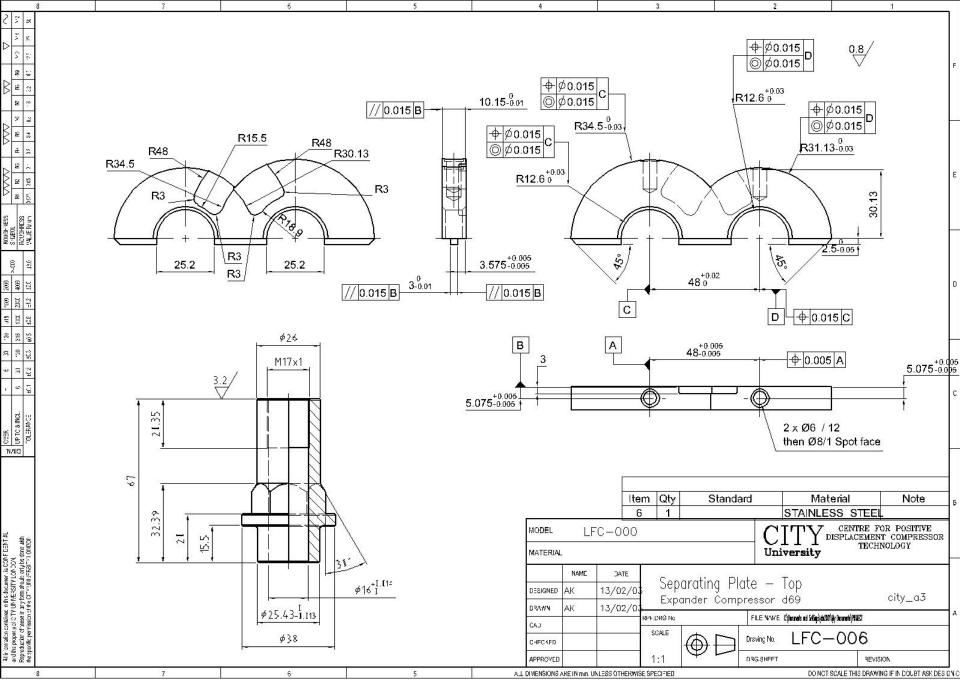


ME 1110 – Engineering Practice 1

Engineering Drawing and Design - Lecture 7

Fits and Tolerances

Prof Ahmed Kovacevic


School of Engineering and Mathematical Sciences Room C130, Phone: 8780, E-Mail: **a.kovacevic@city.ac.uk** <u>www.staff.city.ac.uk/~ra600/intro.htm</u>

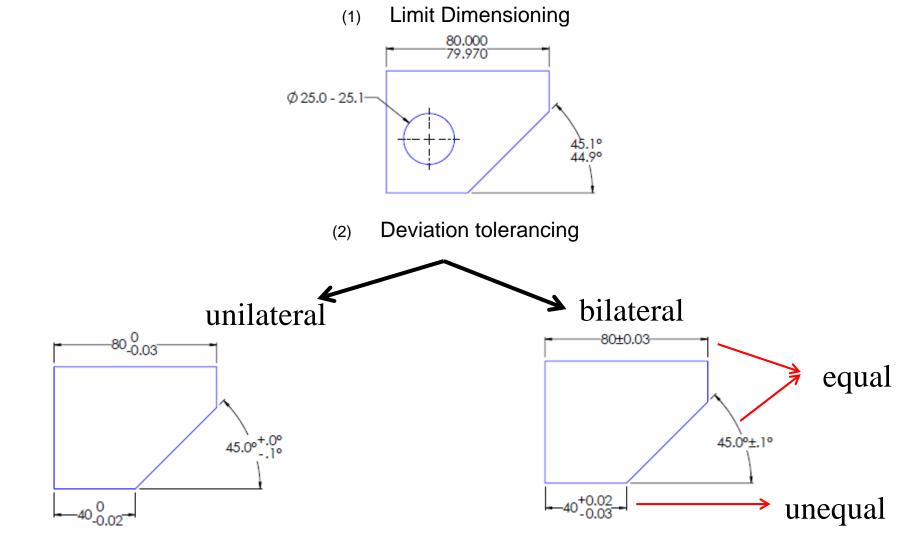
Objectives for today

- To learn about fits and tolerances
- To learn how to define tolerance in order for parts to function correctly

Ahmed Kovacevic, City University London

Tolerancing

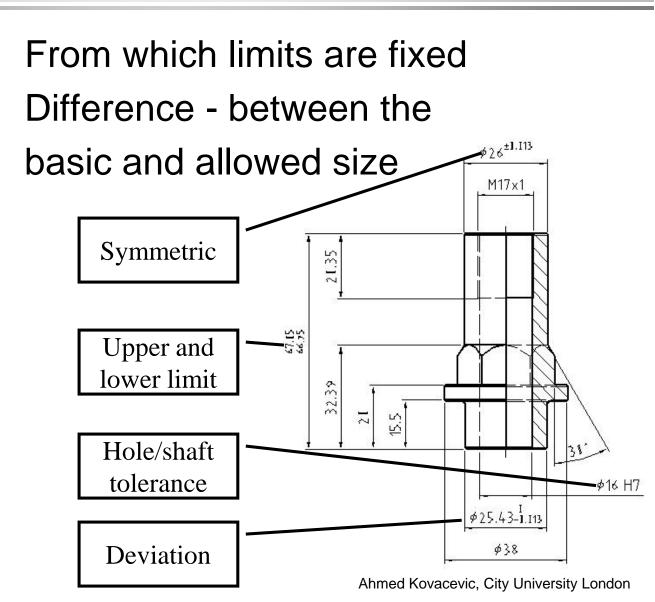
- Definition:
 - » Allowance for specific variation in the size and geometry of a part
- Why is tolerancing necessary?
 - » It is impossible to manufacture a part to an exact size or geometry
 - » Since variation from the drawing is inevitable the acceptable degree of variation must be specified
 - » Large variation may affect the functionality of the part
 - » Small variation will effect the cost of the part
 - requires precise manufacturing
 - requires inspection and the rejection of parts



Tolerance can be expressed in different ways:

- 1. Direct tolerancing method (size)
 - Limits specifying the allowed variation in each dimension (length, width, height, diameter, etc.) are given on the drawing
- 2. General tolerance note
 - » Notes like "ALL DIMENSIONS HELD TO ± 0.05 "
- 3. Geometric tolerancing
 - » Allows for specification of tolerance for the geometry of a part separate from its size
 - » GDT (Geometric Dimensioning and Tolerancing) uses special symbols to control different geometric features of a part

Direct Tolerancing method

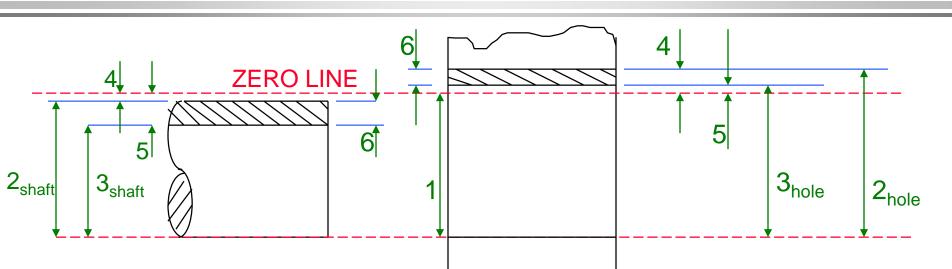

Ahmed Kovacevic, City University London

CITY UNIVERSITY **Tolerancing - Terminology**

1 Basic Size:-**Deviation:**-

LONDON

- 2 Max Limit
- 3 Min Limit


BS4500: ISO Units

- A system of 18 grades and tolerances related to part size ranges (i.e. basic size range)
- These standard tolerances are related to the zero line by a letter code i.e. deviation

	Nominal Sizes (mm)											
over	1	3	6	10	18	30	50	80	120	180	250	
inc.	3	6	10	18	30	50	80	120	180	250	315	
Grade												
1	0.8	1	1	1.2	1.5	1.5	2	2.5	3.5	4.5	6	
2	1.2	1.5	1.5	2	2.5	2.5	3	4	5	7	8	
3	2	2.5	2.5	3	4	4	5	6	8	10	12	
4	3	4	4	5	6	7	8	10	12	14	16	
5	4	5	6	8	9	11	13	15	18	20	23	
6	6	8	9	11	13	16	19	22	25	29	32	
7	10	12	15	18	21	25	30	35	40	46	52	
8	14	18	22	27	33	39	46	54	63	72	81	
9	25	30	36	43	52	62	74	87	100	115	130	
10	40	48	58	70	84	100	120	140	160	185	210	
11	60	75	90	110	130	160	190	220	250	290	320	
12	100	120	150	180	210	250	300	350	400	460	520	
13	140	180	220	270	330	390	460	540	630	720	810	
14	250	300	360	430	520	620	740	870	1000	1150	1300	

Tolerance and Fits - terminology

- Basic Size From which limits are fixed
 Deviation Difference The basic and the another size
 - Of size permissible
 - Of size permissible

1-2

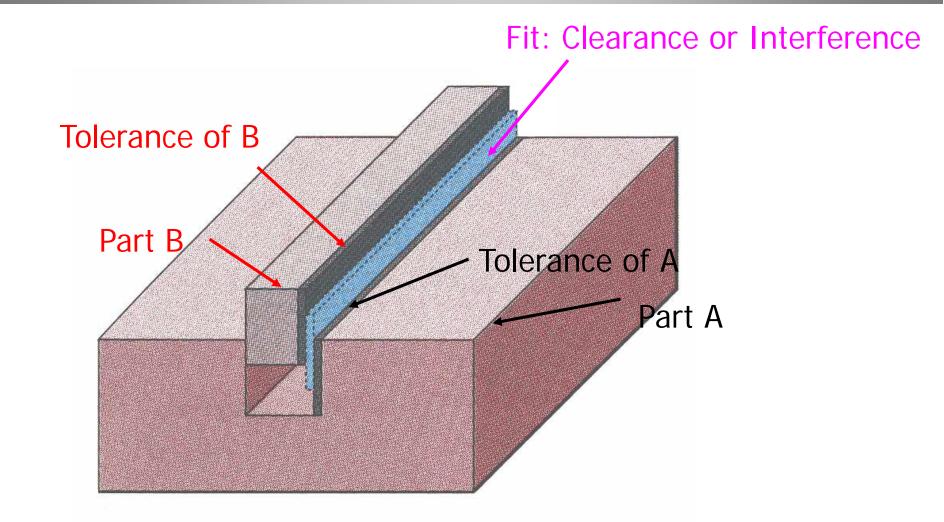
4 Upper deviation -

Max Limit -

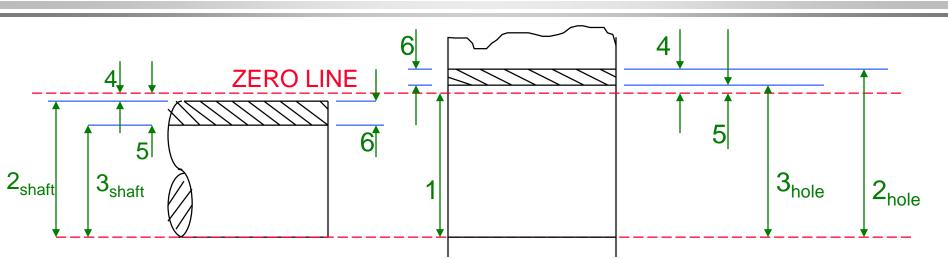
Min Limit

2

3

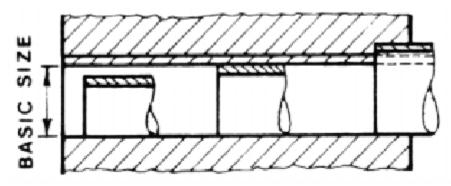

- 5 Lower deviation 1-3
- 6 Tolerance 2-3 or 4-5

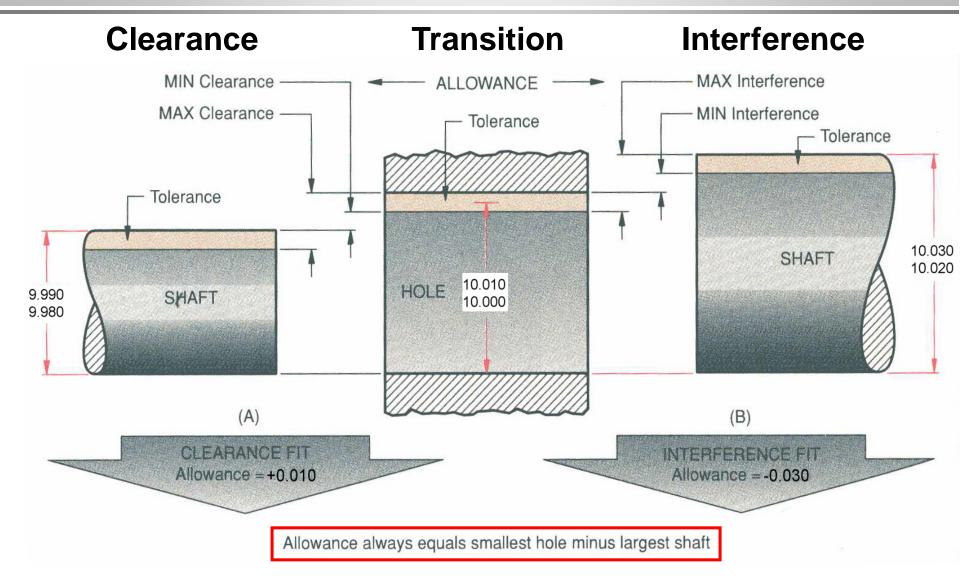
To differentiate between holes and shafts, upper and lower case letters are used H – Holes; h - Shafts



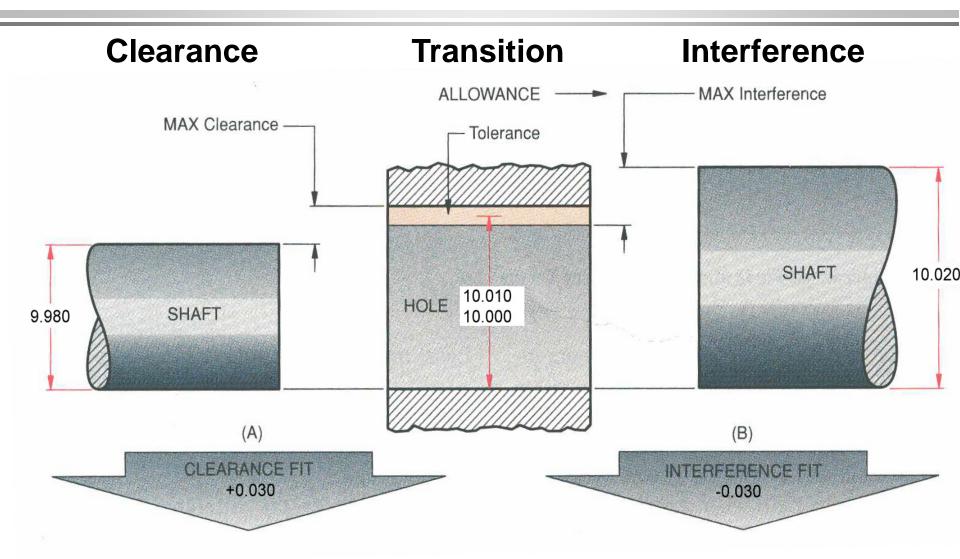
Fitting Two Parts

CITY UNIVERSITY LONDON I Olerance Terminology – continue

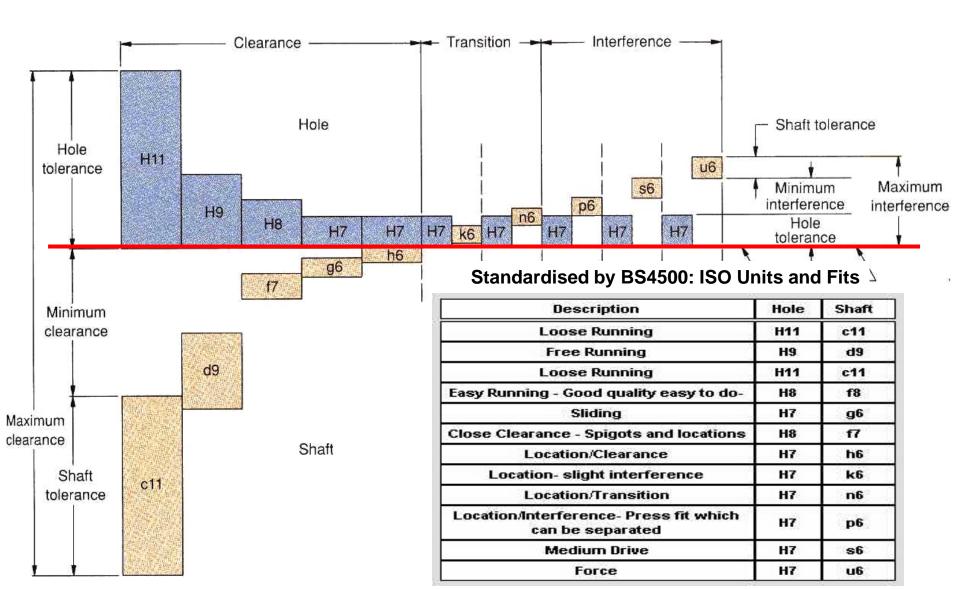

- 1 Nominal Size a general size, common fraction
 - Basic Size theoretical size from which limits are fixed
 - Actual Size measured size
- 2,3 Limits maximum and minimum permissible sizes
- 4,5 Deviation max. and min. difference from a nominal size (1-2 or 1-3)
- 6 Tolerance total allowable variance in dimensions (*upper limit – lower limit* or 2-3 or 4-5)


Fits

- Range of tightness between two mating parts
- Types of fit
 - » Clearance fits
 - provides clearance between two mating parts.
 - » Interference fit
 - results in interference between mating parts
 - » Transition fits
 - results in neither of the above



Shaft and Hole Fits



Shaft and Hole Fits

Preferred Hole Basis System of Fits

- Definition of the "Basic Hole System":
 - » The "minimum size" of the hole is equal to the "basic size" of the fit

• Example:

If the nominal size of a fit is 10 mm, then the minimum size of the hole in the system will be 10mm

BASIC		UPPER-DE	IATION LET	TER		LOWER-DEVIATION LETTER					
SIZES	с	d	f	g	h	k	n	р	s	u	
0-3	-0.060	-0.020	-0.006	-0.002	0	0	+0.004	+0.006	+0.014	+0.018	
3-6	-0.070	-0.030	-0.010	-0.004	0	+0.001	+0.008	+0.012	+0.019	+0.023	
6-10	-0.080	-0.040	-0.013	-0.005	0	+0.001	+0.010	+0.015	+0.023	+0.028	
10-14	-0.095	-0.050	-0.016	-0.006	0	+0.001	+0.012	+0.018	+0.028	+0.033	
14 - 18	-0.095	-0.050	-0.016	-0.006	0	+0.001	+0.012	+0.018	+0.028	+0.033	
18 - 24	-0.110	-0.065	-0.020	-0.007	0	+0.002	+0.015	+0.022	+0.035	+0.041	
24 - 30	-0.110	-0.065	-0.020	-0.007	0	+0.002	+0.015	+0.022	+0.035	+0.048	
30-40	-0.120	-0.080	-0.025	-0.009	0	+0.002	+0.017	+0.026	+0.043	+0.060	
40-50	-0.130	-0.080	-0.025	-0.009	0	+0.002	+0.017	+0.026	+0.043	+0.070	
50-65	-0.140	-0.100	-0.030	-0.010	0	+0.002	+0.020	+0.032	+0.053	+0.087	
65-80	-0.150	-0.100	-0.030	-0.010	0	+0.002	+0.020	+0.032	+0.059	+0.102	
80-100	-0.170	-0.120	-0.036	-0.012	0	+0.003	+0.023	+0.037	+0.071	+0.124	
100 - 120	-0.180	-0.120	-0.036	-0.012	0	+0.003	+0.023	+0.037	+0.079	+0.144	
120-140	-0.200	-0.145	-0.043	-0.014	0	+0.003	+0.027	+0.043	+0.092	+0.170	
140-160	-0.210	-0.145	-0.043	-0.014	0	+0.003	+0.027	+0.043	+0.100	+0.190	
160 - 180	-0.230	-0.145	-0.043	-0.014	0	+0.003	+0.027	+0.043	+0.108	+0.210	
180 - 200	-0.240	-0.170	-0.050	-0.015	0	+0.004	+0.031	+0.050	+0.122	+0.236	
200-225	-0.260	-0.170	-0.050	-0.015	0	+0.004	+0.031	+0.050	+0.130	+0.258	
225-250	-0.280	-0.170	-0.050	-0.015	0	+0.004	+0.031	+0.050	+0.140	+0.284	
250-280	-0.300	-0.190	-0.056	-0.017	0	+0.004	+0.034	+0.056	+0.158	+0.315	
280-315	-0.330	-0.190	-0.056	-0.017	0	+0.004	+0.034	+0.056	+0.170	+0.350	
315-355	-0.360	-0.210	-0.062	-0.018	0	+0.004	+0.037	+0.062	+0.190	+0.390	
355-400	-0.400	-0.210	-0.062	-0.018	0	+0.004	+0.037	+0.062	+0.208	+0.435	

Ahmed Kovacevic, City University London

Fit Calculations

- Clearance = Hole Shaft
- $C_{max} = H_{max} S_{min}$
- $C_{min} = H_{min} S_{max}$
- If:
 - » Both C_{max} and $C_{min} > 0$ -Clearance fit» Both C_{max} and $C_{min} < 0$ -Interference fit» $C_{max} > 0$ and $C_{min} < 0$ -Transition fit
- Allowance = $H_{min} S_{max} = C_{min}$
- System tolerance: $T_S = C_{max} C_{min} = \Sigma Ti$

Design web

	The design of the assemb the bush that it rotates in. and locate accurately.									
Example	Using the BS4500A Data Sheet complete the table given below determining the max. and min. working limits for the diameter of the hole (bush) and shaft running in the bush using:									
ISO Tolerance Grades	 Class of fit: H7 - g6 Basic size of 40mm Basic size of 90mm Basic size of your own choice 									
Fundamental Deviations	Fit ZERO LINE SU Clearance	юle H 7 haftg 6				H7-g6				
Homework										
Max Clearance C _{max} =0.050	Hole		Shaft	AC	9740 D					
Min Clearance C _{min} =0.009	Basic Upper Lower size tol. tol.	Max. Min. size size	Basic Upper size tol.	Lower tol.	Max. size	Min. size				
Allowance = C _{min}	10 +0.015 0 40 +0.025 0	10.015 10.000	10 -0.005	-0.014	9.995	9.986				
System ₁₉ Tol: T_s =0.041	90		90	-0.023	39.991	30.075				

Exercise DrE-5

- Groups of 5. Each group has one assembly with several parts.
- Measure parts in the assembly together.
- Each member of the group will have to do his/her own part.
- Make sketch drawing with all required dimensions, tolerances and surface finish notes.
- This sketch has to be approved and as such used as the basis for CAD-1 exercise.
- 2 week exercise

