

Mechanical Engineering Design						
Input System of Coutput						
'Name of the game'	To find	Skills				
Analysis	Output	Deduction				
Reverse analysis	Input	Deduction				
Science	Laws	Induction				
Engineering	System	Analysis & Synthesis				
	System	Analysis & Synth				

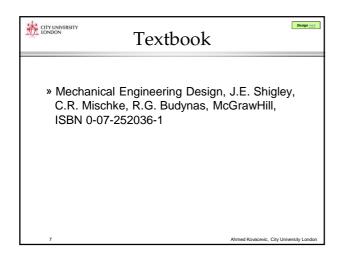
Physics and *Chemistry* are science but not engineering

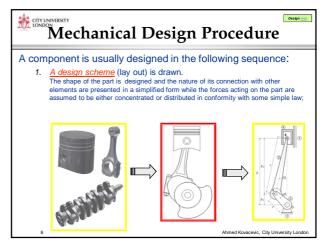
Engineering -> Mechanical Design Process

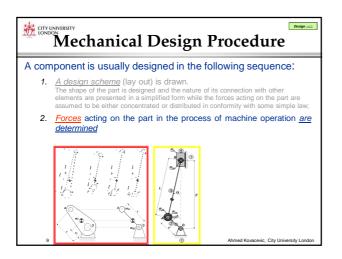
Engineering design process

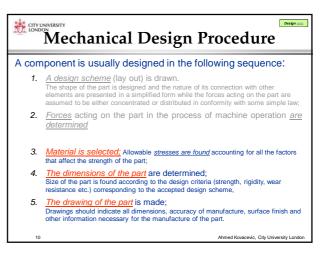
an *iterative decision making* activity, to produce plans by which *resources are converted*, preferably optimally with due consideration for environment *into systems and devices* to meet human needs. (Woodson.T.T.)

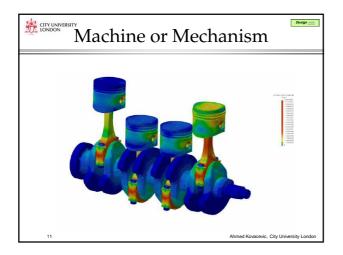
Mechanical design process

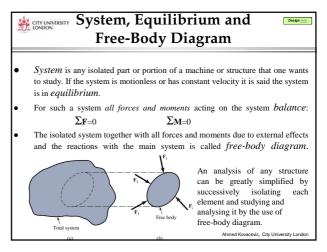

is the use of scientific principles and technical information along with innovations, ingenuity or imagination *in the definition of a machine*, mechanical device or system to perform pre specified functions with *maximum economy and efficiency.* (Engineering Design Council, UK)

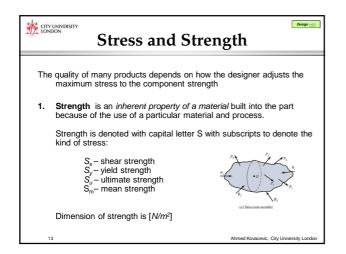

Mechanical Design

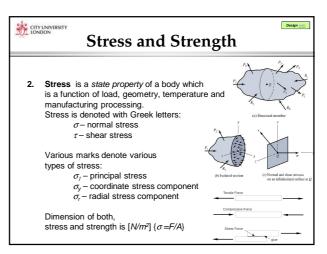

- Mechanical design is a broad subject encompassing all disciplines of mechanical engineering, thermal and fluid sciences, solid mechanics, materials and processes, manufacturing sciences.
- Machine is a combination of certain general purpose and special purpose elements which can transmit power (or motion) in a controlled manner and which is capable of performing some useful work or task
- **General-purpose elements** are components /elements of various machines, which are identical in shape or geometry and carry out same or similar function. Example: shafts, bearings, springs, fasteners, gears brakes, clutches etc.

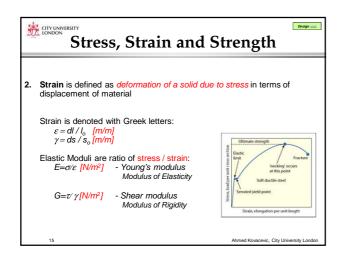

ned Kovacevic, City University Londo

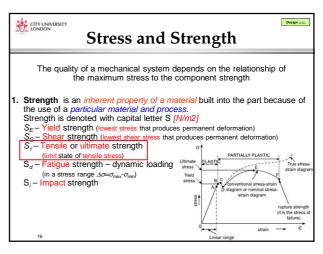

Design wo

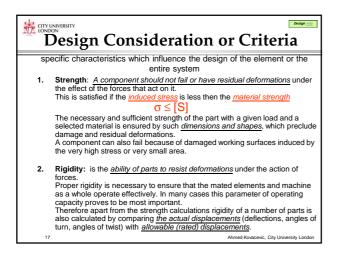


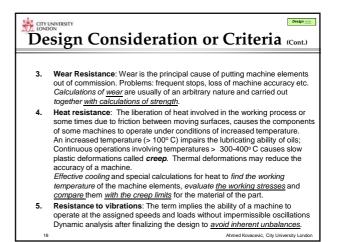


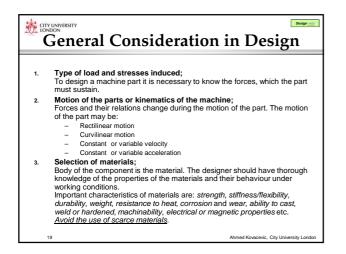


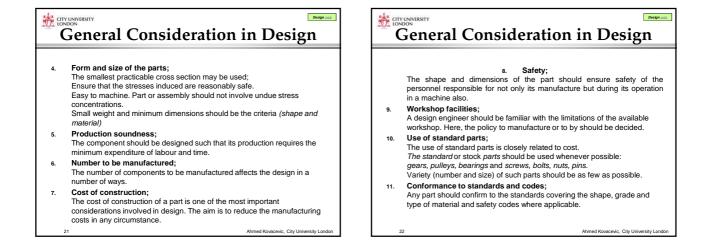


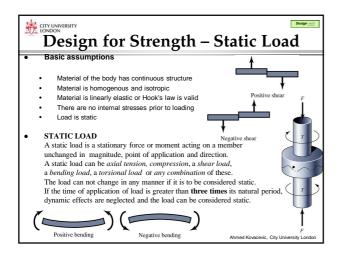


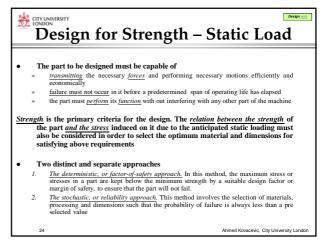




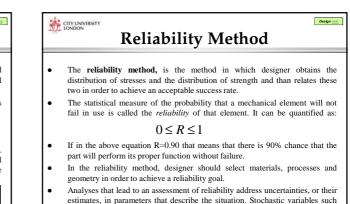






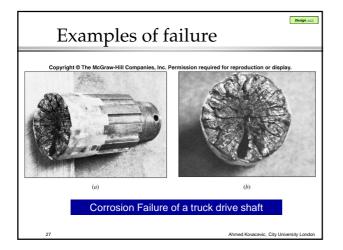


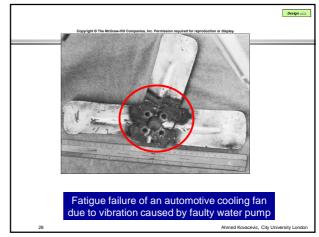
		= EE	$\tau =$	Gγ _V	$=-\frac{lateral strate}{axial strate}$	L ·	= 2G(1	$+\nu)$
Material		icity E GPa		lity G GPa	Poisson's Ratio y		it Weight Ibf/ft ³	w kN/m
Aluminum (all alloys)	10.4	71.7	3.9	26.9	0.333	0.098	169	26.6
Beryllium copper	18.0	124.0	7.0	48.3	0.285	0.297	513	80.6
Brass	15.4	106.0	5.82	40.1	0.324	0.309	534	83.8
Carbon steel	30.0	207.0	11.5	79.3	0.292	0.282	487	76.5
Cast iron (gray)	14.5	100.0	6.0	41.4	0.211	0.260	450	70.6
Copper	17.2	119.0	6.49	44.7	0.326	0.322	556	87.3
Douglas fir	1.6	11.0	0.6	4.1	0.33	0.016	28	4.3
Glass	6.7	46.2	27	18.6	0.245	0.094	162	25.4
Inconel	31.0	214.0	11.0	75.8	0.290	0.307	530	83.3
Lead	5.3	36.5	1.9	13.1	0.425	0.411	710	111.5
Magnesium	6.5	44.8	2.4	16.5	0.350	0.065	112	17.6
Molybdenum	48.0	331.0	17.0	117.0	0.307	0.368	636	100.0
Monel metal	26.0	179.0	9.5	65.5	0.320	0.319	551	86.6
Nickel silver	18.5	127.0	7.0	48.3	0.322	0.316	546	85.8
Nickel steel	30.0	207.0	11.5	79.3	0.291	0.280	484	76.0
Phosphor bronze	16.1	111.0	6.0	41.4	0.349	0.295	510	80.1
Stainless steel (18-8)	27.6	190.0	10.6	73.1	0.305	0.280	484	76.0
Titanium alloys	16.5	114.0	6.2	42.4	0.340	0,160	276	43.4

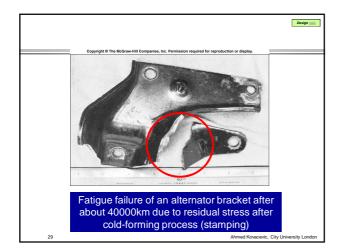


X	Factor of Safety Method
•	Factor of safety method, the classical method of design, employs reduced values of strengths that are used in the design to determine the geometrical dimensions of the parts.
•	A design factor of safety N _d , some times called simply design factor N, is defined by the relation $N = \frac{Loss of function Load}{Allowable Load} = \frac{Strength}{Stress} = \frac{S}{\sigma}$
•	The failure stress (strength) can be anything the designer chooses it to be. Often such strengths as minimum, mean, yield, ultimate, shear, fatigue as well as others are used; of course it must correspond in type and units to the

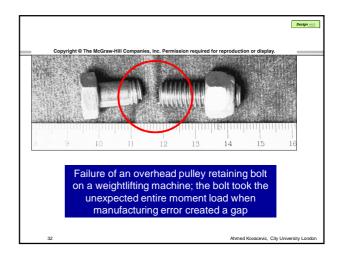
induced stress


Material	Load	Factor of safety value N		
Exceptionally reliable	Certainly known	1.25 to 1.50		
Well known	Known	1.50 to 2.00		
Known	Well known	1.50 to 2.00		
Less tried	Known orAverage	2.00 to 2.50		




deviations and distributions.

as stress, strength, load, or size are described in terms of their means, standard


ic City II

