
1

IS3 Project Final Report (Part 3)

SysML to SAN model transformation

By Peter Popov

Centre for Software Reliability

City, University of London

p.t.popov@city.ac.uk

This document provides a sketch of an example of model transformation which illustrates the

concepts of model transformation adopted in the development of the CHESS plugin.

As a test case to check that the plug-in operates correctly an existing SysML model, developed the

subcontractor Intecs, of the ATM system, described in Part 1 of the report.

In Appendix 1 the essential parts of the SysML model are covered, which are processed by the plug-

in in producing a SAN model.

In Appendix 2, the SAN model which was produced by the plug-in is documented, using the Mobius

tool.

mailto:p.t.popov@city.ac.uk

2

Appendix 1: The SysML system model
The example is of a SysML model developed for the ATM system, described elsewhere in the Final

report. We include a few fragments of the model necessary to illustrate the SysML -> SAN

transformation.

A1.1. System architecture as Block diagram

3

A1.2. State Machines used to model failure of SysML Blocks
The failure behaviour of a SysML block, e.g. of a software component, is captured by state machines,

which are stereotyped as “ErrorMode”. In such state machines there is a state representing the

normal behaviour, typically called “OK” with stereotype “NormalState” and a number of states with

stereotype “DegradedState” or “ErrorState” used to capture the effect of successful attacks

(“CompromisedState”) and errors (or failures) of the component, respectively.

The state machine with stereotype “ErrorMode” can consist of a number of “ErrorState” states

(modelling different failure modes) and “DegradedState” states, which model different ways of

compromising a block (e.g. the software component is compromised by different attack types).

The diagrams shown below illustrate the use of “ErrorMode” state machines. There is a degree of

similarity between these state machines, which is a consequence of the number of failure

models/compromises that are modelled for the particular software components.

4

5

6

A1.3. State machines to model functionality of different blocks
State machines can also be used to model the functionality of the software blocks. Examples are

shown below. While the syntax of state machines is the same (derived from the UML syntax), the

state machines themselves are not stereotyped (as “ArrorMode”), which signify the difference in

purpose between the state machines.

The plug-in will only use the “ErrorMode” state machines in the model transformation and will

ignore the state machines which with stereotypes other than “ErrorMode” or no stereotypes at all.

7

8

9

A1.4. Cyber-attacks as sequence diagrams
Sequence diagrams are used to model the steps of a cyber-attacks which may lead to a compromise

of some of the software components.

A few examples are given below to illustrate how sequence diagrams can be used to model cyber

attacks.

The sequence diagrams are stereotyped as “AttackScenario” to signify the fact that these diagrams

represent not a functional interaction (i.e. a realisation of use cases) between the lifelines (the

normal use of sequence diagrams in UML/SysML), but model malicious interaction (i.e. “misuse”

cases).

The messages represents an attempt to exploit vulnerabilities defined for the corresponding block.

In case there are more than one vulnerability per software block then the message should refer

explicitly to the vulnerability it targets (as in next diagram: the messages “Attack_SWIM_Node2_X”,

where X is either Vuln1 or Vuln2), which refer to the each of the two vulnerabilities defined for the

component “SWIM_Node2”.

Apart from the stereotype and the details provided above, the syntax of sequence diagrams is the

same as in UML. The lifelines represent instances of the blocks captured in a block diagram,

combined fragments can model the logic (branching, loops, etc.)

10

11

Appendix 2: The SAN model created by the CHESS plugin

The structure of the SAN model, generated by the plug-in is shown on

.Figure 1. Structure of the SAN model generated by the CHESS SysML2SAN plug-in

Each of the models in the project is detailed below. .

A2.1. Model: ADSB_Controller

Place Attributes:

Place Names Initial Markings

12

Attack_ADSB_Controller_confirmed 0

Attack_ADSB_Controller_success 0

Compromised 0

Error 0

OK 1

Timed Activity: Compromised__Error

Distribution Parameters

Rate

0.01

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: OK__Error

Distribution Parameters

Rate

0.001

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous Activities Without Cases:

OK__Compromised

Input Gate: Attack_ADSB_ControllerGate

Predicate

(Attack_ADSB_Controller_success->Mark() > 0) && (OK->Mark() >

0) && (Attack_ADSB_Controller_confirmed->Mark() == 0))

Function

Attack_ADSB_Controller_confirmed->Mark() = 1;

A2.2. Model: ATMSystem

Rep Node Reps Shared State Variables

13

RepUAV NumUAV -

A2.3. Model: LTE

A2.4. Model: LTE_Controller

Place Attributes:

Place Names Initial Markings

Attack_LTE_Controller_confirmed 0

Attack_LTE_Controller_success 0

Compromised 0

Error 0

OK 1

Timed Activity: Compromised__Error

Distribution Parameters

Rate

0.01

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: OK__Error

14

Distribution Parameters

Rate

0.001

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous Activities Without Cases:

OK__Compromised

Input Gate: Attack_LTE_ControllerGate

Predicate

(Attack_LTE_Controller_success->Mark() > 0) && (OK->Mark() > 0)

&& (Attack_LTE_Controller_confirmed->Mark() == 0))

Function

Attack_LTE_Controller_confirmed->Mark() = 1;

A2.5. Model: NAV

A2.6. Model: NAV_Controller

Place Attributes:

Place Names Initial Markings

Attack_NAV_Controller_confirmed 0

15

Attack_NAV_Controller_success 0

Compromised 0

Error 0

OK 1

Timed Activity: Compromised__Error

Distribution Parameters

Rate

0.01

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: OK__Error

Distribution Parameters

Rate

0.001

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous Activities Without Cases:

OK__Compromised

Input Gate: Attack_NAV_ControllerGate

Predicate

(Attack_NAV_Controller_success->Mark() > 0) && (OK->Mark() > 0)

&& (Attack_NAV_Controller_confirmed->Mark() == 0))

Function

Attack_NAV_Controller_confirmed->Mark() = 1;

16

A2.7. Model: SUR_ADSB

A2.8. Model: SWIM_Node_1

Place Attributes:

Place Names Initial Markings

Attack_SWIM_Node1_Vuln1_confirmed 0

Attack_SWIM_Node1_Vuln1_success 0

Attack_SWIM_Node1_Vuln2_confirmed 0

Attack_SWIM_Node1_Vuln2_success 0

Compromised1 0

Compromised2 0

Error 0

OK 1

Timed Activity: Compromised1__Error

Distribution Parameters

Rate

Compromised1__ErrorRate

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: Compromised2__Error

17

Distribution Parameters

Rate

Compromised2__ErrorRate

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: OK__Error

Distribution Parameters

Rate

0.001

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous Activities Without Cases:

OK__Compromised1

OK__Compromised2

Input Gate: Attack_SWIM_Node1_Vuln1Gate

Predicate

(Attack_SWIM_Node1_Vuln1_success->Mark() > 0) && (OK->Mark() >

0) && (Attack_SWIM_Node1_Vuln1_confirmed->Mark() == 0))

Function

Attack_SWIM_Node1_Vuln1_confirmed->Mark() = 1;

Input Gate: Attack_SWIM_Node1_Vuln2Gate

Predicate

(Attack_SWIM_Node1_Vuln2_success->Mark() > 0) && (OK->Mark() >

0) && (Attack_SWIM_Node1_Vuln2_confirmed->Mark() == 0))

Function

Attack_SWIM_Node1_Vuln2_confirmed->Mark() = 1;

18

A2.9. Model: SWIM_Node_2

Place Attributes:

Place Names Initial Markings

Attack_SWIM_Node2_Vuln1_confirmed 0

Attack_SWIM_Node2_Vuln1_success 0

Attack_SWIM_Node2_Vuln2_confirmed 0

Attack_SWIM_Node2_Vuln2_success 0

Compromised1 0

Compromised2 0

Error 0

OK 1

Timed Activity: Compromised1__Error

Distribution Parameters

Rate

Compromised1__ErrorRate

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: Compromised2__Error

Distribution Parameters

Rate

Compromised2__ErrorRate

Activation Predicate (none)

Reactivation Predicate (none)

19

Timed Activity: OK__Error

Distribution Parameters

Rate

0.001

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous Activities Without Cases:

OK__Compromised1

OK__Compromised2

Input Gate: Attack_SWIM_Node2_Vuln1Gate

Predicate

(Attack_SWIM_Node2_Vuln1_success->Mark() > 0) && (OK->Mark() >

0) && (Attack_SWIM_Node2_Vuln1_confirmed->Mark() == 0))

Function

Attack_SWIM_Node2_Vuln1_confirmed->Mark() = 1;

Input Gate: Attack_SWIM_Node2_Vuln2Gate

Predicate

(Attack_SWIM_Node2_Vuln2_success->Mark() > 0) && (OK->Mark() > 0)

&& (Attack_SWIM_Node2_Vuln2_confirmed->Mark() == 0))

Function

Attack_SWIM_Node2_Vuln2_confirmed->Mark() = 1;

A2.10 Model: UAV

Rep Node Reps Shared State Variables

RepSWIM_Node_1 NumSWIM_Node_1 -

20

A2.11. Model: UAV_AttackScenario

21

Place Attributes:

Place Names Initial Markings

Attack_ADSB_Controller_failed 0

Attack_ADSB_Controller_success 0

Attack_LTE_Controller 0

Attack_LTE_Controller_success 0

Attack_NAV_Controller 0

Attack_NAV_Controller_success 0

Attack_SWIM_Node1_Vuln1_success 0

Attack_SWIM_Node1_Vuln2_success 0

Attack_on_NAV_or_LTE_failed 0

EndAttack_ADSB_Controller 0

EndAttack_on_NAV_or_LTE 0

EndDurationConstraint 0

EndDurationConstraint0 0

EndLoop_Attack_on_SWIM_Node1_1 0

EndLoop_Attack_on_SWIM_Node1_2 0

Idle 1

Loop_Attack_on_SWIM_Node1_1Counter 0

Loop_Attack_on_SWIM_Node1_1_loop 0

Loop_Attack_on_SWIM_Node1_2Counter 0

Loop_Attack_on_SWIM_Node1_2_loop 0

UAV_AttackScenarioAttempted 0

UAV_AttackScenarioBlocked 0

UAV_AttackScenarioLaunched 0

Timed Activity: DurationConstraint0Activity

Distribution Parameters

Rate

return(delay_between_loops1);

22

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: DurationConstraintActivity

Distribution Parameters

Rate

return(initial_delay);

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: Loop_Attack_on_SWIM_Node1_1_loop_delay

Distribution

Parameters

Rate

return(Loop_Attack_on_SWIM_Node1_1_attack_delay);

Activation Predicate (none)

Reactivation

Predicate
(none)

Case Distributions

case 1

return(Attack_SWIM_Node1_Vuln1_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_SWIM_Node1_Vuln1_success_prob); //

Attack fails

Timed Activity: Loop_Attack_on_SWIM_Node1_2_loop_delay

Distribution

Parameters

Rate

return(Loop_Attack_on_SWIM_Node1_2_attack_delay);

Activation Predicate (none)

Reactivation

Predicate
(none)

Case Distributions

case 1

return(Attack_SWIM_Node1_Vuln2_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_SWIM_Node1_Vuln2_success_prob); //

Attack fails

23

Timed Activity: UAV_AttackScenario_AttackActivity

Distribution

Parameters

Rate

return(UAV_AttackScenario_intensity);

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous

Activity:
Attack_ADSB_Controller_activity

Case Distributions

case 1

return(Attack_ADSB_Controller_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_ADSB_Controller_success_prob); //

Attack fails

Instantaneous

Activity:
Attack_LTE_Controller_activity

Case Distributions

case 1

return(Attack_LTE_Controller_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_LTE_Controller_success_prob); //

Attack fails

Instantaneous

Activity:
Attack_NAV_Controller_activity

Case Distributions

case 1

return(Attack_NAV_Controller_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_NAV_Controller_success_prob); //

Attack fails

Instantaneous Activity: Attack_on_NAV_or_LTEActivity

Case Distributions

case 1

return(attack_NAV_condition);

case 2

return(attack_LTE_condition);

24

Instantaneous

Activity:
UAV_AttackScenario_BlockActivity

Case Distributions

case 1

return(UAV_AttackScenario_succ_prob);

case 2

return(1.0 - UAV_AttackScenario_succ_prob); //

Attacked blocked.

Instantaneous Activities Without Cases:

SetUpLoop_Attack_on_SWIM_Node1_1

SetUpLoop_Attack_on_SWIM_Node1_2

Output Gate: Loop_Attack_on_SWIM_Node1_1SetCounter

Function

Loop_Attack_on_SWIM_Node1_1Counter->Mark() = N;

Output Gate: Loop_Attack_on_SWIM_Node1_1_blocked

Function

Loop_Attack_on_SWIM_Node1_1Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node1_1Counter->Mark() > 0)

 {

// This is the branch which corresponds to unsuccessful

attacks on component.

// Hence no token is added to attack place

 Loop_Attack_on_SWIM_Node1_1_loop->Mark() = 1; //

Continue with the loop

 }

else

 EndLoop_Attack_on_SWIM_Node1_1->Mark() = 1; // Exit from

the loop

Output Gate: Loop_Attack_on_SWIM_Node1_1_success

Function

Loop_Attack_on_SWIM_Node1_1Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node1_1Counter->Mark() > 0)

 {

 Attack_SWIM_Node1_Vuln1_success->Mark()++; // Add an

attack. This place may be shared among many instances.

 // The token will be taken

by one of the instances: they will compete for the token.

 Loop_Attack_on_SWIM_Node1_1_loop->Mark() = 1; //

Continue with the loop

 }

else

 EndLoop_Attack_on_SWIM_Node1_1->Mark() = 1; // Exit from the

loop

25

Output Gate: Loop_Attack_on_SWIM_Node1_2SetCounter

Function

Loop_Attack_on_SWIM_Node1_2Counter->Mark() = N;

Output Gate: Loop_Attack_on_SWIM_Node1_2_blocked

Function

Loop_Attack_on_SWIM_Node1_2Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node1_2Counter->Mark() > 0)

 {

// This is the branch which corresponds to unsuccessful

attacks on component.

// Hence no token is added to attack place

 Loop_Attack_on_SWIM_Node1_2_loop->Mark() = 1; //

Continue with the loop

 }

else

 EndLoop_Attack_on_SWIM_Node1_2->Mark() = 1; // Exit from

the loop

Output Gate: Loop_Attack_on_SWIM_Node1_2_success

Function

Loop_Attack_on_SWIM_Node1_2Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node1_2Counter->Mark() > 0)

 {

 Attack_SWIM_Node1_Vuln2_success->Mark()++; // Add an

attack. This place may be shared among many instances.

 // The token will be taken

by one of the instances: they will compete for the token.

 Loop_Attack_on_SWIM_Node1_2_loop->Mark() = 1; //

Continue with the loop

 }

else

 EndLoop_Attack_on_SWIM_Node1_2->Mark() = 1; // Exit from the

loop

Output Gate: UAV_AttackScenarioOutputGate

Function

Idle->Mark() = 1; // Implies continuous attacks with

given intensity;

26

A2.12. Model: UTM

Rep Node Reps Shared State Variables

RepSWIM_Node_2 NumSWIM_Node_2 -

27

A2.13. Model: UTM_AttackScenario

Place Attributes:

Place Names Initial Markings

Attack_SWIM_Node2_Vuln1_success 0

28

Attack_SWIM_Node2_Vuln2_success 0

Attack_UTM_Controller 0

Attack_UTM_Controller_failed 0

Attack_UTM_Controller_success 0

EndDurationConstraint 0

EndLoop_Attack_on_SWIM_Node2_1 0

EndLoop_Attack_on_SWIM_Node2_2 0

EndOpt_Attack_UTM 0

Idle 1

Loop_Attack_on_SWIM_Node2_1Counter 0

Loop_Attack_on_SWIM_Node2_1_loop 0

Loop_Attack_on_SWIM_Node2_2Counter 0

Loop_Attack_on_SWIM_Node2_2_loop 0

UTM_AttackScenarioAttempted 0

UTM_AttackScenarioBlocked 0

UTM_AttackScenarioLaunched 0

Timed Activity: DurationConstraintActivity

Distribution Parameters

Rate

return(delay_between_loops2);

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: Loop_Attack_on_SWIM_Node2_1_loop_delay

Distribution

Parameters

Rate

return(Loop_Attack_on_SWIM_Node2_1_attack_delay);

Activation Predicate (none)

Reactivation

Predicate
(none)

Case Distributions
case 1

29

return(Attack_SWIM_Node2_Vuln1_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_SWIM_Node2_Vuln1_success_prob); //

Attack fails

Timed Activity: Loop_Attack_on_SWIM_Node2_2_loop_delay

Distribution

Parameters

Rate

return(Loop_Attack_on_SWIM_Node2_2_attack_delay);

Activation Predicate (none)

Reactivation

Predicate
(none)

Case Distributions

case 1

return(Attack_SWIM_Node2_Vuln2_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_SWIM_Node2_Vuln2_success_prob); //

Attack fails

Timed Activity: UTM_AttackScenario_AttackActivity

Distribution

Parameters

Rate

return(UTM_AttackScenario_intensity);

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous

Activity:
Attack_UTM_Controller_activity

Case Distributions

case 1

return(Attack_UTM_Controller_success_prob); // Attack

succeeds

case 2

return(1.0 - Attack_UTM_Controller_success_prob); //

Attack fails

Instantaneous Activity: Opt_Attack_UTMActivity

Case Distributions
case 1

return(attack_UTM_condition);

30

case 2

return(1.0 - attack_UTM_condition);

Instantaneous

Activity:
UTM_AttackScenario_BlockActivity

Case Distributions

case 1

return(UTM_AttackScenario_succ_prob);

case 2

return(1.0 - UTM_AttackScenario_succ_prob); //

Attacked blocked.

Instantaneous Activities Without Cases:

SetUpLoop_Attack_on_SWIM_Node2_1

SetUpLoop_Attack_on_SWIM_Node2_2

Output Gate: Loop_Attack_on_SWIM_Node2_1SetCounter

Function

Loop_Attack_on_SWIM_Node2_1Counter->Mark() = N;

Output Gate: Loop_Attack_on_SWIM_Node2_1_blocked

Function

Loop_Attack_on_SWIM_Node2_1Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node2_1Counter->Mark() > 0)

 {

// This is the branch which corresponds to unsuccessful

attacks on component.

// Hence no token is added to attack place

 Loop_Attack_on_SWIM_Node2_1_loop->Mark() = 1; //

Continue with the loop

 }

else

 EndLoop_Attack_on_SWIM_Node2_1->Mark() = 1; // Exit from

the loop

Output Gate: Loop_Attack_on_SWIM_Node2_1_success

Function

Loop_Attack_on_SWIM_Node2_1Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node2_1Counter->Mark() > 0)

 {

 Attack_SWIM_Node2_Vuln1_success->Mark()++; // Add an

attack. This place may be shared among many instances.

 // The token will be taken

by one of the instances: they will compete for the token.

 Loop_Attack_on_SWIM_Node2_1_loop->Mark() = 1; //

Continue with the loop

 }

else

31

 EndLoop_Attack_on_SWIM_Node2_1->Mark() = 1; // Exit from the

loop

Output Gate: Loop_Attack_on_SWIM_Node2_2SetCounter

Function

Loop_Attack_on_SWIM_Node2_2Counter->Mark() = N;

Output Gate: Loop_Attack_on_SWIM_Node2_2_blocked

Function

Loop_Attack_on_SWIM_Node2_2Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node2_2Counter->Mark() > 0)

 {

// This is the branch which corresponds to unsuccessful

attacks on component.

// Hence no token is added to attack place

 Loop_Attack_on_SWIM_Node2_2_loop->Mark() = 1; //

Continue with the loop

 }

else

 EndLoop_Attack_on_SWIM_Node2_2->Mark() = 1; // Exit from

the loop

Output Gate: Loop_Attack_on_SWIM_Node2_2_success

Function

Loop_Attack_on_SWIM_Node2_2Counter->Mark()--;

if(Loop_Attack_on_SWIM_Node2_2Counter->Mark() > 0)

 {

 Attack_SWIM_Node2_Vuln2_success->Mark()++; // Add an

attack. This place may be shared among many instances.

 // The token will be taken

by one of the instances: they will compete for the token.

 Loop_Attack_on_SWIM_Node2_2_loop->Mark() = 1; //

Continue with the loop

 }

else

 EndLoop_Attack_on_SWIM_Node2_2->Mark() = 1; // Exit from the

loop

Output Gate: UTM_AttackScenarioOutputGate

Function

Idle->Mark() = 1; // Implies continuous attacks with

given intensity;

32

A2.14. Model: UTM_Controller

Place Attributes:

Place Names Initial Markings

Attack_UTM_Controller_confirmed 0

Attack_UTM_Controller_success 0

Compromised 0

Error 0

OK 1

Timed Activity: Compromised__Error

Distribution Parameters

Rate

0.01

Activation Predicate (none)

Reactivation Predicate (none)

Timed Activity: OK__Error

Distribution Parameters

Rate

0.001

Activation Predicate (none)

Reactivation Predicate (none)

Instantaneous Activities Without Cases:

OK__Compromised

33

Input Gate: Attack_UTM_ControllerGate

Predicate

(Attack_UTM_Controller_success->Mark() > 0) && (OK->Mark() > 0)

&& (Attack_UTM_Controller_confirmed->Mark() == 0))

Function

Attack_UTM_Controller_confirmed->Mark() = 1;

A2.15. Model: VulnerableADSB_Controller

A2.16. Model: VulnerableLTE_Controller

34

A2.17. Model: VulnerableNAV_Controller

A2.18. Model: VulnerableSWIM_Node_1

A2.19. Model: VulnerableSWIM_Node_2

35

A2.20. Model: VulnerableUTM_Controller

Created by Peter Popov: 20 June 2019

Last updated: 22 August 2019

