ME1105 - Engineering Drawing and Design

Contents:

1 The design process and the role of the design model.
1.1 The design process
1.2 The design model
1.3 Types of design model

2 Representing the design model - Engineering Drawing.
$2.1 \quad$ Projections
2.2 Creating Orthographic Projection drawings
2.3 Drawing conventions
2.4 Sections
2.5 Dimensions
$2.6 \quad$ Tolerances, limits and fits
2.7 Assemblies

Almost everything around us has been created by, or is influenced by, engineers:
Buildings, vehicles, roads, railways, food growing and processing, books, medical care, recreation, etc.

All of these have either been concieved and created from scratch or have evolved from existing ideas. Either way, an engineering design process will have been followed, in one form or another. The Design as a generic tool module provides an interesting a comprehensive introduction to engineering and design, so a detailed discussion of the design process will not be inclided here.

In essence, designs progress from :

some statement of need

to..
identification or specification of problem
to..

search for solutions

and finally to...
development of solution to manufacture, test and use.
This sequence is usually iterative. It repeats until a satisfactory solution has evolved, as indicated in the flow diagram below.

Initial design.

Modify design.

The concept of the designer working with a model of a design is fundamental to the design process.

The design model is a representation of the design. This model could be anything from a few ideas in the designers head, through to rough sketches and notes, calculations, sets of detailed formal engineering drawings, computer generated 3D representations, physical prototypes, etc.

The design model would be used by the designer to record and develop ideas and to provide a basis to evaluate the design.

Larger design projects are undertaken by more than one engineer. Design models are used to communicate and demonstrate ideas between all those concerned with the product design, development, manufacture and use.

A designer needs to have the skills to generate and work with this model in order to communicate ideas and develop a design.
1.3

Types of design model.
Designers use a variety of different models, depending on what property of the design is to be considered and for whom the information is destined.

Typically a designer may model:

- Function
- Structure
- Form
- Material properties, surface conditions

All of these areas probably encompass a large portion of the degree syllabus. Within this modulke we will concern ourselves primarily with form, i.e. the shape of parts or components and how they fit together.

2.1.1 Orthographic projection.

We have discussed both the role of the design model in the design process and the importance of the representation of the form or shape in this role.

Now we will consider in detail the methods designers use to represent the form of their designs.

Back in the $18^{\text {th }}$ century a French mathematician and engineer, Gaspard Monge (1746-1818), was involved with the design of military armory. He developed a system, using two planes of projection at right angles to each other, for graphical description of solid objects.

This system, which was, and still is, called Descriptive Geometry, provided a method of graphically describing objects accurately and unambiguously. It relied on the perpendicular projection of geometry from perpendicular planes.

Monge's Descriptive Geometry forms the basis of what is now called Orthographic Projection.

Tla The word orthographic
means to draw at right angles and is derived from the Greek words:

ORTHOS - straight, rectangular, upright
GRAPHOS - written, drawn

Orthographic projection is the graphical method used in modern engineering drawing. In order to interpret and communicate with engineering drawings a designer must have a sound understanding of it's use and a clear vision of how the various projections are created.

There are two predominant orthographic projections used today. They are based on Monge's original right angle planes and are shown fully in Figure 2.1b. They define four separate spaces, or quadrants. Each of these quadrants could contain the object to be represented. Traditionally however, only two are commonly used, the first and the third.

Figure 2.1b.

Projections created with the object placed in the first quadrant are said to be in First Angle projection, and likewise, projections created with the object placed in the third quadrant are said to be in Third Angle projection.

2.1.2 First angle projection.

Consider the first quadrant in Figure 2.1b. The resultant drawing of the cone would be obtained by flattening the two perpendicular projections planes, as shown in Figure 2.1c.

For this example, you could say that the right hand side image is the plan or top elevation and the image to the left is the side elevation.

Whether you view the objects from the left or the right, the order in which the drawing views are arranged puts the image that you see after the object, object first then the image. This is always true for First Angle projection.

Put another way:

- Viewing from the left: The drawn image on the right is your view of the drawn object on the left.
- Viewing from the right: The drawn image on the left is your view of the drawn object on the right.

This can get confusing, particularly when also considering other drawings created using other projections. You may develop your own way of recognising First Angle projection. The author uses:

The OBJECT is FIRST for FIRST Angle projection.
or...
EYE > OBJECT > IMAGE
or...
You look through the object and place the image

An example of a component represented in a multiview drawing, in First Angle projection.

Consider the third quadrant in Figure 2.1b. The resultant drawing of the cone would be obtained by flattening the two perpendicular projections planes, as shown in Figure 2.1d.

Left.

Right.

Figure 2.1d, Third Angle.

For this example of the cone, you would say that the left hand image is the plan or top elevation and the image to the right is the side elevation.

Whether you view the objects from the left or the right, the order in which the drawing views are arranged puts the image that you see before the object, image first then the object. This is always true for Third Angle projection.

Put another way:

- Viewing from the left: The drawn image on the left is your view of the drawn object on the right.
- Viewing from the right: The drawn image on the right is your view of the drawn object on the left.

Again, you may develop your own way of recognising Third Angle projection.
Perhaps: EYE > IMAGE> OBJECT

The same component shown using Third Angle projection.

Both systems of projection, First and Third angle, are approved internationally and have equal status. The system used must be clearly indicated on every drawing, using the appropriate symbol shown in Figure 2.1e below.

Figure 2.1e. Projection system symbols and recommended proportions.

Orthographic projection is used as an unambiguous and accurate way of providing information, primarily for manufacturing and detail design. This form of representation can however make it difficult to visualise objects. Pictorial views can be created to give a more three dimensional impression of the object. There are three types of pictorial projections commonly used, as shown in Figure 2.1f.

Figure 2.1f. Perspective, isometric and oblique pictorial projections.

Perspective: Used more with freehand sketching.
Parallel lines appear to converge and meet at what is referred to as the vanishing point. You can have one, two or three vanishing points (VP).

Isometric: Receeding lines drawn at 30° and are usually kept at true measured lengths.

Oblique: Front face sketched as a true shape. Starts with two axes, one horizontal, one vertical. The third axis is usually drawn at 45 and lengths are reduced by 50% of true lengths. Sometimes called 'cabinet' projection.

This is an introduction into how to create and interpret multi-view orthographic projection drawings.

2.2.1 First angle projection.

The component:
Your drawing will, for this example consist of four views:

- Front
- Left
- Right
- Plan (Top)

F

L
R
P
(1) Usual practice is to orient the component in a position that it is most likely to be found in.

Your aim is to create, from the front view, an orthographic projection drawing as shown below in Figure 2.2a. Note how the views are constructed in line with each other, allowing the features to be 'projected' between the views.

Figure 2.2a. A completed First angle projection drawing.

So, the stages are:

1) Choose which view direction or face will be used as the front view of the component.
2) Draw the outline of the front view, leaving room for the other views.

3) Draw feint construction lines out from the front view.
4) Start to draw the outlines of the other views, using sides you know the length of.

5) Complete the details of the views by adding any required hidden detail lines, other outlines and center lines.
(Refer to section 2.3 for line style conventions.)

With first angle projection the plan view is below the front view. If you had placed the plan view above the front view it
 would actually have to become the bottom or underside view!

The construction method used is the same. The difference between first and third angle projection when creating or reading really lies with the positions of the views. For the same component, an orthographic projection drawing with the same front, side and plan views would look like Figure 2.2b below.

Figure 2.2b. Third angle projection.
[1] Observe how, in third angle, the views give the image then the object. In other words, what you see then what you are looking at.

In first angle you are given the object then the image, or what you are looking at, then what you see.

2.3.1 Introduction.

In order for anyone to be able to understand exactly what a drawing represents, sets of precise rules and conventions have to be followed, much like a language. These rules are usually referred to as Standards.

When a designer works to a set of Standards they must be familiar with the precise meaning of the various line styles, abbreviations, drawing simplifications and terminology. This section introduces you to some of the common universal conventions.

Standards are developed both privately by companies and by internationally recognised institutions.
[1] Two such international standards are:
British Standard Institution: BS $8888 \quad$ (Superceded BS 308)
American National Standards Institute: Y14 series
The conventions referenced in these notes generally comply with BS 8888.

Each line on a drawing represents specific precise information regarding the components design.

Type:	Example:	Application:
Continuous	A	Visible outlines

Long chain

Center lines

Chain, thick at ends

Section cutting planes

Short chain

Developed views

Continuous wavy boundaries

Broken

Straight zigzag

Break lines

Straight lines with two short zigzags

Here are some examples of commonly used engineering components and features of components.

General:
Housing:
A component into which a
'male' mating part fits, sits or
is 'housed'.
Bush/bearing:
A removable sleeve or liner.
Known also as a simple or
plane bearing.
Boss:
A cylindrical projection on
surface of component.
Curved slot: Elongated hole, whose centerline lies on an arc. Used usually on components requiring adjustment. Rib: A reinforcement, positioned to stiffen surfaces. Fillet: A radius or rounded portion suppressing a sharp internal corner.
Key: A small block or wedge inserted between a shaft and a mating part (a hub). Used to prevent relative rotation of the two parts. Key way: A parallel sided slot or groove cut into a bore or a shaft, to 'house' a mating key.

Tee Groove (slot):
Machined to 'house' mating
fixing bolts and prevent them
from turning.

Fasteners:

Bolts, screws \& studs:
Threaded fasteners. Bolts have a shank partially threaded, whereas screws are threaded along the entire length.

For guidance on dimensioning, see next page.

The last three examples here are called set screws and are used to position or lock components.

Features usually relating to components turned on a lathe:

Holes:

Drilled:

Loose tolerance, for pilot holes or clearance holes for fasteners.

Reamed:

Accurate finishing process after drilling or boring.

Counterbore:

Usually used to recess the head of a square shouldered fastener.

Countersunk:

Usually used to recess the head of a countersink screw.

Spotface:

Used to clean up and level the surrounding area, usually for a fastener or something such as a hydraulic fitting using a seal.

Springs:

Knurling:

Diamond.

Straight.

Bearings:

Some examples of rolling element barings. Arrows indicate directions of load bearing.

Deep groove (near).
Angular contact (far).

Roller (near).
Taper roller (far).

Thrust (near).
Standard drawing representation of a bearing.

Long components:

	Subjeet
Rectangular bar:	\square
Round bar:	\square
Round tube:	\square

Gears:
Worm \& whee::

Shaft ends:

Square:
Frequently used for hand driven adjustments with removable handles, such as those found on machine tools, etc.

Serrations:

Often used for push fit components such as plastic fans or pulleys, or levers such as motorcycle gear shifters.

Splines:

Usually used for transmitting rotational torque and allowing an axial 'sliding' movement.

Examples can be found on
 automotive drive shafts.

The figures opposite show splined shafts and housings in sectioned and nonsectioned views.

Belt drives:

V belt drives:
Used for transmission of rotary power, good for space restricted applications. Vbelts grip on the sides of the V.

Often found on automotive engines to drive alternators and water pumps, or on pillar drills, and other industrial drives.

Timing or synchronous

 drives:Used for transmission of rotary power, as are v-belts, and, because of the toothed design (no slip) they are used for timed (synchronised) drives, where relative rotational positions have to be controlled. Some type of tensioning system is usually required.

These drives are often found on camshaft drives on modern automotive engines, replacing chains.

Abbreviations are used on drawings to save time and space. Most of these conform to BS 8888. They are the same singular or plural, full stops are only used where word may be confusing.

A/C	Across corners
A/F	Across flats
HEX HD	Hexagon head
ASSY	Assembly
CRS	Centers
CL	Center line
CHAM	Chamfer
CH HD	Cheese head
CSK	Countersunk
CBORE	Counterbore
CYL	Cylinder or cylindrical
DIA	Diameter (in a note)
O	Diameter (preceding a dimension)
R	Radius (preceding a dimension, capital only)
RAD	Radius (in a note)
DRG	Drawing
FIG.	Figure
LH	Left hand
LG	Long
MATL	Material
NO.	Number
PATT NO.	Pattern number
PCD	Pitch circle diameter
I/D	Inside diameter
O/D	Outside diameter
RH	Right hand
RD HD	Round head
SCR	Screwed
SPEC	Specification
SPHERE	Spherical
SFACE	Spotface
SQ	Square (in a note)
TYP	Typical or typically
THK	Thick
\square	Square (preceding a dimension)
STD	Standard
UCUT	Undercut
M/CD	Machined
mm	Millimeter
NTS	Not to scale
RPM	Revolutions per minute
SWG	Standard wire gauge
TPI	Teeth per inch

To show the inside details of component it is imagined to be cut or sectioned along a plane, the cutting plane. Cutting planes are designated with capital letters, such as A-A in Figure 2.4a.

Figure 2.4a.

The side of the plane nearest the viewer is removed and the remaining details are shown as a sectional view, as demonstrated with section $\mathbf{X}-\mathbf{X}$ in Figure 2.4b. The arrows indicate the direction to view the component when defining the sectioned view. Note that First or Third angle orthographic projection systems are still used and are indicated by use of the appropriate symbols.

Sectional views are produced to:

- clarify details
- show internal features clearly
- reduce number of hidden detail lines required
- aid dimensioning
- show cross-section shape
- clarify an assembly

Figure 2.4b.

Surfaces cut by the cutting plane are usually hatched at an appropriate angle, say 45° with a density of lines in proportion with the component.

Symmetrical parts can be shown in half sections. Part or 'broken out' sections can be used.

Figure 2.4c. Half section and a part or 'broken out' section.

Revolved sections are useful when clarifying local cross-section shapes as shown in Figure 2.4d.

Figure 2.4d.
There are some exceptions to the general rules of sectioning:

- Webs, see Figure 2.4e.
- Shafts, rods, spindles, see Figure 2.4f.
- Bolts, nuts and thin washers.
- Rivets, dowels, pins and cotters.

These parts would not be shown as sections if their center lines lie on the cutting plane.

$1-X$

$x-x$

Figure 2.4f.

Section X-X

Section Y-Y

It may be appropriate to use Removed sections, for webs, beams or arms, as shown in Figure 2.4 g below. Note the absence of viewing arrows.

SECTION A-A

SECTION B-B

Figure 2.4 g . Removed sections.
Assemblies can be greatly clarified using sections. See the example below in Figure xx.
Note:

- Revolved sections.
- Part sections.
- Different hatching directions and spacings.
- Un-sectioned components such as shafts, keys, nuts etc.

Figure 2.4h. An assembly drawing view, clarified using sections.

A drawing from which a component is to be manufactured must communicate design information by:

- Describing the form or shape of the component by using orthographic and sometimes pictorial views.
- Giving actual sizes by dimensioning.
- Giving information about any special manufacturing processes required.

The design engineer should have a good understanding of projection methods, dimensioning methods and the manufacturing methods to be used.

This section introduces some basic guidelines and examples to help explain the general rules of dimensioning, based on BS 8888.

2.5.1 General rules.

- Dimensions should be placed on drawings so that they may be easily read.
- The drawing must include the minimum number of dimensions necessary to manufacture.
- A dimension should not be stated more than once unless it aids communication.
- It should not be necessary for the operator manufacturing the component to have to calculate any dimensions.
2.5.2 Types of dimension.

Types of dimensioning can be broadly classified as:

- Size dimensions. Used to describe heights, widths, diameters, etc.
- Location dimensions. Used to place various features of a component relative to each other, such as a hole centre line to a reference surface.
- Mating dimensions. Used for parts that fit together requiring a certain degree of accuracy.

2.5.3.1. General.

Observe the dimensioning features shown for the plate in Figure 2.5a below. Note:

- parallel dimensions, indicating the size of the plate
- edges \mathbf{A} and \mathbf{B} are being used as the reference edges
- minimum number of dimensions required are specified
- use of description of 'plate 3mm thick', so that no side view is required
- evenly spaced dimension lines

Figure 2.5a.

2.5.3.3 Circles:

Circles on engineering drawings are usually either spheres, holes or cylinders of some description. The dimension refers to the diameter, and the diameter symbol is \varnothing.

Holes equally spaced on a pitch circle can be dimensioned as shown below.

The $\varnothing 40$ dimension can also be refereed to as the PCD or Pitch Circle Diameter.

Chamfer at 45° :

Chamfer at angles other than 45° :

Countersink:

Counterbore:
$\varnothing 7$ CBORE $\varnothing 16 \times 8$

CBORE $\varnothing 16 \times 8$

2.5.3.5 Location dimensions:

Due to the nature of manufacturing, actual finished dimensions of manufactured components are never perfect. This has to be considered when dimensioning features that require accurate location. Inorder to enable accyrate measurement, such a feature is usually dimensioned from a reliable reference such as a machined surface. This reference is refered to as a Datum.
1)

2)

3)

Figure 2.5b.

Figure 2.5b shows: 1) A spigot located from two reference edges.
2) Two holes located from two reference edges.
3) The large hole located from two reference edges and the small hole from the center of the large hole.

The simple bearing bracket casting below shows both size and location dimensions.

20 S'FACE
$\phi 12$ DRILL
-

Note that machined surfaces are specified using this British Standard machining symbol:
\forall

Surface textures resulting from manufacturing processes consist of many complex peaks and valleys varying in height and spacing. The Roughness value of a surface is a measure of this surface quality. The table below gives some nominal values of roughness resulting from various common manufacturing processes.

If a particular surface finish is required you give clear instructions on the drawing using the British Standard machining symbol.

In order to ensure that assemblies function properly their component parts must fit together in a predictable way. As mentioned in section 2.5 , no component can be manufactured to an exact size, so the designer has to decide on appropriate upper and lower limits for each dimension.
[1] Accurately toleranced dimensioned features usually take much more time to manufacture correctly and therefore can increase production costs significantly. Good engineering practise finds the optimum balance between required accuracy for the function of the component and minimum cost of manufacture.

2.6.1 Dimension tolerances.

If a dimension is specified, in millimeters, as 10 ± 0.02, the part will be acceptable if the dimension is manufactured to an actual size between 9.98 and 10.02 mm . Below are some examples of ways of defining such limits for a linear dimension.

(1) To give you a feel for the magnitude of decimal values in mm, consider these facts:

The thickness of the paper this page is printed on is approximately
0.100 mm .

Average human hair thickness is approximately $\mathbf{0 . 0 7 0} \mathbf{~ m m}$.
The human eye cannot resolve a gap between two points smaller than about 0.020 mm , at a 20 cm distance.

If you raise the temperature of a 100 mm long block of steel by $10^{\circ} \mathrm{C}$ it will increase in length by approximately 0.020 mm .

General tolerance notes apply tolerances to all unspecified dimensions on a drawing. They can save time and help to make a drawing less cluttered. Examples are shown below in Figure xx.

TOLERANCE EXCEPT WHERE
OTHERWISE STATED ± 0.5

TOLERANCES EXCEPT WHERE OTHERWISE STATED		
SIL		TOLERANCE
-	UP TO X	± 0.1
OVER X	UP TO XX	± 0.25
OVER XX	UP TO $X \times X$	± 1
OVER XXX	-	± 2
	ON ANGLES	$\pm 0.5^{\circ}$

```
TOLERANCE ON CAST THICKNESSES
    \pm 1%
```

FOR TOLERANCES ON FORGING DIMENSIONS SEE BS 4114

Figure $x x$. Some examples of general tolerance notes.

2.6.3 Limits and fits for shafts and holes.

2.6.3.1 Basic size and shaft/hole tolerancing systems.

The basic size or nominal size is the size of shaft or hole that the designer specifies before applying the limits to it. There are two systems used for specifying shaft/hole tolerances:

Basic hole system: Starts with the basic hole size and adiusts shaft size to fit.
hole-basis

Basic shaft system: Starts with the basic shaft size and adjusts hole size to fit.
SHAFT-BASIS

Because holes are usually made with standard tools such as drills and reamers, etc, the basic hole system tends to be preferred and will therefore be used here

The fit represents the tightness or looseness resulting from the application of tolerances to mating parts, e.g. shafts and holes. Fits are generally classified as one of the following:

Clearance fit: Assemble/disassemble by hand. Creates running \& sliding assemblies, ranging from loose low cost, to free-running high temperature change applications and accurate minimal play locations.

Transition fit: Assembly usually requires press tooling or mechanical assistance of some kind.
Creates close accuracy with little or no interference.
Interference fit: Parts need to be forced or shrunk fitted together.
Creates permanent assemblies that retain and locate themselves.
2.6.3.3 ISO limits and fits.

Fits have been standradised and can be taken directly from those tabulated in the BS 4500 standard, 'ISO limits and fits.'

The BS 4500 standard refers to tolerance symbols made up with a letter followed by a number. The BS Data Sheet BS 4500A, as shown on the following two pages, shows a range of fits derived, using the hole basis, from the following tolerances:

Holes:	H 11	H 9	H 8	H 7					
Shafts:	c 11	d 10	e9	f 7	g6	k6	n6	p6	s6

Remember:

- Capital letters always refer to holes, lower case always refer to shafts.
- The greater the number the greater or wider the tolerances.

The selection of a pair of these tolerances will give you the fit. The number of possible combinations is huge. BS 4500 helps to standardise this and offers a range of fits suitable for most engineering applications.

Examine an extract from the BS 4500 data sheet on page $4 \& 5$ and you will observe the general class of fit specified on the top row. A more detailed description of the fit is given on the bottom row.

See the table in section 2.6.4 for guidance on the selection of types of fit.

Selected ISO Fits - Hole Basis. Extract from BS 4500, data Sheet 4500A.

Selected ISO Fits - Hole Basis. Extract from BS 4500, data Sheet 4500A.

Transition fits				Interference fits				Holes	
$\stackrel{H 7}{H / Z 2 d}$	$\stackrel{\text { k6 }}{\text { Kimy }}$	$\xrightarrow{\text { H7 }}$	n6	$\stackrel{\text { H7 }}{1 / 2}$		$\stackrel{H 7}{N / 2]}$	56		
								ST Shatts	
Tolerance		Tolerance		Tolerance		Tolerance		Nominal stizes	
H7	k6	H7	n6	H7	p6	H7	\$6	Orer	To
0.001 mm	0.001 mm	0001 mm	0001 mm	0001 mm	0.001 mm	0001 mm	0.001 mm	mm	mm
$\begin{array}{r} 10 \\ +\quad 0 \\ \hline \end{array}$	+6 +0	$\begin{aligned} & +10 \\ & +0 \end{aligned}$	$\begin{aligned} & +10 \\ & +4 \end{aligned}$	$+\begin{gathered} 10 \\ 0 \end{gathered}$	$\begin{aligned} & +12 \\ & +6 \end{aligned}$	$\begin{gathered} +10 \\ +0 \end{gathered}$	$\begin{aligned} & +20 \\ & +14 \end{aligned}$	-	3
+ ${ }_{0}$	+9 +1	$+\frac{12}{12}$	+16 +8	+12	+12 +12 +12	$\begin{gathered} +12 \\ \hline \end{gathered}$	+27 +19	3	6
+ ${ }_{0}$	+10 +1 +1	+15	+19 +10 +10	+19	+24 +15 +15	+15	+32 +23	6	10
+ ${ }_{0}^{18}$	+12 +1	+ ${ }_{0}^{18}$	+23 +12	+18	+29 +18	+18	+39 +28 +28	10	18
+ 21	+15 +2	+ ${ }_{0}^{21}$	+28 +15	+ 21	$\begin{array}{r} +35 \\ +22 \\ \hline \end{array}$	+21	+48 +35	18	30
+ 25	$\begin{aligned} & +18 \\ & +2 \end{aligned}$	$+\underset{0}{25}$	$\begin{aligned} & +33 \\ & +17 \end{aligned}$	$+\underset{0}{25}$	$\begin{aligned} & +42 \\ & +26 \end{aligned}$	$+\underset{0}{25}$	$\begin{aligned} & +59 \\ & +43 \end{aligned}$	30	40
								40	50
$+{ }_{0}^{30}$	$\begin{aligned} & +21 \\ & +2 \end{aligned}$	$+{ }_{0}^{30}$	$\begin{aligned} & +19 \\ & +20 \end{aligned}$	$+{ }_{0}^{10}$	$\begin{aligned} & +51 \\ & +32 \end{aligned}$	${ }_{+}^{+30}$	+72 +53 +59	50	65
						+ ${ }_{0}^{10}$	+78 $+\quad 78$ +59	65	80
$+15$	$\begin{aligned} & +25 \\ & +3 \end{aligned}$	$+\begin{gathered} 15 \\ 0 \end{gathered}$	$\begin{aligned} & +45 \\ & +23 \end{aligned}$	$+35$	$\begin{aligned} & +59 \\ & +37 \end{aligned}$	+ ${ }_{0}{ }^{15}$	+93 +71	80	100
						+ ${ }_{0}$	+101 +79	100	120
+ ${ }^{40}$	$\begin{aligned} & +28 \\ & +3 \end{aligned}$	$+{ }_{0}^{+0}$	$\begin{aligned} & +52 \\ & +27 \end{aligned}$	$+\frac{+0}{0}$	$\begin{aligned} & +68 \\ & +43 \end{aligned}$	+40	+117 +42	120	140
						+ ${ }_{0}^{40}$	+125 +100	140	160
						+ ${ }_{0}^{40}$	+133 +108	160	180
+ ${ }_{0}^{46}$	$\begin{aligned} & +33 \\ & +4 \end{aligned}$	$+\underset{0}{+i 6}$	$\begin{aligned} & +60 \\ & +31 \end{aligned}$	$+{ }_{0}^{16}$	$\begin{aligned} & +79 \\ & +50 \end{aligned}$	+ ${ }^{46}$	+ 151 +122	180	200
						+ ${ }^{46}$	+159 +130	200	225
						+ ${ }_{0}^{46}$	+169 +140	225	250
$+52$	$\begin{aligned} & +36 \\ & +4 \end{aligned}$	+59	+66+4	$+52$	$\begin{aligned} & +8 x \\ & +56 \end{aligned}$	+ 52 0 0	+190 +158	250	280
						+ 5	+202 +170	280	315
$+57$	$\begin{aligned} & +40 \\ & +4 \end{aligned}$	$+57$	+73+17	$+\underset{0}{57}$	$\begin{aligned} & +4 x \\ & +62 \end{aligned}$	+ ${ }^{7}$	+326 +190	315	355
						+ ${ }_{0}^{57}$	+24 +208 +208	355	400
$+\underset{0}{67}$	$\begin{aligned} & +45 \\ & +5 \end{aligned}$	$+\begin{gathered} 61 \\ 0 \end{gathered}$	$\begin{aligned} & +80 \\ & +40 \end{aligned}$	$\begin{gathered} +h_{0}^{1} \end{gathered}$	$\begin{aligned} & +108 \\ & +68 \end{aligned}$	+6.1 0	$\begin{aligned} & +272 \\ & +232 \end{aligned}$	400	450
						+61 0	$\begin{aligned} & +392 \\ & +252 \\ & \hline \end{aligned}$	450	500
Push fit		Drive fit		Press fit		Force fit			

2.6.3.4 ISO limits and fits, determining working limits.

Consider an example of a shaft and a housing used in a linkage:
Type of fit:
Basic or Nominal size:
'Normal' clearance fit.
$\varnothing 40 \mathrm{~mm}$

We will determine the actual working limits, the range of allowable sizes, for the shaft and the hole in the housing.

Look along the bottom of the ISO Fits Data Sheet 4500A and locate 'Normal Fit'. We will use this pair of columns to extract our tolerances.

The tolerances indicated are: $1^{\text {st }}$ column $\mathbf{H 8}$ for the hole (upper case \mathbf{H}) $2^{\text {nd }}$ column $\mathbf{f 7}$ for the shaft (lower case f)

The actual tolerances depend upon the basic, or nominal, diameter as well as the class of fit. So, locate 40 mm in the left hand Nominal Sizes column. Either the 30-40 or 4050 range is acceptable in this case. Read across and note the tolerance values for the hole and the shaft, as shown below.

For the hole diameter we have a tolerance of: +0.039mm -0.000mm
For the shaft diameter we have a tolerance of: $-0.025 \mathrm{~mm} \quad-0.050 \mathrm{~mm}$
These tolerance values are simply added to the nominal size to obtain the actual allowable sizes.

Note that this is a clearance fit. As long as the hole and shaft are manufactured within the specified tolerances the hole will always be either slightly oversize or spot on the nominal size and the shaft will always be slightly undersize. This ensures that there will always be a free clearance fit.

These tolerances may be expressed on a drawing in several ways:

1) Simply as the nominal size with the tolerance class.

This is not always preferred as the machine operator has to calculate the working limits.

2) The nominal size with the tolerance class as above with the calculated working limits included.

3) The calculated working limits only.

ISO Symbol		Description	
Hole Basis	Shaft Basis		
H11/cll	Cl1/hll	Loose running fit for wide commercial tolerances or allowances on external members	碄
H9/d9	D9/h9	Free running fit not for use where accuracy is essential, but good for large temperature variations, high running speeds, or heavy journal pressures	0 0 0 0
H8/f7	F8/h7	Close running fit for running on accurate machines and for accurate location at moderate speeds and journal pressures	
H7/g6	G7/h6	Sliding fit not intended to run freely but to move and turn freely and locate accurately	
H7/h6	H7/h6	Locational clearance fit provides snug fit for locating stationary parts but can be freely assembled and disassembled	
H7/k6	K7/h6	Locational transisition fit for accurate location; a compromise between clearance and interference	
H7/n6	N7/h6	Locational transition fit for more accurate location where greater interference is permissible	\#
H7/p6*	P7/h6	Locational interference fit for parts requiring rigidity and alignment with prime accuracy of location but without special bore pressure requirements	告
H7/s6	S7/h6	Medium drive fit for ordinary steel parts or shrink fits on light sections; the tightest fit usable with cast iron.	\sum
H7/u6	U7/h6	Force fit suitable for parts that can be highly stressed or for shrink fits where the heavy pressing forces required are impractical	

Assembly drawings can be used to:

- Name, identify, describe and quantify all of the components making up the assembly.
- Clearly show how all of the components fit together.
- Indicate all of the required fasteners.
- Record any special assembly instructions.
- Record any other relevant information.

Here is an example:

Note the use of sections, item numbers neatly layed out and the parts list.

