
The Distributed Real-Time Specification for Java

Presented by: Douglas M. Wells
 The Open Group

 d.wells@opengroup.org

Original Briefing by: E. Douglas Jensen
 The MITRE Corporation

 jensen@real-time.org
 http://www.real-time.org

Revised April 10, 2001

Jensen/Wells QoS-TF- 2

Outline

q Java and “real-time Java”

q JSR-50 the Distributed Real-Time Specification for Java

q Distributed Control Flow

q Distribution Design Choices

q Conclusion

Jensen/Wells QoS-TF- 3

The raison d’être of real-time computing is
predictability of collective thread timeliness

q Informally, a property is predictable to the degree that it is
known in advance

q Predictability is a continuum

q One end point of the predictability scale is determinism, in
the sense that the property is known exactly in advance

q The other end point is maximum entropy, in the sense that
nothing at all is known in advance about the property

q In stochastic systems (which include hard real-time ones
as a special case), one way to measure predictability is
coefficient of variation Cν = variance/mean2

• the maximum predictability end point is the
deterministic distribution, whose Cν = 0

• at the minimum end point is the extreme mixture of
exponentials distribution, whose Cν = ∞

Jensen/Wells QoS-TF- 4

Timeliness predictability generally must be traded
off against other properties

q Predictability of timeliness generally just be traded off
against

• other real-time timeliness properties, particularly
optimality of timeliness – e.g.,

½ better number of missed deadlines, mean tardiness,
etc., but worse predictability of those

½ worse number of missed deadlines, mean
tardiness, etc., but better predictability of those

• other non-real-time performance properties, such as
throughput

• resource utilization
q These trade-offs are application-specific

q The programmers and users must be able to reason about
these trade-offs

Jensen/Wells QoS-TF- 5

There have been many
“real-time” programming languages

q However, none have been commercially successful in the
sense of being significantly adopted in that domain

• many were academic research projects
• most did not focus on the core real-time issues of

managing computing resources in order to satisfy
application timeliness optimality and predictability
requirements

q Instead, they typically emphasized

• the orthogonal (albeit important) topic of concurrency
• and other topics important to the whole field of

embedded computing systems (of which real-time
computing systems are a subset)

Jensen/Wells QoS-TF- 6

Ada 95 has been the most successful
real-time programming language

q Ada 95, including its Real-Time Systems Annex, has been
the most successful real-time language, in terms of both
adoption and real-time technology

q One reason is that Ada is unusually effective (among real-
time languages and also operating systems) across the
real-time computing system spectrum

• from programming-in-the-small in traditional device-
level control subsystems

• to programming-in-the-large in enterprise command
and control systems

q Despite that achievement, a variety of non-technical factors
crippled Ada’s commercial success (including in defense
applications)

Jensen/Wells QoS-TF- 7

JSR-50:
the Distributed Real-Time Specification for Java

q There is strong pull (e.g., in the defense, industrial
automation, telecom, and financial markets) for “distributed
real-time Java”

q JSR-50 is to extend the RTSJ to include distributed real-time
systems – the DRTSJ

Jensen/Wells QoS-TF- 8

JSR-50:
the Distributed Real-Time Specification for Java

q Java Specification Request written by Jensen (MITRE);
supported by IBM and seven other organizations

q Sun approved JSR-50 in April 2000

q Sun appointed Jensen (MITRE) as Specification Lead

q At the time of this writing (April 2000), the Expert Group has
met three times

q The Expert Group began with the approach proposed in
JSR-50, and may modify it somewhat

q The technical approach is very similar to that of the
proposed specification for Dynamic Scheduling Real-Time
CORBA

Jensen/Wells QoS-TF- 9

The Distributed Real-Time Specification for Java:
Summary

q Work has begun on the Distributed Real-Time Specification
for Java (DRTSJ), in Sun’s Java Community Process

q “Distributed real-time” means acceptable predictability of
multi-node application behaviors ’ collective timeliness
(given whatever OS and network infrastructure), regardless
of the programming model (control flow, mobile code, etc.)

q A multi-node application behavior’s timeliness properties
must be explicitly employed for resource management
consistently on each node involved in that application
multi-node behavior

q In Java, using RMI, these properties must be acquired,
propagated, and deposited when RMI’s and any associated
returns occur

q With control flow programming models, that enhancement
supports predictability of end-to-end timeliness

Jensen/Wells QoS-TF- 10

JSR-50:
the Expert Group member organizations

q Ada Core

q aJile

q Boeing

q CMU

q IBM

q LaCross Consulting

q Lockheed Martin

q MITRE

q Nokia

q Nortel

q NSIcom

q Omron

q Sun

q TimeSys

q USAF-RL

q Wellings (York U)

q Wells (The Open Group)

q Yamatake

Jensen/Wells QoS-TF- 11

A distributed system has application entities
that exhibit multi-node behaviors

q For the purpose of this presentation, the term distributed
system informally refers to a computing system whose
programming model is based on there being application
entities that exhibit multi-node behaviors

q Each of these multi-node behaviors has multi-node
properties – these properties may include (but are not
limited to)

• a unique identifier
• timeliness
• security
• resource ownership
• transactional context

Jensen/Wells QoS-TF- 12

Distributed systems can be categorized
in various ways for various purposes

q Here we categorize them in a very simple way

according to their programming model for the multi-node
interaction aspect of application behaviors

• networked (asynchronous message passing among
objects)

• control flow (method invocation between objects)
• data flow (e.g., publish/subscribe among objects)
• blackboards/spaces (e.g., Linda, JavaSpaces)
• mobile objects, autonomous agents, autonomous

decentralized systems
q The first three of these categories have long histories of

successful use in real-time as well as non-real-time
application domains

Jensen/Wells QoS-TF- 13

A distributed system usually has
one primary application programming model

q A distributed system usually has one programming model
as the first class abstraction, and sometimes others are
implemented in terms of it (perhaps at lower performance)

q For example, OMG’s CORBA standard specifies a first class
control flow programming model, but an optional data flow
programming model is being proposed as a layered service

q Of course, a first class distributed system programming
model is normally implemented on a communication facility
that typically has multiple levels which are not visible to the
application –

e.g., a blackboard abstraction may be implemented using
RPC that is implemented using asynchronous message
passing

Jensen/Wells QoS-TF- 14

A real-time distributed system has acceptable
timeliness of multi-node application behaviors

q The defining characteristic of any real-time distributed
computing system, whatever its programming model, is
that

• the timeliness (optimality and predictability of
optimality) of each multi-node application behavior

½ on each individual node it involves
½ collectively on all nodes it involves

• is acceptable to that application
• under the current circumstances

q The “current circumstances” include the latency
characteristics of the underlying infrastructure (OS’s,
network)

Jensen/Wells QoS-TF- 15

A multi-node behavior’s timeliness properties must
be used coherently on all involved nodes

q In most cases, the fundamental requirement for achieving
acceptable multi-node timeliness is that

a multi-node application behavior’s timeliness properties

• time constraints
• expected execution time
• execution time received thus far
• etc.

be explicitly employed for resource management
(scheduling, etc.)

coherently on each node involved in that application multi-
node behavior

Jensen/Wells QoS-TF- 16

Multi-node application behavior timeliness
properties must be propagated among nodes

q Thus, in dynamic real-time distributed systems, these
properties must be propagated among corresponding
computing node resource managers in

• operating systems
• Java virtual machines (JVM’s)
• middleware
• etc.

q In static real-time distributed systems, these properties can
be instantiated á priori;

but the Distributed Real-Time Specification for Java is
concerned primarily with dynamic systems

Jensen/Wells QoS-TF- 17

Real-time distributed Java systems can use RMI to
propagate timeliness properties

q In real-time distributed Java systems that use RMI,

a multi-node application behavior’s end-to-end timeliness
(and other) properties must be

• acquired
• propagated
• and deposited

when RMI’s and any associated returns occur

q This should be transparent to the application programmer

q This enhancement is an appropriate mechanism,
regardless of what programming model semantics are
manifest with RMI’s –

e.g., whether performing a basic RPC-like method
invocation, or passing an object by copy or reference

Jensen/Wells QoS-TF- 18

There are several ways to use timeliness properties
for scheduling coherently on each node

q Timeliness properties can be propagated, and used
consistently by node resource managers

• e.g., every node schedules using the same policy
• this can provide some approximate global optimality

q Timeliness properties can be propagated, and used by a
logically singular global scheduler that is instantiated on
every node

• the schedulers interact to schedule all the nodes
• global optimality is formally impossible in general, but

may be better approximated in many cases
q One or more levels of “meta” resource managers above the

node resource managers function according to either of the
above two cases

q This RMI enhancement can be used for any of these cases

Jensen/Wells QoS-TF- 19

JSR-50’s initial emphasis is on
control flow programming models

q Control flow models are familiar and accepted in
distributed real-time practice

q A distributed control flow program’s components may be
spread across multiple computing nodes

q Execution flows as one or more sequences of constituent
operations occurring on multiple nodes,

each via a sequence of method invocations/returns

Control
Flow

Object A Object B Object C

Jensen/Wells QoS-TF- 20

Control flow has compelling advantages as a
native model for distributed real-time software

q Many distributed real-time computer systems and
applications involve a mixture of control flow and data flow

q Distributed control flow is a natural, well-understood,
incremental extension to local control flow (procedure
calls)

q Familiarity is an especially important factor in attaining
adoption in real-time application domains, such as
industrial automation, defense, and telecommunications

q All distributed systems have inherent complications due to
network latencies, partial failures, synchronization and
concurrency control, etc. –

many of these are more easily managed in control flow
programming models than in other (e.g., data flow,
autonomous agent) programming models

Jensen/Wells QoS-TF- 21

Timeliness in distributed real-time control flow
programming models is end-to-end

q The defining characteristic of any real-time distributed
computing system having a control flow programming
model is that

• the timeliness (optimality and predictability of
optimality) of each trans-node application control flow

• is acceptable to that application
• under the current circumstances

Control
Flow

Object A Object B Object C

Jensen/Wells QoS-TF- 22

Control flow method invocations (and returns) are
location-independent, and other code is not

q All the code in a control flow model program is not usually
expected to be location-independent

q That would be very difficult, due to

• network latencies
• partial failures
• synchronization
• concurrency control
• etc.

q The primary benefits of control flow can be obtained by a
programming model having

• location-independent invocations and returns
• location-dependent (node-local) code otherwise

Jensen/Wells QoS-TF- 23

Example control flows in a notional
anti-air warfare system

sensors filter evaluate
& decide

act actuators

Time Constraint

Flow1: detect
(continuous)

Flow2: engage
(transient)

operator
Time Constraint

Flow3: guide-missile Time Constraint

Jensen/Wells QoS-TF- 24

Example of control flows in a notional
C2 system of systems

US NAVY CG

AOC

USAF JOINT STARS

USAF E-3

USAF E-3

RIVET JOINT

WOC USAF F-15

USAF F-15

Jensen/Wells QoS-TF- 25

A distributable thread is an
end-to-end control flow abstraction

q A control flow distributed object program can be thought of
in terms of an end-to-end abstraction we’ll call a
distributable thread

q A distributable thread is a logically distinct and identifiable
locus of control flow movement, within and among objects
(and thus nodes)

q A distributable thread executes a remote method, like a
local one, directly itself –
by extending and retracting itself between objects and
(transparently) nodes

q The distributable thread (not a local thread) is the
schedulable entity

q A program may consist of multiple concurrent distributable
threads

Jensen/Wells QoS-TF- 26

A distributable thread is an
end-to-end control flow abstraction

Object A Object B Object C Object D

dthread 1 dthread 2 dthread 3

Jensen/Wells QoS-TF- 27

Concurrency is at the distributable thread level

q A distributable thread always has exactly one execution
point (head) in the whole system

• control flow can be forked by creating or awakening
other distributable threads

q Multiple distributable threads execute concurrently and
asynchronously, by default

q Distributable threads synchronize through method
execution

• object writers control distributable thread concurrency
– e.g.,

½ monitor (no concurrency)
½ re-entrant
½ recursive

Jensen/Wells QoS-TF- 28

Conventional distributed object models don’t
retain local semantics on remote invocations

q For a local invocation in most distributed object systems

• there is only one thread
• it retains its identity and properties (e.g., timeliness)

whichever method it executes
q Conventional remote method invocation (and RPC) involve

• separate schedulable entities on each node (client,
servant)

• which communicate with each other
q That

• doesn’t accurately reflect the programmer’s intention of
control flow spanning objects, and thus physical
nodes, in a location-independent way

• impedes maintaining end-to-end properties

Jensen/Wells QoS-TF- 29

A distributable thread has
location-independent method invocations

Thread 1

Object A

Object B

local invocation

Thread 1

Object A

Object B

conventional
remote invocation

DThread 1

Object A

Object B

distributable
thread

OS OS

Thread
2

middleware

Jensen/Wells QoS-TF- 30

A distributable thread is sequential
rather than synchronous

q The synchrony of a conventional method invocation (or
RPC) is often cited as a concurrency limitation

q But a DT is a sequential model like a local thread

q A DT is always executing somewhere, while it is the most
eligible there

• it is not doing “send/wait’s” as with conventional
method invocations (or RPC’s)

q Remote invocations and returns are scheduling events at
both source and destination nodes

• each node’s processor is always executing the most
eligible DT there

• the other DT’s there wait as they should
q Local method invocations/returns benefit from not

requiring context switches like threads normally do

Jensen/Wells QoS-TF- 31

A distributable thread is built using
local (e.g., RTOS) threads and method invocations

q The distributable thread abstraction is implemented using
local (RTOS or JVM) threads, as part of

• middleware
• local operating systems
• JVM’s

q In Java, a distributable thread would be implemented by the
concatenation of local (per node) threads sequentially
performing RMI's when they transit nodes

Jensen/Wells QoS-TF- 32

A distributable thread is built using
local (e.g., RTOS) threads and method invocations

Object A Object B Object C Object D

dthread 2 dthread 3dthread 1

Jensen/Wells QoS-TF- 33

Multi-node application entities have
end-to-end properties

q Distributed systems have requirements for end-to-end
properties of their collective multi-mode behaviors – e.g.,

• timeliness
• reliability/availability
• security
• transactional context
• resource ownership
• dependencies
• etc.

q For control flow programming models, these are end-to-end
properties

Jensen/Wells QoS-TF- 34

A distributable thread has
end-to-end timeliness attributes

q Each distributable thread may have execution scheduling
attributes – e.g., time constraints, etc.

q These specify the end-to-end timeliness for it completing
the sequential execution of methods in object instances
that may reside on multiple physical nodes

q Execution of the distributable thread is governed by those
scheduling parameters, according to the scheduling policy,
regardless of the distributable thread's execution point
transiting nodes

q Any of the three distributed scheduling approaches can be
used

q The goal is to provide acceptable (as defined by the
application) end-to-end timeliness of collective
distributable thread execution

Jensen/Wells QoS-TF- 35

The distributable thread abstraction propagates
computational context end-to-end

q When a distributable thread transits a node boundary, its
timeliness parameters are propagated to the remote
scheduling policy instance

• in the OS, JVM, or middleware
q When/if it returns, updated timeliness parameters are

propagated back to the invoker’s scheduling policy
instance

q (Other end-to-end properties may also be propagated –
e.g., ID, resource ownership, dependencies, rights,
security, transactional context)

q This should be transparent to the application programmer

Jensen/Wells QoS-TF- 36

A distributable thread supports
end-to-end properties such as timeliness

Object A Object B Object C

DThread end-to-end time constraint

Jensen/Wells QoS-TF- 37

The distributable thread model applies to the whole
predictability/time-frame space of real-time systems

q The distributable thread approach to control-flow style
distributed programming model is applicable to real-time
systems which are

• hard
• or anywhere else on the predictability continuum

q That continuum is orthogonal to application time-frame
magnitudes, which range in practice from microseconds to
megaseconds

q The distributable thread abstraction supports application
timeliness requirements everywhere in that two-
dimensional predictability/time-frame space of distributed
real-time Java systems

Jensen/Wells QoS-TF- 38

The distributable thread abstraction also has
implementation advantages

q The distributable thread abstraction automatically supports
implementation needs, such as

• resource limit and consumption tracking
• server thread management

q Each object no longer has the burden of managing its own
pool of threads and related resources (stacks, etc.)

q This minimizes the tendency to do pessimistic resource
management strategies

q The distributable thread abstraction has been widely
adopted for microkernel-based OS’s for these
implementation advantages, independent of the
programming model

Jensen/Wells QoS-TF- 39

A fully specified DT abstraction must include
additional facilities – not necessarily in this DRTSJ

q A specification of a complete DT abstraction would include
(but not be limited to) facilities to deal with

• DT integrity (failure detection and recovery) despite
partial node and path failures

• DT control (like thread control) – pause, resume, abort,
etc.

• distributed event handling
½ asynchronous events of interest to a DT – i.e.,

changes in predicated system state, such as a time
constraint expiration – are delivered to its execution
point for possible handling

½ and perhaps from the execution point back up the
invocation chain for (additional) handling

• distributed concurrency control among DT’s
all in a timely manner

Jensen/Wells QoS-TF- 40

Distributed Threads in a Java Context: Design
Choices

q Build on RMI

q Build on JSR-78 RMI

q Devise a new RT-RMI facility

q Use an entirely new remote access approach

Jensen/Wells QoS-TF- 41

Distributed Threads:
Building on RMI

q DRTSJ could propose a simple extension to RMI that
supports timeliness properties among nodes

• facilitates acceptably predictable end-to-end timeliness
of distributed threads

½ this is application-specific
• extends RMI to

½ obtain, propagate, and deposit timeliness attributes
among the scheduling policy instances at each
node a distributed thread visits

transparently to the programmer
q RMI must be made predictable for the cases of interest

• without affecting non-RT uses, syntax, specified
semantics, and tools for RMI

Jensen/Wells QoS-TF- 42

Distributed Threads:
Building on JSR-78’s RMI

q JSR-78: RMI Custom Remote References

• Objective: provide a general framework in J2SE RMI for
customizing remote invocation behavior

q JSR-78 is done for J2EE/J2SE, not J2ME

• technical concerns
½ are the intermediate interfaces sufficient for J2ME’s

needs?
½ are the supplied customizations useful for J2ME?
½ are they sufficient for efficiently and effectively

supporting distributed threads?
• logistical concerns

½ approval for J2ME platform
½ availability of code on a J2ME platform (for use in

Reference Implementation)

Jensen/Wells QoS-TF- 43

Distributed Threads:
Devise a New RT-RMI

q Design and build a new, flexible, predictable RMI-like
facility that coexists with or subsumes RMI

q RT-RMI

• permits modification of JSR-78 interfaces and
capabilities

• must presumably “look like” and “feel like” RMI
½ else might confuse programmer

• should accommodate (subsume?) non-RT RMI uses
• could still be subject to RMI constraints

½ ability to affect other portions of the “distributed
thread”

½ timeliness of responses
½ types of exceptions, inheritance, required

interfaces, etc.

Jensen/Wells QoS-TF- 44

Distributed Threads:
Devise a New Remote Access Approach

q Ignore RMI (sort of; it should probably work if invoked)

q Allows maximal freedom

q Permits or requires reexamination of fundamentals

• protocols
• interfaces
• naming
• stubs, skeletons
• references, leases, garbage collection
• exceptions
• communication models

q Increases hurdle to mass acceptance (or at least tolerance)

Jensen/Wells QoS-TF- 45

Conclusion:
the Distributed Real-Time Specification for Java

q Real-time computing is about predictability of timeliness

q Distributed real-time computing is about predictability of
timeliness of multi-node (e.g., trans-node) behaviors

q Acceptable predictability of timeliness of multi-node
behaviors requires suitably consistent resource
management on the nodes that the behaviors transit

q Suitably consistent resource management on multiple
nodes requires that they share sufficient information about
the behaviors’ timeliness

q Shared information in a network must be explicitly
propagated among the nodes

q The DRTSJ will allow RTSJ Java systems that use RMI to
propagate shared information for consistent node resource
management to meet multi-node (e.g., end-to-end)
timeliness predictability needs

Jensen/Wells QoS-TF- 46

“Real-time Java” is likely to be the first successful
real-time programming language

q Ada 95 is a successful real-time language technologically
but is less successful commercially

q Java is already ubiquitous

q The Java platform’s WORA promise currently offers the best
prospective opportunity for application portability

q Real-time Java appears to be successfully addressing the
deficiencies of Java for real-time computing systems

q Several major vendors have already announced that they
will sell real-time Java products

q Real-time Java is poised to be the first commercially as well
as technologically successful real-time programming
language

q “Distributed real-time Java” will be very important to Java’s
success in the real-time application domains

Jensen/Wells QoS-TF- 47

Resources:
RTSJ and DRTSJ

q NIST Special Publication 500-243 “Requirements for Real-
time Extensions for the Java Platform”

• http://www.nist.gov/itl/div897/ctg/real-time/rt-doc/rtj-
final-draft.pdf

q Real-Time Specification for Java

• http://www.rtj.org
q Distributed Real-Time Specification for Java

• http://www.drtsj.org
q J Consortium

• http://www.j-consortium.org

