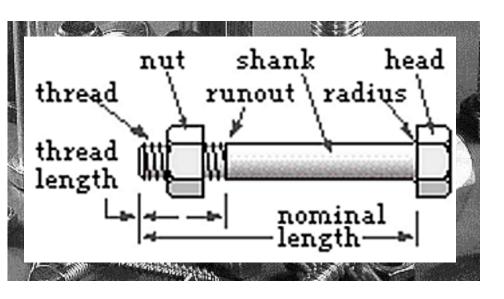


ME 1110 – Engineering Practice 1

Engineering Drawing and Design - Lecture 16

Mechanical Elements Screws, Fasteners, non-permanent Joints

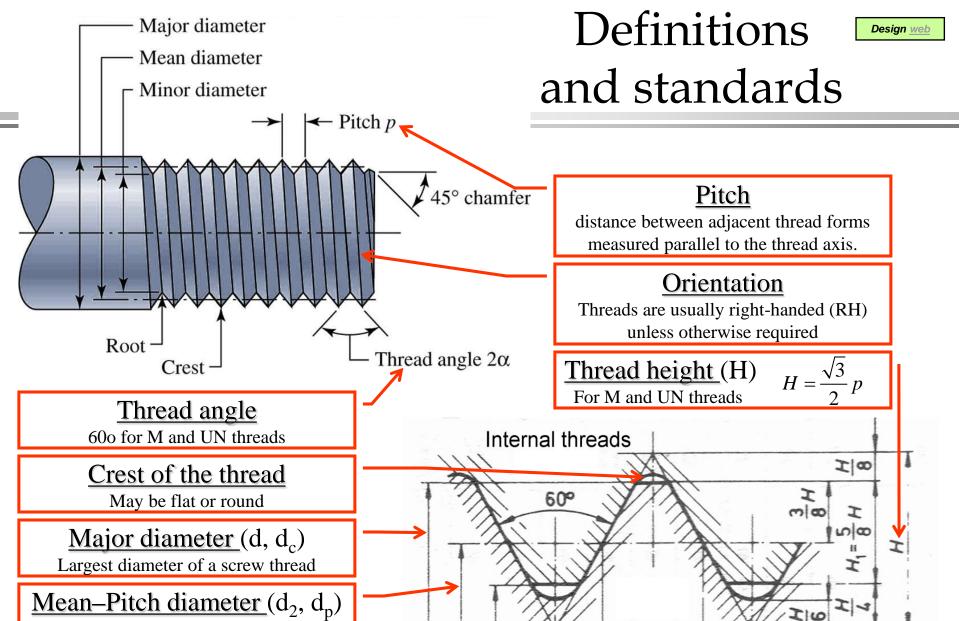

Prof Ahmed Kovacevic

School of Engineering and Mathematical Sciences
Room CG25, Phone: 8780, E-Mail: a.kovacevic@city.ac.uk
www.staff.city.ac.uk/~ra600/intro.htm

Introduction

The *helical-thread screw* was very important invention for application in:

- power transmission,
- angular to linear motion change,
- generation of large forces,
- non-permanent joints.


Fastening: the major target is to reduce number of joins. One of the most interesting subjects in engineering:

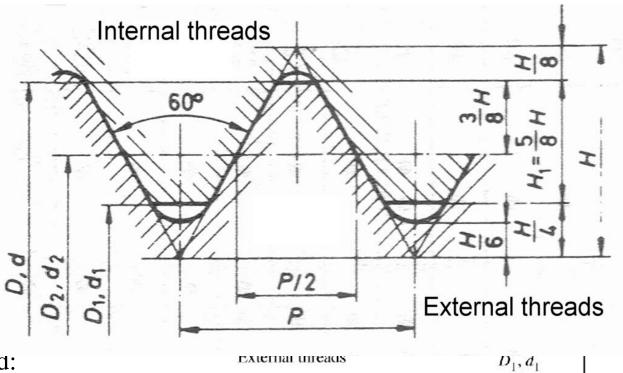
Example:

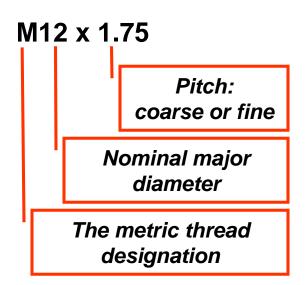
- Boeing 747 requires as many as 2.5 million fasteners. Some are very expensive.

Designer's *aim is to select an adequate fastener* (bolt, nut, cap, screw ...) for an application in question: - the shape and the arrangement

- the size and other functional parameters
- to check if selected fastener can sustain required load

External threads


Mean diameter; teeth section is p/2 long

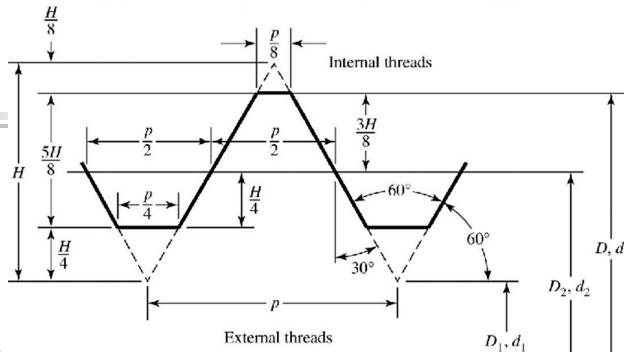

 $\frac{\text{Minor diameter}}{\text{Smalest diameter of the thread}} (d_1, d_r)$

CIScrew Threads

Metric Threads:

- Thread angle = 60°
- Symmetric profiles
- Identified as M and MJ
- Coarse and fine pitch
- Specification of the thread:

CITY
UNIVERSITY OF LONDON


EST 1894

Nominal	C	oarse-Pitch	Series	Fine-Pitch Series				
Major Diameter <i>d</i>	Pitch	Tensile- Stress Area <i>A</i> ,	Minor- Diameter Area A,	Pitch	Tensile- Stress Area <i>A</i> ,	Minor- Diameter Area A _r		
1.6	0.35	1.27	1.07	7	/	•		
2	0.40	2.07	1.79	- 5 -	Metı	$^{\prime}1C$		
2.5	0.45	3.39	2.98	, 	VIC 61	- 45		
3	0.5	5.03	4.47	. 1		1		
3.5	0.6	6.78	6.00	T I	nrea	OS		
4	0.7	8.78	7.75					
5	0.8	14.2	12.7	(all di	mension	s in mm)		
6	1	20.1	17.9					
8	1.25	36.6	32.8	1	39.2	36.0		
10	1.5	58.0	52.3	1.25	61.2	56.3		
12	1.75	84.3	76.3	1.25	92.1	86.0		
14	2	115	104	1.5	125	116		
16	2	157	144	1.5	167	157		
20	2.5	245	225	1.5	272	259		
24	3	353	324	2	384	365		
30	3.5	561	519	2	621	596		
36	4	817	759	2	915	884		
42	4.5	1120	1050	2	1260	1230		
48	5	1470	1380	2	1670	1630		
56	5.5	2030	1910	2	2300	2250		
64	6	2680	2520	2	3030	2980		
72	6	3460	3280	2	3860	3800		
80	6	4340	4140	1.5	4850	4800		
90	6	5590	5360	2	6100	6020		
100	6	6990	6740	2	7560	7470		
110		Son alle on		2	9180	9080		

Screw Threads

Metric Threads:

- Thread angle = 60°
- Symmetric profiles
- Identified as M and MJ
- Coarse and fine pitch
- Specification of the thread:

M12 x 1.75

Pitch: coarse or fine

Nominal major diameter

The metric thread designation

Thread series: UNC, UNF, UNRC, UNRF

Threads per inch (coarse or fine)

Nominal major diameter

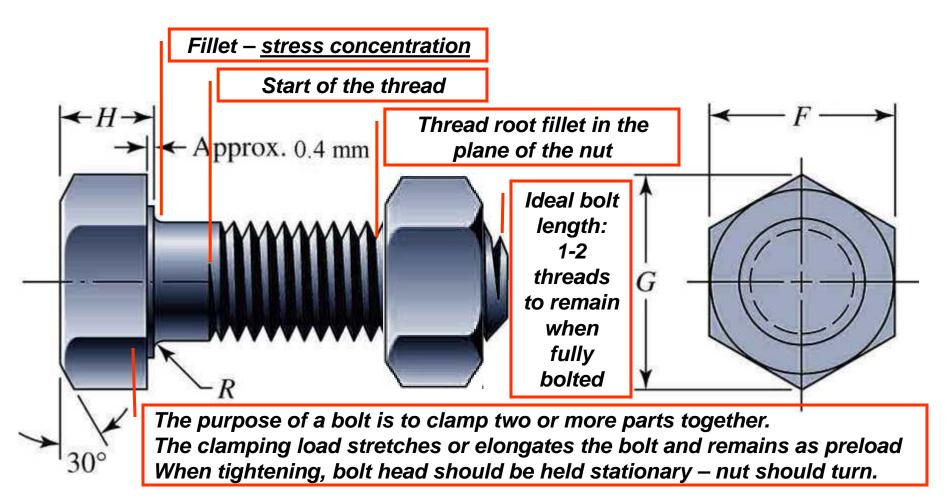
Unified threads:

(usually pipe threads)

Thread angle = 60°

- Symmetric profiles
- Serief UN and UNR
- Coarse (C) and fine (F) pitch
- Specification of the thread:

1/4 in-20 UNRC



Unified Screw Threads (dimensions in ")

A 18 (18 18)		Co	arse Series—	-UNC	Fine Series—UNF				
Size Designation	Nominal Major Diameter in	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A, in ²	Threads per Inch N	Tensile- Stress Area A, in ²	Minor- Diameter Area A, in ²		
0	0.0600		tower 1 to	ech anics s	80	0.001 80	0.001 51		
rotion islanding	0.0730	64	0.002 63	0.002 18	72	0.002 78	0.002 37		
pewer 2 hear of	0.0860	56	0.003 70	0.003 10	64	0.003 94	0.003 39		
3	0.0990	48	0.004 87	0.004 06	56	0.005 23	0.004 51		
4	0.1120	40	0.006 04	0.004 96	48	0.006 61	0.005 66		
5	0.1250	40	0.007 96	0.006 72	44	0.008 80	0.007 16		
6	0.1380	32	0.009 09	0.007 45	40	0.010 15	0.008 74		
8	0.1640	32	0.0140	0.011 96	36	0.01474	0.012 85		
10	0.1900	24	0.017 5	0.014 50	32	0.020 0	0.017 5		
12	0.2160	24	0.024 2	0.020 6	28	0.025 8	0.022 6		
$\frac{1}{4}$	0.2500	20	0.031 8	0.026 9	28	0.036 4	0.032 6		
1/4 5/16	0.3125	18	0.052 4	0.045 4	24	0.058 0	0.052 4		
	0.3750	16	0.077 5	0.067 8	24	0.087 8	0.080 9		
3 8 7 16	0.4375	14	0.1063	0.093 3	20	0.1187	0.1090		
	0.5000	13	0.141 9	0.1257	20	0.159 9	0.148 6		
$\frac{\frac{1}{2}}{\frac{9}{16}}$	0.5625	12	0.182	0.162	18	0.203	0.189		
	0.6250	11	0.226	0.202	18	0.256	0.240		
3/4	0.7500	10	0.334	0.302	16	0.373	0.351		
5 8 3 4 7 8	0.8750	9	0.462	0.419	14	0.509	0.480		
1	1.0000	8	0.606	0.551	12	0.663	0.625		
1 1/4	1.2500	7	0.969	0.890	12	1.073	1.024		
$1\frac{1}{2}$	1.5000	6	1.405	1.294	12	1.581	1.521		

Threaded Fasteners

Hexagon head bolt

8

Properties of a threaded fastener

The *shank* diameter of a 'waisted' bolt is less than the thread diameter; allows a thread run out which reduces stress concentration.

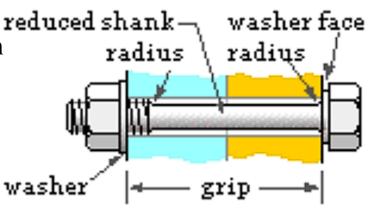
A *Washer* under the nut ensures uniformity of a contact.

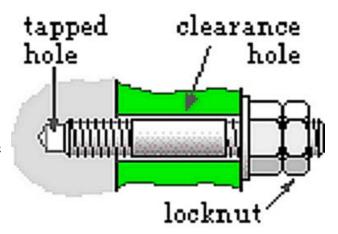
A bolt's '*grip*' is the combined thickness of the fastened parts

Bolt - has a nut which turns to tighten

Screw - turns itself in the threaded hole

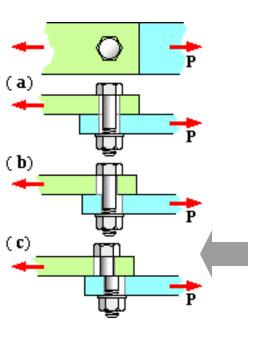
Stud - has no head and is threaded on both sides


Clearance hole - 15-20% larger than a bolt/stud size


Taped hole - drilled smaller than the *minor* dia.

extends deeper than the stud

Stud depth - 1.5 times the major diameter


Thread length - only a couple of threads longer than a bolt

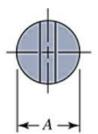
Load that a bolt can sustain

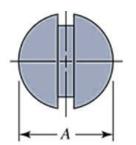
$$\sigma = \frac{F_b}{A_t}$$

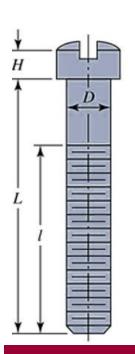
Shear stress:

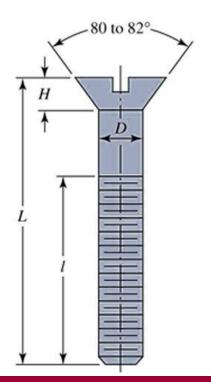
$$\tau = P/A_r$$

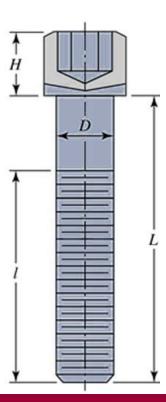
exposed threads	y pitch	section X-X through exposed threads
	nut X	minor Miameter Major stress area


	_	_					
	class no.	4.6	5.8	8.8	9.8	10.9	12.9
St	Tensile [Mpa]	400	500	800	900	1000	1200
Sy	Yield [Mpa]	240	400	640	720	900	1080
Sp	Proof [Mpa]	225	380	590	650	830	970
	Elongation %	22	20	12	10	9	8

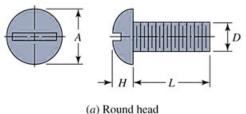

Strength table

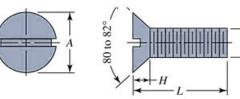


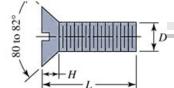

Typical cap-screw heads

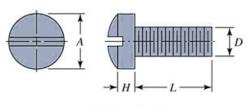


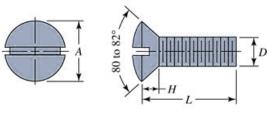
Fillister head

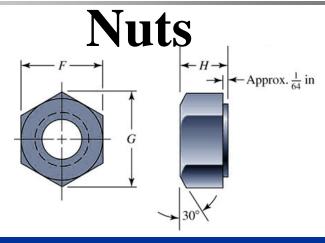

Flat head


Hexagonal socket head

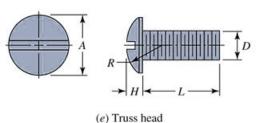


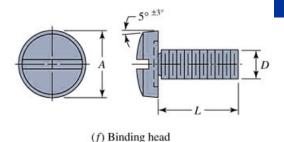

Other types of screw heads in use

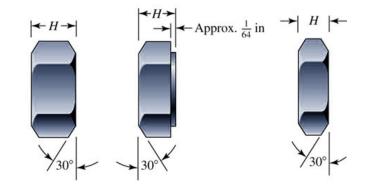




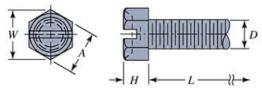
(b) Flat head

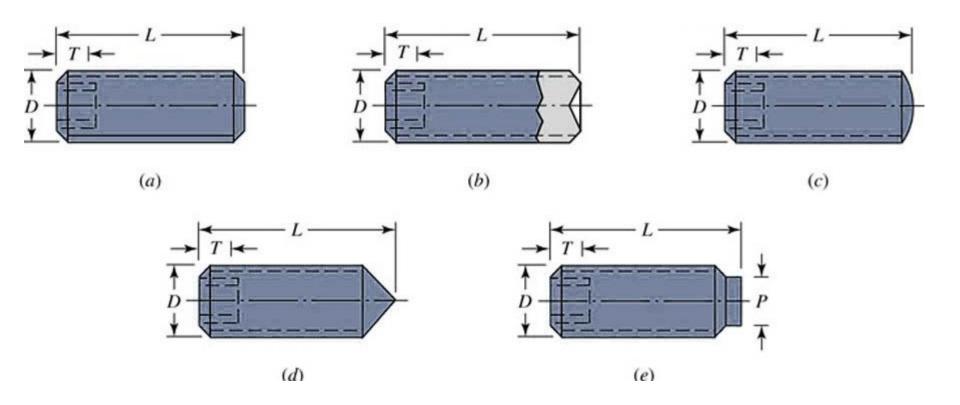





(c) Fillister head

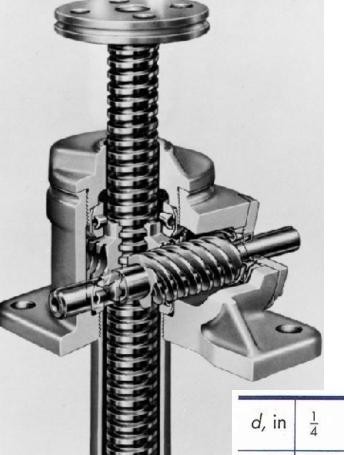
(d) Oval head

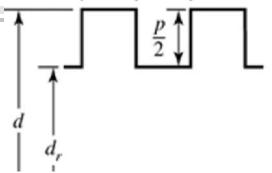

Hexagonal washer faced regular nut

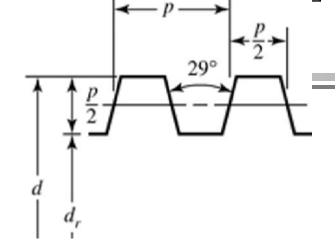


(g) Hex head (trimmed)

regular nut chamfered on both sides jam nut with washer face jam nut chamfered on both sides (h) Hex head (upset)


Setscrews

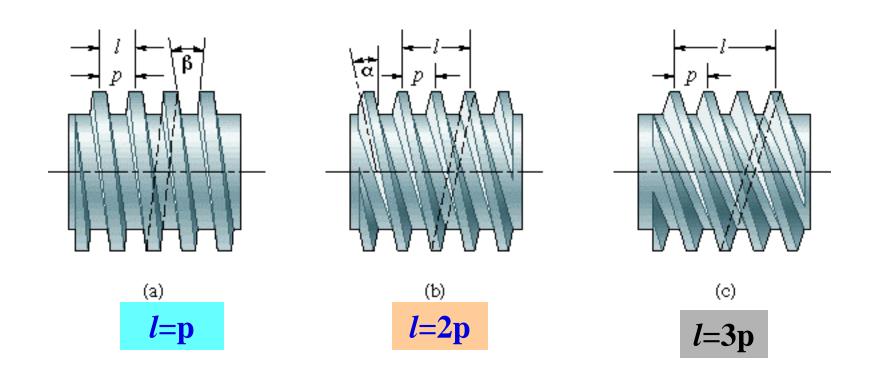



regular nut chamfered on both sides jam nut with washer face jam nut chamfered on both sides

Threads for power screws

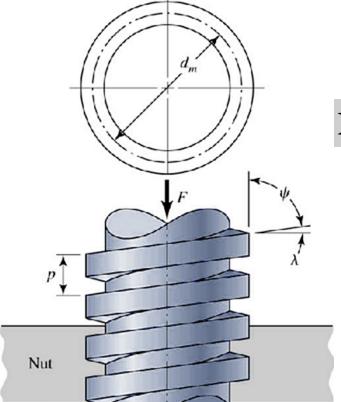
Design well

Square and Acme threads:


- Used for power transmission
- These have preferred sizes but also can vary
- Modifications to these threads are easy

Preferred Pitches for power threads:

d, in	1/4	<u>5</u>	3/8	1/2	<u>5</u> 8	3/4	<u>7</u>	1	$1\frac{1}{4}$	$1\frac{1}{2}$	1 3/4	2	$2\frac{1}{2}$	3
p, in	1/16	1/4	1/12	10	1/8	16	1/6	1/5	1/5	1/4	1/4	1/4	1/3	1/2



Multiple threaded screws

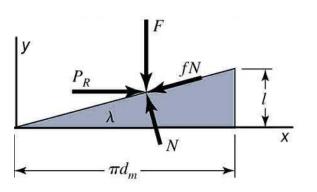
(a) Single, (b) double, (c) triple threaded screws.

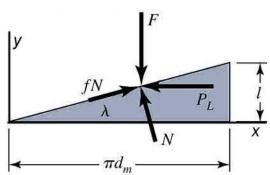
Power screws

Rising the load

$$\sum_{x} F_{x} = P_{R} - N \sin \lambda - f N \cos \lambda$$

$$\sum F_{y} = F + f N \sin \lambda - N \cos \lambda$$


$$P_{R} = \frac{F(f\cos\lambda + \sin\lambda)}{\cos\lambda - f\sin\lambda} \qquad T_{R} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} + 1}{\pi d_{m} - f l}\right)$$

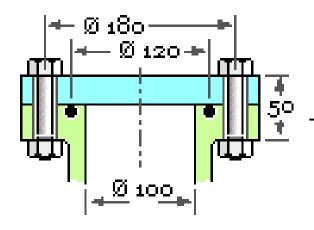

$$T_{R} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} + 1}{\pi d_{m} - f l} \right)$$

Lowering the load

$$\sum F_{x} = -P_{L} - N \sin \lambda + f N \cos \lambda$$

$$\sum F_{y} = F - f N \sin \lambda - N \cos \lambda$$

$$P_{L} = \frac{F(f\cos\lambda - \sin\lambda)}{\cos\lambda + f\sin\lambda}$$


$$T_{L} = \frac{Fd_{m}}{2} \left(\frac{\pi f d_{m} - 1}{\pi d_{m} + f l} \right)$$

Ahmed Kovacevic, City University London

Example

The cover of a pressurised cylinder is attached by a self-energising seal and 6 identical bolts M10x1.5 of class 8.8. The fluid pressure is essentially constant at 6 MPa. A safety factor of three is required. Check if the given bolt can sustain the pressure!

6 class 8.8 M10x1.5

$$d_s=120 \text{ mm} N_d=3$$

$$N_d = 3$$

$$S_t/\sigma=?$$

SOLUTION:

Force on the cover caused by the pressure:

$$F_c = p \cdot A_s = p \frac{\pi d_s^2}{4}$$

$$F_c = p \cdot A_s = p \frac{\pi d_s^2}{4} \qquad F_c = 6 \cdot 10^6 \frac{\pi \cdot 0.12^2}{4} = 67858N = 67.9kN$$

$$F_b = \frac{F_c}{6} = 67.9 \frac{6}{6} \qquad F_b = 11.3kN$$

Force on the individual bolt

$$F_b = \frac{F_c}{6} = 67.9$$

Proof strength $S_p = 590 MPa$

From tables:

Tensile stress area $A_{c} = 58mm^{2}$

$$\sigma = \frac{F_b}{A} = \frac{11300}{58} \qquad \sigma = 194MPa$$

Stress on each bolt:

$$\frac{S_p}{\sigma} = \frac{590}{194} = 3.04 \approx N_d$$