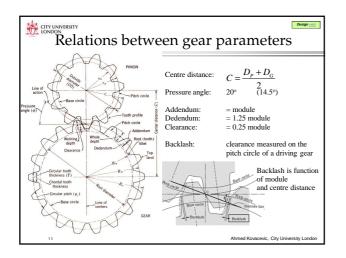
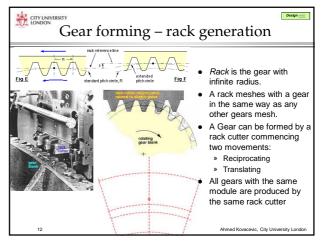
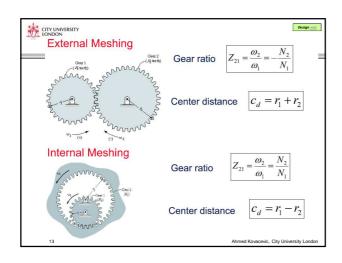
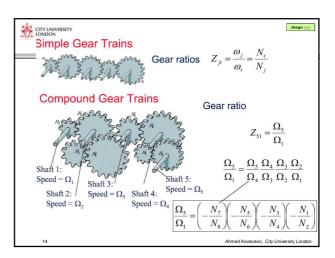
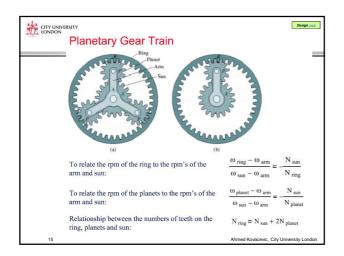

Gear	Input/Output		Motion Axis	Loads	5 6
Spur	Rotary	Rotary	Parallel	Tangent	S. S. S. W.
Bevel	Rotary	Rotary	Angled	Tangent	<u>III)</u>
Helical	Rotary	Rotary	Parallel or Crossed	Tangent and Axial	alling
Rack	Rotary	Linear	90°	Tangent	
Worm	Rotary	Rotary or Linear	90°	Tangent Not back drivable	
e e	0	No.			Vacevic, City University Lo

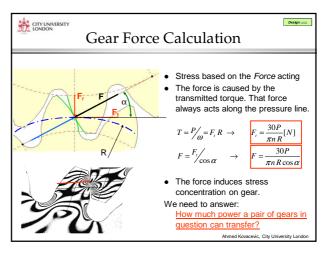


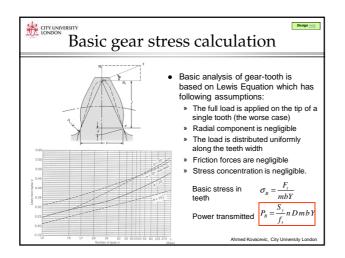


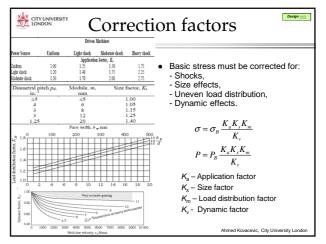


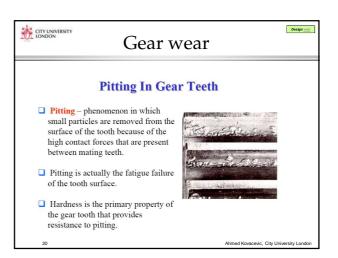


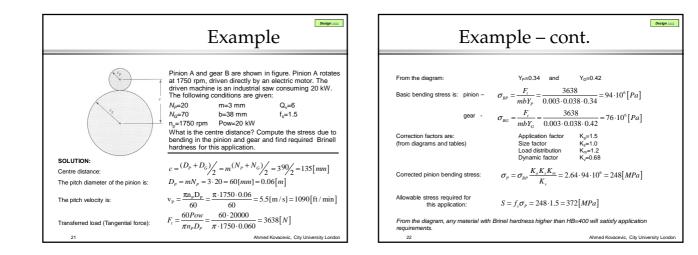

1	CITY UNIVERSITY LONDON QU	iz: gear j	paramete	Design
	Pitch diameter	No of teeth	Diametral pitch [in ⁻¹]	Module [mm]
	6" (152.4 mm)	72	12	~ 2
	90 mm (3.54")	30	~ 8	3
	36	12	~ 8	3
	125 (4.92")	100	~ 20	1.25
	10		Ahmeo	Kovacevic, City University London











<u> 8</u> 8	Y UNIVERSITY NDON					da, da, s	тан 00 - 60 50 - 50	0n;	*2	
	n	Genate	ear eria			Allowable bending	00 - 50 - 00 - 30 50 - 50 - 20 00 - 10 120 150	0nx	4e1	40 4
		1.0		r r	c n			Brinell har		~~ ~
Average .	Brinell			Typical Use	b	ctile (Noo Modulus	ular) Iron			
Average . Grade ^a		Elon	ties and (gation 50 mm)	Typical Use Poisson's Ratio	b		ular) Iron		daesa, HB	
Grade*	Brinell Hardness, H_B	Elon (%) (in	gation	Poisson's Ratio	Tensile	Modulus 10 ⁶ psi		ı Typical	daess, HB Uses	
	Brinell Hardness,	Elon (%) (in 1	gation 50 mm)	Poisson's	Tensile GPa	Modulus	Valves and	1	Uses an and chem	icals
Grade ^a 60-40-18	Brinell Hardness, H _B 167	Elon (%) (in 1	gation 50 mm) 5.0	Poisson's Ratio	Tensile GPa 169	Modulus 10 ⁶ psi 24.5	Valves and Machine co	Typical fittings for stea	Uses un and chem ect to shock a	icals
Grade* 60-40-18 65-45-12	Brinell Hardness, H _B 167 167	Elon (%) (in 1 1 1	gation 50 mm) 5.0 5.0	Poisson's Ratio 0.29 0.29	Tensile GPa 169 168	Modulus 10 ⁶ psi 24.5 24.4	Valves and Machine co Crankshaft	Typical fittings for stea mponents subj	Uses um and chem ect to shock a	icals
Grade* 60-40-18 65-45-12 80-55-06	Brinell Hardness, H _B 167 167 192	Elon (%) (in 1 1 1	gation 50 mm) 5.0 5.0 1.2	Poisson's Ratio 0.29 0.29 0.31	Tensile GPa 169 168 168 168 164 Com	Modulus 10 ⁶ psi 24.5 24.4 24.4 23.8 pressive	Valves and Machine co Crankshaft	Typical fittings for stea mponents subji s, gears, rollers ars, rollers, slid	Uses um and chem ect to shock a	icals
Grade* 60-40-18 65-45-12 80-55-06	Brinell Hardness, H _B 167 167 192	Elon (%) (in 1 1 1 Tensile	gation 50 mm) 5.0 5.0 1.2 1.5 Strength	Poisson's Ratio 0.29 0.29 0.31	Tensile GPa 169 168 168 164 Com Str	Modulus 10 ⁶ psi 24.5 24.4 24.4 23.8	Valves and Machine co Crankshafts Pinions, gei	Typical fittings for stea mponents subji s, gears, rollers ars, rollers, slid	Uses um and chem eet to shock a es I Strength	icals
Grade" 60-40-18 65-45-12 80-55-06 20-90-02	Brinell Hardness, <i>H</i> ₈ 167 167 192 331	Elon (%) (in 1 1 1 Tensile	gation 50 mm) 5.0 5.0 1.2 1.5 Strength	Poisson's Ratio 0.29 0.29 0.31 0.28	Tensile GPa 169 168 168 164 Com Str	Modulus 10 ⁶ psi 24.5 24.4 24.4 23.8 pressive ength:	Valves and Machine co Crankshafts Pinions, gei	t Typical fittings for stea mponents subj s, gears, rollers rrs, rollers, slid Torsiona	Uses um and chem eet to shock a es I Strength	icals and fatigu
Grade" 60-40-18 65-45-12 80-55-06 20-90-02	Brinell Hardness, <i>H_B</i> 167 167 192 331 Ultin	Elon (%) (in 1 1 1 Tensile nate	gation 50 mm) 5.0 5.0 1.2 1.5 Strength	Poisson's Ratio 0.29 0.29 0.31 0.28 Kield	Tensile GPa 169 168 168 164 Com Str UI	Modulus 10 ⁶ psi 24.5 24.4 23.8 pressive ength: timate	Valves and Machine co Crankshaft Pinions, gea	t Typical fittings for stee mponents subj. s, gears, rollers, slid Torsiona imate	Uses um and chem cet to shock a cs I Strength Y	icals and fatigu
Grade ^a 60-40-18 65-45-12 80-55-06 120-90-02 Grade	Brinell Hardness, Ha 167 167 192 331 Ultin MPa	Elon (%) (in 1 1 1 1 Tensile nate 10 ⁶ psi	gation 50 mm) 5.0 5.0 1.2 1.5 Strength MPa	Poisson's Ratio 0.29 0.29 0.31 0.28 /ield 10 ⁶ psi	Tensile GPa 169 168 168 164 Com Str UI MPa	Modulus 10 ⁶ psi 24.5 24.4 24.4 23.8 pressive ength: timate 10 ⁶ psi	Valves and Machine co Crankshaft Pinions, gea Uh MPa	t Typical fittings for stee mponents subj s, gears, rollers urs, rollers, slid Torsiona imate 10 ⁶ psi	uses um and chem eet to shock a es I Strength <u>Y</u> MPa	icals and fatigu 'ield 10 ⁶ p
Grade* 60-40-18 65-45-12 80-55-06 120-90-02 Grade 60-40-18	Brinell Hardness, H _B 167 167 192 331 Ultin MPa 461	Elon (%) (in 1 1 1 1 Tensile nate 10 ⁶ psi 66.9	gation 50 mm) 5.0 5.0 1.2 1.5 Strength MPa 329	Poisson's Ratio 0.29 0.29 0.31 0.28 (ield 10 ⁶ psi 47.7	Tensile GPa 169 168 168 168 164 Com Str UI MPa 359	Modulus 10 ⁶ psi 24.5 24.4 23.8 pressive ength: timate 10 ⁶ psi 52.0	Valves and Machine co Crankshaft: Pinions, gea Uh MPa 472	t Typical fittings for stee mponents subj s, gears, rollers, slid Torsiona fimate 10 ⁶ psi 68.5	Uses um and chem cet to shock a cs I Strength <u>Y</u> <u>MPa</u> 195	icals and fatigu 'ield 10 ⁶ p 28.3

