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Transformations

Matrix revision
Translation
Scale
Rotation
Reflection
Matrix representation
Worked example and problems
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Translation
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In Matrix form

Why matrix form? Standard transformation matrices
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Calculating Scale Factors
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What is the value of Sy?
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Origin for scaling
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All scaling in these examples is relative to the co-
ordinate origin (0,0) for simplicity.

Note: It is possible to scale from any point.
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6 Trans Unequal Scale Factors
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What is the value of Sy?
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First remember

θφθφθφ cossin.sincos.)sin(.' rrry +=+=

This uses the trigonometric identities.
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Rotation 2
We know φcosrx = yand φsinr=

θθ sincos.' yxx −=Substituting gives

θθ cos.sin.' yxy +=

In matrix form
[ ] [ ] 








−

⋅=
θθ
θθ

cossin
sincos

'' yxyx

RPP ⋅='or

For these calculations all rotations are relative to the co-ordinate origin (0,0) for 
simplicity.

Note: The rotations may be relative to any point.

The formula would have to be adjusted to take account of this.
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Matrix Representations
All transformations are of the type

Where M is a matrix21' MPMP +⋅=

Convenient to lose M2 term

– then all transformations achieved by matrix multiplication

[ ] [ ] [ ]10000
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001

11'' ++++++=
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

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Homogeneous co-
ordinate (not z value)

[ ]1yx TyTx ++=
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Rotation and Scaling Matrices
Using the homogeneous co-ordinate

The scaling matrix becomes

[ ] [ ]
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

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The rotation matrix becomes
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Concatenation
Matrix multiplication is asociative

)()( CBACBACBA ⋅⋅=⋅⋅=⋅⋅

BUT transformations are not necessarily commutative

Translation then rotation Rotation then translation



Mary Aylmer
Graphics MCS2
12 Trans

Reflection
In this transformation the x 

values remain the same 
but the y values flip. 

Transformation matrix for  
reflection about the x 
axis (y=0) is shown 
below
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
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Reflection 2
Transformation 

matrix for  
reflection about 
the y axis (x=0) is 
shown below
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

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Worked example
Translate the point 2,2 by 4 in the x direction and 3 

in the y direction. Evaluate your answer using 
matrices.

First - sketch the problem
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Worked example cont.
We know 

TPP ⋅='
Where T is the translation matrix

So
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Worked example cont.

[ ]156=

After the translation the point will be at 6,5.
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Problems - use matrices

1. Translate the point 6,2 by 10 in the x direction and 
3 in the y direction.

2. Translate the line from 1,2 to 4,5 by 7 in the x 
direction and 3 in the y direction.

Hint: put both sets of co-ordinates in one 
matrix as shown below

3. Reflect the point 6,2 in the x axis.


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
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
⋅
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

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
=


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



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010
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11

yx
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More problems
4 Translate the triangle (2,2) (2,5) and (5,5) by 4 in 

the x direction and 2 in the y direction.
5 Scale the triangle in Qu4 by a scale factor of 2. 

Scale relative to the co-ordinate origin.
6 Scale the triangle in Qu 4 by a scale factor of 3 in 

the x direction and 4 in the y direction. Scale 
relative to the co-ordinate origin.

7 Rotate the triangle in Qu 4 by 90° anti-clockwise 
about 0,0.

8 Rotate the triangle in Qu 4 by 180 ° about 0,0.
9 Reflect the triangle in Qu 4 in the y axis.
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Answers
1 16,5
2 (8,5) and (11,8)
3 6,-2

For the triangle problems below you may find it useful to check 
your answers using squared paper

4 (6,4) (6,7) and (9,7)
5 (4,4) (4,10) and (10,10)
6 (6,8) (6,20) and (15,20)
7 (-2,2) (-5,2) and (-5,5)
8 (-2,-2) (-2,-5) and (-5,-5)
9 (-2,2) (-2,5) and (-5,5)
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