## **City University London**

## **Term 2 Assessment, 2004/2005**

### **School of Engineering and Mathematical Sciences**

| ME1105 Engineering Drawing & Design |  |  |  |  |
|-------------------------------------|--|--|--|--|
| Student Name:, Group:               |  |  |  |  |
|                                     |  |  |  |  |

**Examination duration:** 1 hour

**Reading time:** 5 minutes **This paper has:** 5 pages

#### **Authorized materials:**

Electronic calculators and drawing instruments may be used.

**Instructions to invigilators:** Candidates are to complete the examination by writing and drawing **in this examination paper**, which must be collected at the end of the examination. The data required for solutions are attached to this paper. Therefore, no additional script books should be required.

#### **Instructions to students:**

Attempt **all** of the three questions. All questions are of equal value. Space is provided **in this paper** to complete all the questions. No additional script books should be required. The whole paper must be left for collection by the invigilators at the end of the examination.

#### DO NOT DETACH PAGES FROM THIS PAPER!

REMEMBER: WRITE YOUR NAME AND GROUP in the provided space!

Max. No of Marks: 30

## **Question 1**

Indicate whether the following statements are True or False by ticking the appropriate selection box.

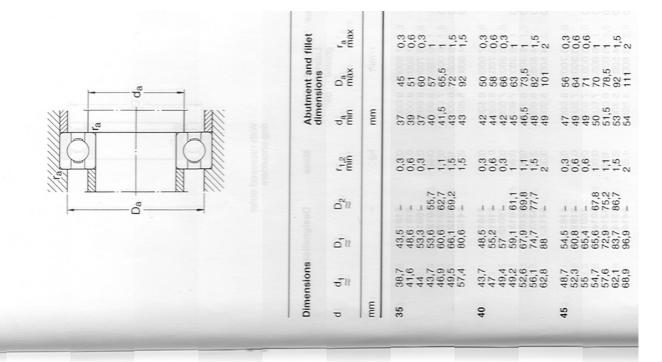
| Т | F |                                                                                                                                                            |
|---|---|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | • | Three groups of engineering design constraints are physical, sociological and                                                                              |
|   |   | practical.                                                                                                                                                 |
|   |   | Check off list and brainstorming are methods of making alternative solutions                                                                               |
|   |   | During the analysis of alternative solutions common sense is more important                                                                                |
|   |   | then the consideration of laws of nature and laws of economics                                                                                             |
|   |   | The isolated system together with all forces and moments due to external effects and the reactions with the main system is called free-body diagram.       |
|   |   | Strength is a state property of a body which is a function of load, geometry, temperature and manufacturing processing                                     |
|   |   | Strength, rigidity, wear resistance, heat resistance and resistance to vibrations are considerations or criteria to be addressed during mechanical design  |
|   |   | A static load is a stationary force or moment acting on a member unchanged in magnitude, point of application and direction.                               |
|   |   | In the factor of safety method, distributions of stresses and strengths are obtained and related in order to achieve an acceptable success rate.           |
|   |   | Factor of safety relates strength and stress as: $N = Stress/Strength = \frac{\sigma}{S}$                                                                  |
|   |   | M12x1.75 means: Metric thread 12 mm diameter, 1.75 mm long                                                                                                 |
|   |   | Only first six threads in the threaded connection take tensile load                                                                                        |
|   |   | Power screws usually have square or ACME threads.                                                                                                          |
|   |   | 1/4 in-20 UNRC is the nomination for unified fine thread on 1/4 inch diameter                                                                              |
|   |   | Main components of a roller bearing are: outer and inner rings, rollers and separator                                                                      |
|   |   | Deep grove ball bearings cannot sustain radial loads                                                                                                       |
|   |   | Bearing life is defined as the number of revolutions or hours of operation at constant speed of the inner ring until the first evidence of fatigue occurs. |
|   |   | The top bearing speed is limited by the operating temperature of the bearing                                                                               |
|   |   | A shaft, axle and spindle are all rotating elements that carry power and torque.                                                                           |
|   |   | Bending and torsional deflection and rigidity as well as stress and strength are to be considered in shaft design.                                         |
|   |   | \$\\$\\$430 h7 is the dimension of 30 mm dia hole with tolerance grade 7 starting at basic diameter.                                                       |
|   |   | Space frames are constructed and supported so as to always allow its motion.                                                                               |
|   |   | Trusses are structures made of simple elements that are always connected and                                                                               |
|   |   | loaded only at their ends and can be only in tension, compression or no load.                                                                              |
|   |   | In the method of joints one does not use moment equilibrium equation for calculation of forces.                                                            |
|   |   | Gear module is defined as diameter over number of teeth and is measured in                                                                                 |
|   |   | [mm]                                                                                                                                                       |
|   |   | Coarse gears have lower gear module.                                                                                                                       |

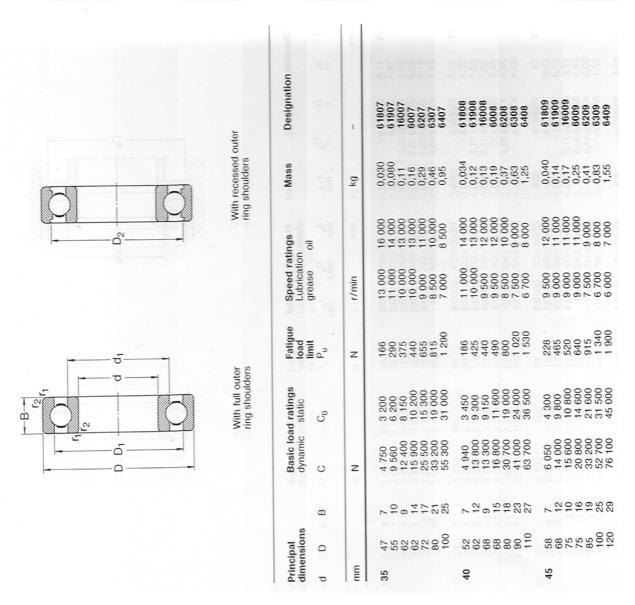
## **Question 2**

Calculate rated bearing life  $L_{10h}$  in hours of a deep grove ball bearing 6008 (40x68x15) that rotates at constant speed of 5000 rpm while lubricated by oil. The bearing is loaded with static radial load of  $F_r$ =7 kN and axial load of  $F_a$ =4.5 kN.

$$L_{10} = \left(\frac{C}{P}\right)^{a} \qquad [10^{6} \ rev]$$

$$L_{10h} = \frac{10^{6}}{60n} L_{10} \qquad [hours]$$


$$L_{10s} = \frac{\pi D}{1000} L_{10} \qquad [10^{6} \ km]$$


**Answer** 

| Bearing type                | Condition                             | х    | у    |
|-----------------------------|---------------------------------------|------|------|
|                             | E <sub>s</sub> /F <sub>r</sub> <=0.5  | 1    | 0    |
| Deep groove ball bearing    | E <sub>s</sub> /F <sub>r</sub> >0.5   | 0.56 | 1-2  |
| Colf oligning hall boorings | E <sub>s</sub> /F <sub>r</sub> <=e*   | 1    | Y    |
| Self aligning ball bearings | Ę₅/F₁>e*                              | 0.65 | y*   |
| Angular contact ball        | E <sub>s</sub> /F <sub>r</sub> <=1.14 | 1    | 0    |
| bearings                    | E <sub>s</sub> /F <sub>r</sub> >1.14  | 0.35 | 0.57 |
| Double row angular contact  | <b>F₂/F</b> ,<=0.86                   | 1    | 0.73 |
| ball bearings               | <b>E₂/F₁</b> >0.86                    | 0.62 | 1.17 |
| Four-point contact ball     | <b>F₂/F</b> ,<=0.95                   | 1    | 0.66 |
| bearings                    | <b>E₂</b> /F₁>0.95                    | 0.6  | 1.07 |
| Cylindrical roller bearing  | E <sub>s</sub> /F <sub>r</sub> <=0.2  | 1    | 0    |
| (with flanges)              | <b>E₂/F₁&gt;</b> 0.2                  | 0.92 | 0.6  |
| Needle roller bearings      | -                                     | 1    | 0    |
| Trust roller bearings       | -                                     | 0    | 1    |
| Topor roller bearings       | E <sub>s</sub> /F <sub>r</sub> <=e*   | 1    | 0    |
| Taper roller bearings       | Ę₅/F₁>e*                              | 0.4  | Y    |
| Taper roller bearings       | 1.00                                  | 0.75 | 0.60 |

| bearing          |            |          |
|------------------|------------|----------|
| pall             |            | ,        |
| Deep groove ball | single row | 35-55 mm |
| Deek             | singl      | 9        |

gs





### Q3: **10 mark**s

Each correct answer 1 mark

# Question 3

Complete missing lines

## Failure modes can be classified in three groups:

- 1. When capability falls below desired performance due to:
  - •
  - \_\_\_\_\_
  - •
- 2. When desired performance rises above initial capability due to:
  - \_\_\_\_\_
  - •
- 3. When the asset is \_\_\_\_\_\_ outset.