

ME 1110 – Engineering Practice 1

Engineering Drawing and Design - Lecture 12

Engineering Design Process – Part 2 Concepts, Decisions and Final design

Prof Ahmed Kovacevic

School of Engineering and Mathematical Sciences Room CG25, Phone: 8780, E-Mail: **a.kovacevic@city.ac.uk** <u>www.staff.city.ac.uk/~ra600/intro.htm</u>

- Learn remaining 5 phases of the Engineering Design Process
- Coursework DE2 –
 Satellite hinge

Ahmed Kovacevic, City University London

Engineering Design Process

How to obtain an optimal solution

6. Alternative Solutions

- Derive alternative solutions for a problem
- In order to solve the problem group has to propose a list of possible solutions. More innovative solution – better product.
- The nature of Invention

```
"Me an inventor ??!" \Rightarrow "Why not?"
```

Are you afraid of that??

• Building the List of possible solutions:

a) Chekoff list or b)Brainstorming

- » <u>Checkoff list</u> designed to direct thinking
 - It suggests possible ways how to change and use existing solution
 - Make a **list of the features** for the first solution: *shape, size, material, manufacturing method, colour, arrangement, …*
 - Try to conceive how the current solution changes if you change features according to the words in your list. Ask yourself:
 Why is the solution like it is?
 Will change be better or worse?
 What was the reason for the original solution to be made that way? ...
 - Use check list words: "MODIFY" and "REARANGE" to guide or focus your efforts

6. Alternative Solutions - Brainstorming

Brainstorming – short and effective group session for obtaining solutions

- Widely accepted method
- The Leader states the problem and ideas for solutions are invited
- The session lasts for approximately one half of an hour
- Important rules in brainstorming process
 - Groups of **4-8 members** are the most successful,
 - Free expression is essential. Evaluation of ideas must be avoided.
 Nothing should be said to discourage a group member from speaking,
 - The leader is key figure. The leader sets the tone, tempo, encourages members to speak, and give a stimulus when things begin to drag
 - The members of the group are equal. No one should try to impress, support or discourage other member of the group.
 - Recording is necessary. Everything that is said must be recorded, either mechanically or manually.
- <u>Often</u>, group needs few minutes to rid out of the natural reserved attitude.
- Mostly, brainstorming is fun
- Always, brainstorming gives surprisingly high number of ideas.

6. Alternative solutions - Example

Design web

Brainstorming Exercise

• As a team use brainstorming session to generate as many ideas for each of four functions in a mousetrap design:

 Spend 3 minutes for each sub-function to generate and sketch as many ideas as possible. List these next to subfunctions. Example:

Morph Chart for Mousetrap Design

SUBFUNCTION	SOLUTION IDEA					
Attract mouse	Cheese tunnel	squeaks	robot			
Stop mouse	sprina/kill	block evit	anesthesia			
Store mouse	box 🖅	cage	ziplock			
Export mouse	release outdoors	recycle 💦	catapult			

Design web

Example: Mousetrap alternative solutions

10 **Propose 3 alternative solutions**

Ahmed Kovacevic, City University London

- The purpose of design process is to find the optimal solution.
- The analysis is a pivotal point in the design process
- The purpose of analysis is to determine performance capability of each alternative solution.
- By this means, solutions which are not proved during this phase may be discarded or modified possible repetition of some previous steps.
- Analysis involves the use of **mathematics and engineering principles** to determine the performance of a solution.
- Engineer must select appropriate method of analysis.
- Mostly, analysis performed by engineers is based on **laws of nature, laws of economics and common sense**.

7. Analysis – cont. (1)

- The Laws of Nature
 - » Many laws you already know many more jet to learn
 - » Conservation principles mass, energy, momentum ...
 - » Laws: Hooke's : load deformation
 Newton's: forces resulting reactions and motions
 Laws of thermodynamics: work energy
 - » Analysis should validate an idea against the laws of nature.
 - » The most common means of validation is by mathematical modelling of the system.
 - » Results can be presented in graphs or tables.
 - » Sometimes, scale models are necessary to evaluate proposed design.

7. Analysis – cont. (2)

- The Laws of Economics
 - » Economics and money are part of engineering design and decision making.
 - » Many ingenious project or desired parts did not reach market because these are deemed to be economically infeasible.
 - » Question: How does somebody know if a product (component) is going to be economically successful and confirmed? There is a mathematical apparatus called **Statistics!**
 - » This gives an idea of the potential market, cost of manufacturing, potential price of the product, potential profit or loss; all is based on sampling of a small representative group.

7. Analysis – cont. (3)

• Common Sense

» Engineer must believe in engineering calculations and statistics, but must always check the validity of all these calculations

		Prove: 2=0
Prove: 2=1	JS	
$a = b ^{*a}$	car	$\mathbf{x} = 1 ^2$
$a^2 - a^{-1} + (a^2 - 2ab)$		$ x^2 = 1 ^{-1}$
$a^2 - a 0$		$x^2 - 1 = 0$
$a^{2} + (a^{2} - 2ab) = ab + (a^{2} - 2ab)$		(x + 1)(x - 1) = 0
$2(a^2 - ab) = a^2 - ab$		x + 1 = 0
2 = 1		1 + 1 = 0

7. Analysis – $d = \frac{PL^3}{3 EI}$ (constraint equation)

where

d = deflection, m

E = modulus of elasticity, a material constant, Pa

Solution The deflection of the end of a cantilever beam for the configura-

 $= 2.07(10^{11})$ Pa for structural steel

 $I = moment of inertia, m^4$

For a rectangular cross section

 $I = \frac{bh^3}{12}$ $= \frac{(0.2)(0.4)^3}{12}$ $= 1.067(10^{-3}) \text{ m}^4$

Therefore

$$d = \frac{(10^5) (4)^3}{3(2.07)(10^{11})(1.067)(10^{-3})}$$

= 9.66 (10⁻³) m

= 9.7 mm

1							
_	P, N	L, m	h,m	b,m	E, Pa	l, m^4	d,m
	1.00E+05	4	0.1	0.2	2.07E+11	1.67E-05	0.618357
	1.00E+05	4	0.2	0.2	2.07E+11	0.000133	0.077295
	1.00E+05	4	0.3	0.2	2.07E+11	0.00045	0.022902
	1.00E+05	4	0.4	0.2	2.07E+11	0.001067	0.009662
	1.00E+05	4	0.5	0.2	2.07E+11	0.002083	0.004947
	1.00E+05	4	0.6	0.2	2.07E+11	0.0036	0.002863
	CAN	TILEVER BEAI	M DEFLECTIO	N FOR RECT	ANGULAR SEC	TION	

Example

8. Decision

• **The "toughest" part** of the design process is to decide which solution is "the best". Why is it so?

The answer is **"Trade off!"** – The best solution is newer "the best" against each single criteria. Compromise!

- Organisation for Decision
 - » As much information about each solution as possible
 - » Available information should fairly and accurately represent the alternatives.
- Criteria in Decision
 - » The objective of design: to find the best solution within the available time.
 - » Thorough search, alternative solutions and analysis give a chance for fair decision. Decision making art and <u>science</u>

8. Decision matrix

Design web

		Alternative Solutions						
Criteria	Weight, W%	1	2	3	4	5	6	7
Ease of assembly	35	4 140	5 175	6 210	8 280	8 280		
Functionality	25	5 125	8 200	8 200	8 200	8 200		
Cost	25	6	6	5 125	7 175	7 175		
Stability	15	7 105	3 45	9 135	9 135	10 150		
Total	100	520	570	670	790	805		
F Excelle Good Fair Poor Unsati	Rating scale R ent	9–10 7–8 5–6 3–4 0–2	Rating 6	g 80 			25%	Esse of assembly • Functionality • Stability 35%

9. Specification

- Graphical and technical specification:
 - » Detailed drawings that describe the size and shape of each part.
 - » Layouts which define clearances and operational characteristics
 - » Assembly drawings to clarify relationship of parts.
 - » Written notes, standards, specification concerning quality and tolerances.
 - » A complete bill of materials

Bill of Material

Detailed drawing of end diagonal brace.

Item	Amount Required	<u>Cost*, \$</u>	
2'' imes 4'' imes 16'	3	18.00	
$2'' \times 4'' \times 8'$	1	2.89	
$4'' \times 4'' \times 8'$	4	32.00	
3" deck screws	1 lb.	<u>2.50</u> 55.39	

Ahmed Kovacevic, City University London

10. Communication

- Selling the Design
 - » It takes place all the way through the design process.
 - » Engineer must convince customers, management, sales etc. on the advantages of the product.
 - » There are many ways of communication. The most used are:
 - The Written Report
 - » Appropriate cover page
 - » Abstract
 - » Table of contents
 - » Body
 - » Conclusion and recommendation
 - » Appendices
 - The Oral Presentation
 - » To be prepared: be familiar with subject and to have presentation prepared and checked carefully with only important data
 - » To be convincing, speak clearly and loudly enough, look to the audience

Instead of Conclusion

Engineering design Design process Bloom's Taxonomy on learning Customer satisfaction Constraint Criteria **Reverse engineering** Alternative solutions Check off lists

Brainstorming Solution space Analysis **Synthesis** Payoff function **Decision matrix** Specification Communication

DE2 – Satellite hinge

Conduct the engineering design process to select an optimal hinge for a small satellite panel deployment

- 1) <u>Define the problem</u> in one sentence
- 2) <u>Define objectives for design</u> half page
- 3) Define design *constraints*.
- <u>Make graphs</u> angle-time, velocity-time, acceleration-time, torque-time for both hinges (A) & (B) (Fig.2)
- 5) <u>Specify 4 design criteria</u> which will later be used to make decision.
- 6) Propose three alternative solutions for hinge
- 7) Make an *analysis* of all three solutions: weight, size, approximate cost of material.
- 8) Make the *decision matrix* and select the best satellite hinge.

