

ME 1110 – Engineering Practice 1

Engineering Drawing and Design - Lecture 18

Mechanical Elements – Gears

Prof Ahmed Kovacevic

School of Engineering and Mathematical Sciences Room CG25, Phone: 8780, E-Mail: **a.kovacevic@city.ac.uk** <u>www.staff.city.ac.uk/~ra600/intro.htm</u>

Introduction

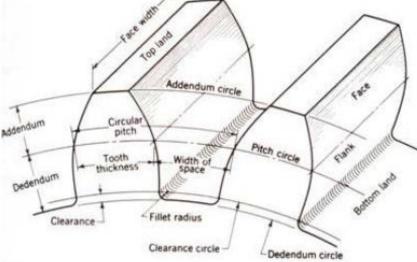
- $\begin{bmatrix} \mathbf{T}_{2} & \mathbf{0}_{2} \\ -\mathbf{0}_{2} \\ -\mathbf{0$
- Gears and most of other transmission elements are used to transmit power or to transform rotational movement to translation.
- Gears are most often used in speed reducers:
 - » Speed is easy to generate, because voltage is easy to generate
 - » *Torque* is difficult to generate because it requires large amounts of current
- Other driving elements have similar means of action

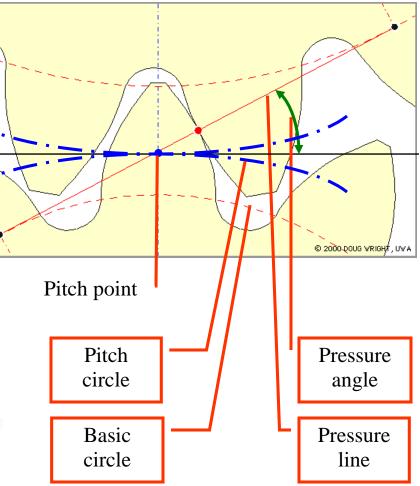
Dimensions	
Height to top	135 m
Rim diameter	121 m
Hub diameter	4·6 m
Numbers of capsules	32
Numbers of passengers	800
Weights	
Weight of capsules	10 t each
Weight of rim	800 t
Weight of hub/	
bearings/spindle	350 t (spindle 200
Weight of A-frame	450 t

LONDON EYE Tip speed 0.26 m/s Rotational speed 0.033 rpm {30 min/rev} Drive power 200 kW !? Motor speed = 3000 rpm Motor power = 200 kW Motor Torque = 640 Nm Wheel speed = 0.033 rpm Driving power = 200 kW Wheel Torque = 600,000,000 Nm

Gear types

Gear	Input/Output		Motion Axis	Loads
Spur	Rotary	Rotary	Parallel	Tangent
Bevel	Rotary	Rotary	Angled	Tangent
Helical	Rotary	Rotary	Parallel or Crossed	Tangent and Axial
Rack	Rotary	Linear	90°	Tangent
Worm	Rotary	Rotary or Linear	90°	Tangent Not back drivable

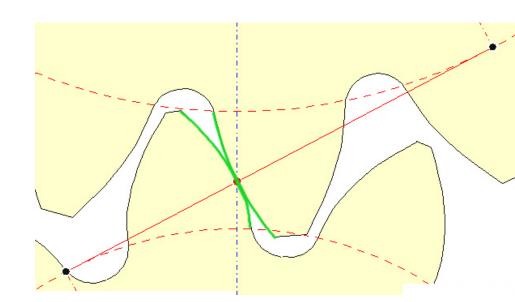


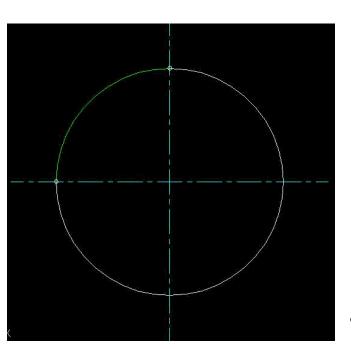

How gears work?

•Law of Gearing:

»A common normal to the tooth profiles at their point of contact must, in all positions of the contacting teeth, pass through a fixed point on the line-of-centres called the **pitch point**.

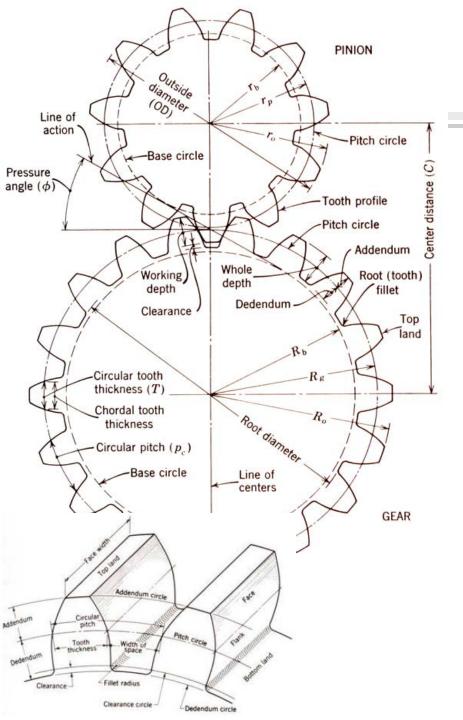
»Any two curves or profiles engaging each other and satisfying the law of gearing are *conjugate curves*

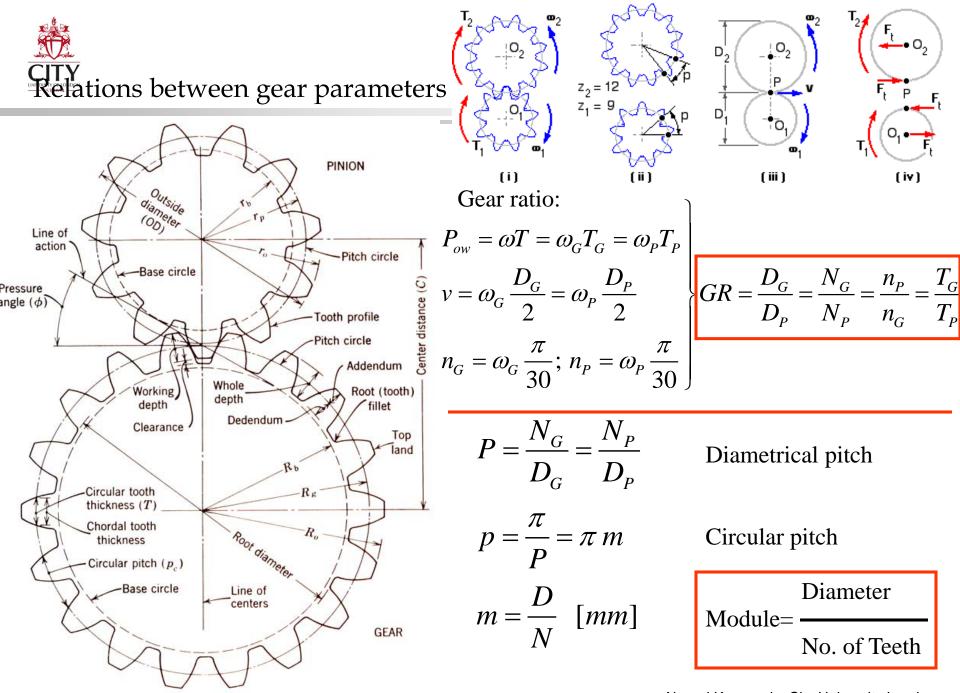




How is a gear tooth formed?

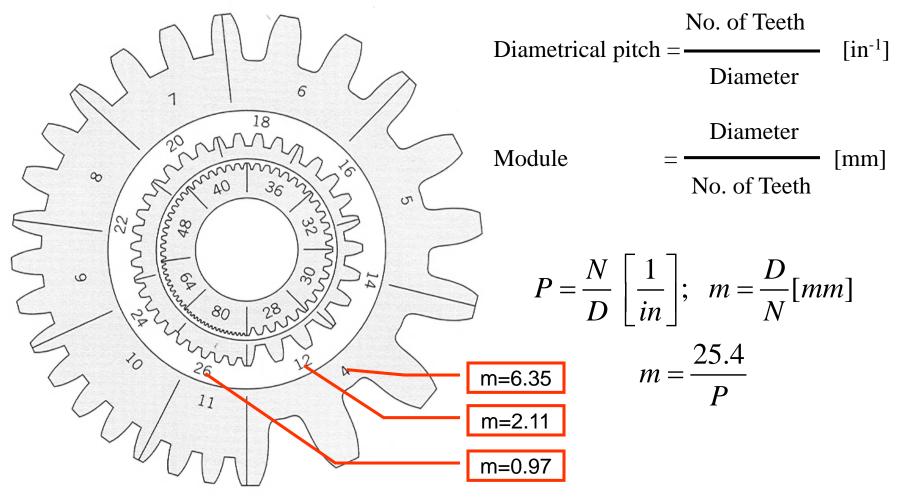
• Involute gears:


The fundamental premise of gearing is to maintain a constant relative rotation rate of gears. This can be achieved with a tooth shape called **INVOLUTE.**


Imagine that the pressure line is cut in two. Trace of the half line end, when the line wraps around the base circle, is the *involute* of the *base circle*.

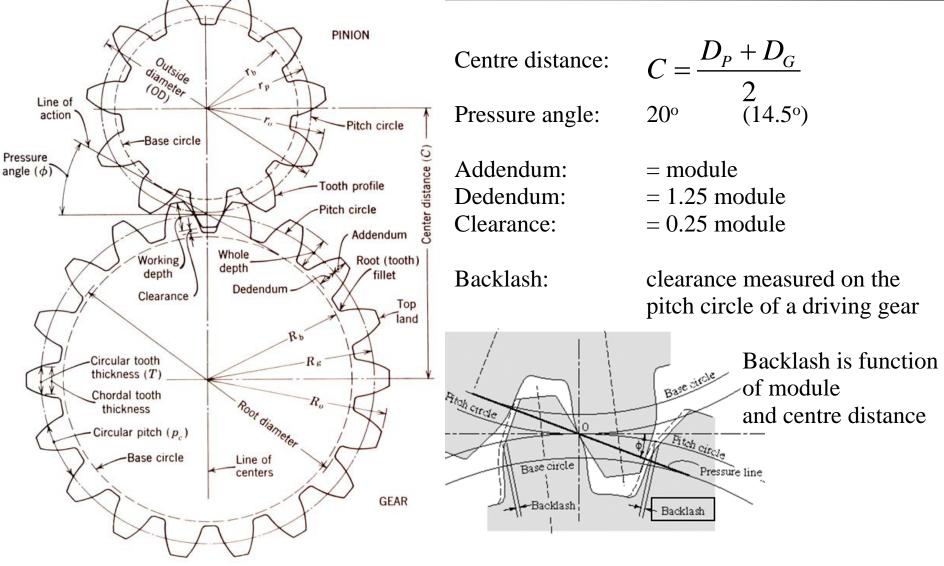
© 2001 DOUG WRIGHT, UWA

Gear Parameters


a	Addendum	a (mm) = 25.4/P
a _s	Gear addendum	
a _p	Pinion addendum	
b	Dedendum	b (mm) = 30.48/P+0.05
с	Clearance	c (mm) =5.08/P+.050 (min)
c C	Center distance	$C = 0.5(D_p+D_G)$
D	Pitch diameter	$D = N/P = Np/\pi$
D _G	Gear pitch diameter	
D_0	Outside diameter	$D_0 = (N+2)/P = D+2a$
Dp	Pinion pitch diameter	
DB	Base circle diameter	D _B = Dcosø
D _R	Root diameter	$D_R = D-2b$
ф	Pressure angle	
F	Face width (thickness)	
h _k	Working depth of tooth	$h_k = a_g + a_p$
h,	Whole depth (radial length) of tooth	h, = a+b
e=1/m _G	Gear ratio	sign⊓Ninput/∏Noutput
m	Module (mm only)	m = D/N
N	Number of teeth	N = PD
N _g	Number of teeth on gear	
Np	Number of teeth on pinion	
р	Circular pitch	$p = \pi D/N = \pi/P$
P	Diametrical pitch (pitch, inches only)	P = N/D
t	Tooth thickness	t = 0.5π/P

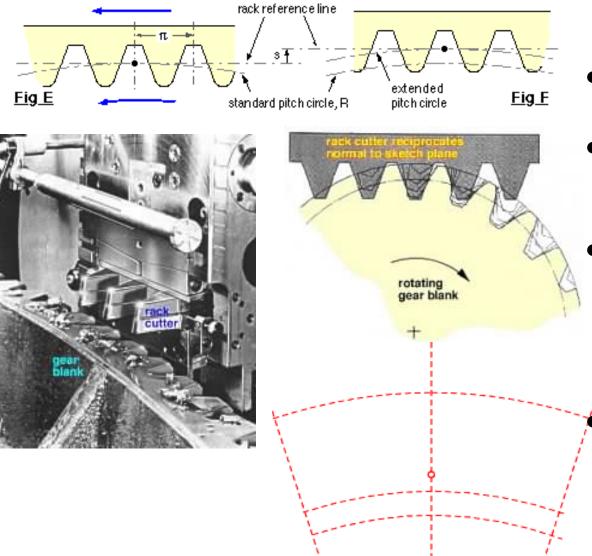
Module and Pitch

Standard modules are 0.5, 0.8, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6

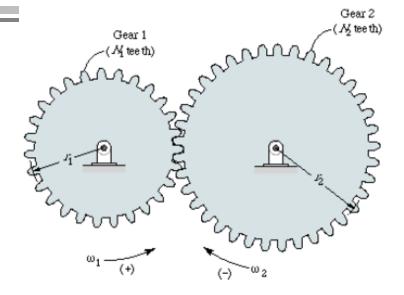


Quiz: gear parameters

Pitch diameter	No of teeth	Diametral pitch [in ⁻¹]	Module [mm]
6" (152.4 mm)	72	12	~ 2
90 mm (3.54")	30	~ 8	3
36	12	~ 8	3
125 (4.92")	100	~ 20	1.25

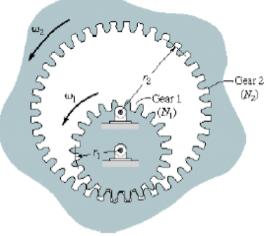


Relations between gear parameters



Gear forming – rack generation

- *Rack* is the gear with infinite radius.
 - A rack meshes with a gear in the same way as any other gears mesh.
 - A Gear can be formed by a rack cutter commencing two movements:
 - » Reciprocating
 - » Translating
 - All gears with the same module are produced by the same rack cutter

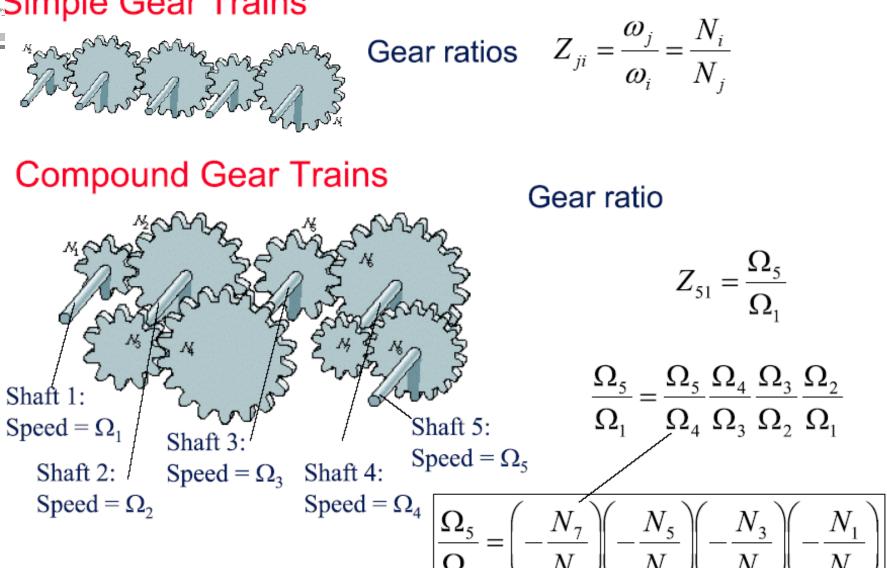

Gear ratio

$$Z_{21} = \frac{\omega_2}{\omega_1} = -\frac{N_2}{N_1}$$

Center distance

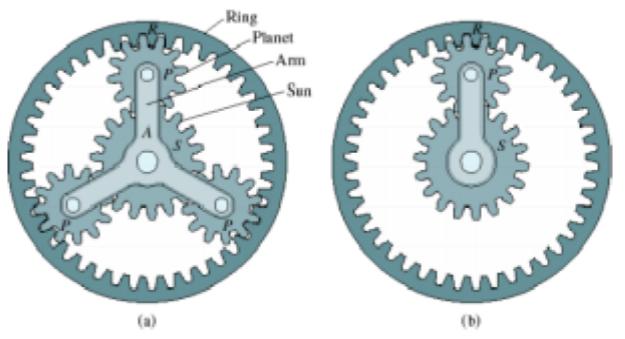
$$c_d = r_1 + r_2$$

Internal Meshing


Gear ratio

$$Z_{21} = \frac{\omega_2}{\omega_1} = \frac{N_2}{N_1}$$

Center distance

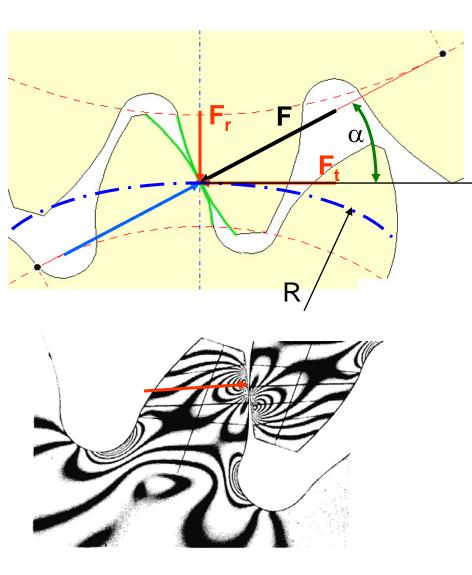

$$c_d = r_1 - r_2$$

Planetary Gear Train

To relate the rpm of the ring to the rpm's of the arm and sun:

To relate the rpm of the planets to the rpm's of the arm and sun:

Relationship between the numbers of teeth on the ring, planets and sun:


 $\frac{\omega_{\text{ring}} - \omega_{\text{arm}}}{\omega_{\text{sun}} - \omega_{\text{arm}}} = -\frac{N_{\text{sun}}}{N_{\text{ring}}}$ $\frac{\omega_{\text{planet}} - \omega_{\text{arm}}}{\omega_{\text{sun}} - \omega_{\text{arm}}} = -\frac{N_{\text{sun}}}{N_{\text{planet}}}$

 $N_{ring} = N_{sun} + 2N_{planet}$

Gear Force Calculation

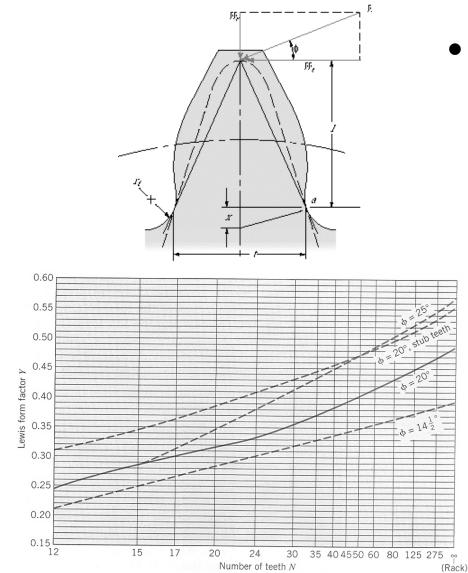
- Stress based on the *Force* acting
- The force is caused by the transmitted torque. That force always acts along the pressure line.

$$T = \frac{P}{\omega} = F_t R \rightarrow$$

$$F = \frac{F_t}{\cos \alpha}$$

$$F_{t} = \frac{30P}{\pi n R} [N]$$
$$F = \frac{30P}{\pi n R \cos \alpha}$$

• The force induces stress concentration on gear.


We need to answer:

How much power a pair of gears in question can transfer?

Basic gear stress calculation

- Basic analysis of gear-tooth is based on Lewis Equation which has following assumptions:
 - » The full load is applied on the tip of a single tooth (the worse case)
 - » Radial component is negligible
 - » The load is distributed uniformly along the teeth width
 - » Friction forces are negligible
 - » Stress concentration is negligible.

Basic stress in teeth

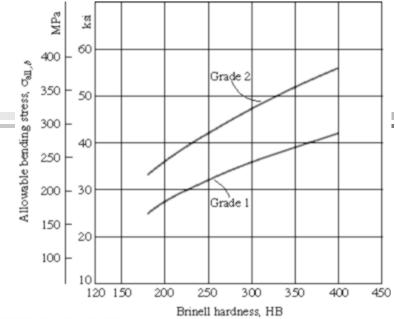
 $\sigma_{B} = \frac{F_{t}}{1}$

Power transmitted

$$P_B = \frac{S_y}{f_s} n D m b Y$$

Correction factors

	Driven Machines					
Power Source	Uniform	Light shoe	k Mod	lerate shock	Heavy shock	
		Appli	cation factor	: K.		
Uniform	1.00	1.25		1.50	1.75	
Light shock	1.20	1.40		1.75	2.25	•
Moderate shock	1.30	1.70		2.00	2.75	
Modelate shock	1.50	1.70		2.00	2.15	
Diametral	pitch p _d ,	Module,	т,	Size f	actor, K_s	_
in.		mm				
≥5		≤5			.00	
4		6			.05	
3		8			.15	
3	-	12			.25	
1.25	· · ·	20			.40	
		Face widt	h, <i>b</i> _s , mn	1		
0 € 1.8	100	200	300	40	50	0 1.5 かっ
	+ $+$ $+$ $+$					$1.0 - \frac{1.0}{d}$
5 1.6						
i fa	+ $+$ $+$ $+$					
Load distribution factor, K _m , 01 1. 10 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.						
indi:					\rightarrow	
1.2						
	1 + + +					
<u> </u>	2 4					~
0	2 4	6 8 1	0 12	14 16	5 18 20	J
1.00						
K,	Very accurate gearing					
j 0.80 🚺	11					
icfa	0.60 $= 5$ $Q_y = Transmission accuracy level number$					
Very accurate gearing 0.80 0.60 11 0.60 10						
S Bys traus						
0.40						
		Pitch-line veloc	ity, ν, ft∕mir	1		


- Basic stress must be corrected for:
 - Shocks,
 - Size effects,
 - Uneven load distribution,
 - Dynamic effects.

$$\sigma = \sigma_B \frac{K_a K_s K_m}{K_v}$$
$$P = P_B \frac{K_a K_s K_m}{K_v}$$

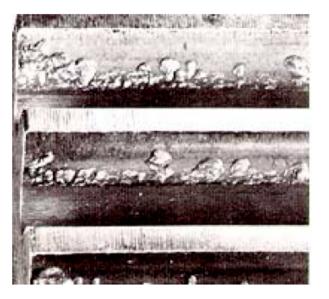
- K_a Application factor
- $K_{\rm s}$ Size factor
- K_m Load distribution factor
- K_v Dynamic factor

Gear materials

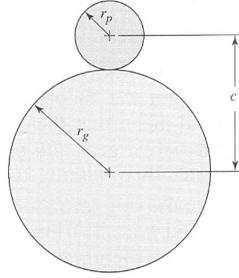
Average Mechanical Properties and Typical Uses of Ductile (Nodular) Iron

ardness, H_B	IC I		Daigaanla		e Modulus				
**B	(%)	longation (in 50 mm)	Poisson's Ratio	GPa	10 ⁶ psi	Typical Uses			
167	ang kal	15.0	0.29	169	24.5	Valves and	fittings for stea	im and chemi	icals
167		15.0	0.29	168	24.4	Machine co	mponents subje	ect to shock a	and fatigue
192		11.2	0.31	168	24.4	Crankshafts	, gears, rollers		
331		1.5	0.28	164	23.8		•		
	Tensi	ile Strength					Torsional	I Strength	
Ultima	ate		rield			Ult	imate	Y	ïeld
MPa	10 ⁶ psi	MPa	10 ⁶ psi	MPa	10 ⁶ psi	MPa	10 ⁶ psi	MPa	10 ⁶ psi
461	66.9	329	47.7	359	52.0	472	68.5	195	28.3
464	67.3	332	48.2	362	52.5	475	68.9	297	30.0
559	81.8	362	52.5	386	56.0	504	73.1	193	28.0
974	141.3	864	125.3	920	133.5	875	126.9	492	71.3
4	167 192 331 Ultima 461 464 559	167 192 331 Tensi Ultimate MPa 10 ⁶ psi 461 66.9 464 67.3 559 81.8	167 15.0 192 11.2 331 1.5 Tensile Strength V VItimate Y MPa 10 ⁶ psi MPa 461 66.9 329 464 67.3 332 559 81.8 362	167 15.0 0.29 192 11.2 0.31 331 1.5 0.28 Tensile Strength Vield 401 66.9 329 47.7 464 67.3 332 48.2 559 81.8 362 52.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16715.00.2916824.4Machine components subjective19211.20.3116824.4Crankshafts, gears, rollers3311.50.2816423.8Pinions, gears, rollers, slideTensile StrengthUltimateTorsionalVieldCompressive Strength: UltimateUltimateYieldCompressive Strength: UltimateTorsional46166.932947.735952.047268.546467.333248.236252.547568.955981.836252.538656.050473.1	167 15.0 0.29 168 24.4 Machine components subject to shock a 192 11.2 0.31 168 24.4 Crankshafts, gears, rollers 331 1.5 0.28 164 23.8 Pinions, gears, rollers, slides Tensile Strength Ultimate Yield Compressive Strength: Ultimate Torsional Strength 461 66.9 329 47.7 359 52.0 472 68.5 195 464 67.3 332 48.2 362 52.5 475 68.9 297 559 81.8 362 52.5 386 56.0 504 73.1 193

^aThe first two sections of grade number indicate minimum values (in ksi) of tensile ultimate and yield strengths.


Source: ASM Metals Reference Book, American Society for Metals, Metals Park, OH, 1981.

Gear wear


Pitting In Gear Teeth

- Pitting phenomenon in which small particles are removed from the surface of the tooth because of the high contact forces that are present between mating teeth.
- Pitting is actually the fatigue failure of the tooth surface.
- Hardness is the primary property of the gear tooth that provides resistance to pitting.

SOLUTION:

Centre distance:

The pitch diameter of the pinion is:

The pitch velocity is:

Transferred load (Tangential force):

Pinion A and gear B are shown in figure. Pinion A rotates at 1750 rpm, driven directly by an electric motor. The driven machine is an industrial saw consuming 20 kW. The following conditions are given:

N _P =20	m=3 mm	$Q_v = 6$
N _G =70	b=38 mm	f _s =1.5
n _p =1750 rpm	Pow=20 kW	

What is the centre distance? Compute the stress due to bending in the pinion and gear and find required Brinell hardness for this application.

$$c = \frac{(D_{p} + D_{G})}{2} = m \frac{(N_{p} + N_{G})}{2} = 3\frac{90}{2} = 135 [mm]$$

$$D_{p} = mN_{p} = 3 \cdot 20 = 60 [mm] = 0.06 [m]$$

$$v_{p} = \frac{\pi n_{p} D_{p}}{60} = \frac{\pi \cdot 1750 \cdot 0.06}{60} = 5.5 [m/s] = 1090 [ft / min]$$

$$F_{t} = \frac{60Pow}{\pi n_{p} D_{p}} = \frac{60 \cdot 20000}{\pi \cdot 1750 \cdot 0.060} = 3638 [N]$$

Example – cont.

From the diagram:
$$Y_p=0.34$$
 and $Y_g=0.42$ Basic bending stress is:pinion - $\sigma_{BP} = \frac{F_t}{mbY_p} = \frac{3638}{0.003 \cdot 0.038 \cdot 0.34} = 94 \cdot 10^6 [Pa]$ gear - $\sigma_{BG} = \frac{F_t}{mbY_G} = \frac{3638}{0.003 \cdot 0.038 \cdot 0.42} = 76 \cdot 10^6 [Pa]$ Correction factors are:
(from diagrams and tables)Application factor
Size factor
Dynamic factor
K_s=1.0
Load distribution
M_v=0.68Corrected pinion bending stress: $\sigma_P = \sigma_{BP} \frac{K_a K_s K_m}{K_v} = 2.64 \cdot 94 \cdot 10^6 = 248 [MPa]$ Allowable stress required for
this application: $S = f_s \sigma_P = 248 \cdot 1.5 = 372 [MPa]$

From the diagram, any material with Brinel hardness higher than HB=400 will satisfy application requirements.