenoryArea();
protected voi d handl eAsyncEvent () ;
public final void run();

O
@
-
-
T
-
-
@
=S
| n
|
H|

public class BoundAsyncEvent Handl er

{

ext ends AsyncEvent Handl er

BoundAsyncEvent Handl er (Pri ori t yParaneters pp,
MenoryArea ma, Rel easeParaneters p);

BoundAsyncEvent Handl er (Pri ori tyParaneters pp,
MenoryArea ma, Rel easeParaneters p,

j ava. | ang. Runnabl e | ogi c);

protected voi d handl eAsyncEvent () ;

|

Sporacic Handlers

public class Sporadi cEvent Handl er
ext ends BoundAsyncEvent Handl er
{

publ i ¢ Sporadi cEvent Handl er (PriorityParaneters pri,
Spor adi cPar aneters spor);

publ i ¢ Sporadi cEvent Handl er (PriorityParaneters pri,
Spor adi cPar aneters spor,

j ava. | ang. Runnabl e) ;
public void handl eAsyncEvent ();

b

S o
T e

Async Events

package ravenscar;
public class AsyncEvent
{

AsyncEvent () ;

voi d addHandl er () ;

void fire();

voi d bi ndTo();

}

public class Sporadi cEvent extends AsyncEvent

{
publ i ¢ Sporadi cEvent (Spor adi cEvent Handl er handl er);

public void fire();
}

public class Sporadiclnterrupt extends AsyncEvent

{
publ i ¢ Sporadicl nterrupt (Sporadi cEvent Handl er handl er,

java. |l ang. Stri ng happeni ng);

Current Status

= Currently producing an annotation aware tool systems

= Investigating the ease with which static analysis can be

performed on the subset (e.g. escape analysis, model
checking)

RVM analysis and construction

