

Mechanical Analysis and Design ME 2104

Lecture 2

Mechanical Analysis Bearings and Screws

Prof Ahmed Kovacevic

School of Engineering and Mathematical Sciences Room CG25, Phone: 8780, E-Mail: <u>a.kovacevic@city.ac.uk</u> <u>www.staff.city.ac.uk/~ra600/intro.htm</u>

Plan for the analysis of mechanical elements

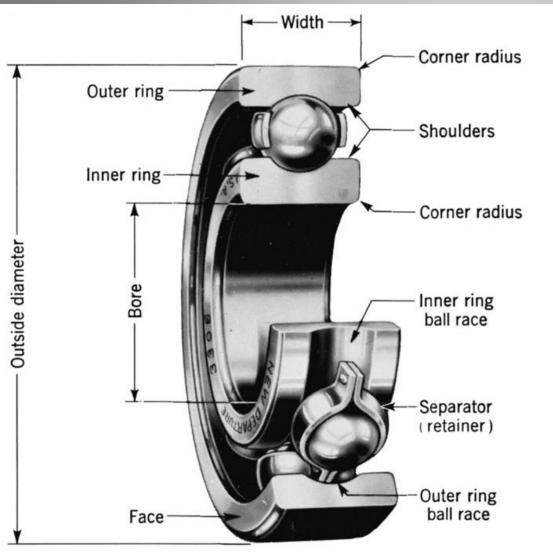
Objective:

Procedures for design and selection of mechanical elements

- Week 1 Shafts and keyways
- Week 2 Bearings and screws
 - Week 3 Belt and chain drives
 - Week 4 Gears and gear trains
 - Week 5 Design Project Review

Plan for this week

Examples:


- Bearings
- Screws (with examples)

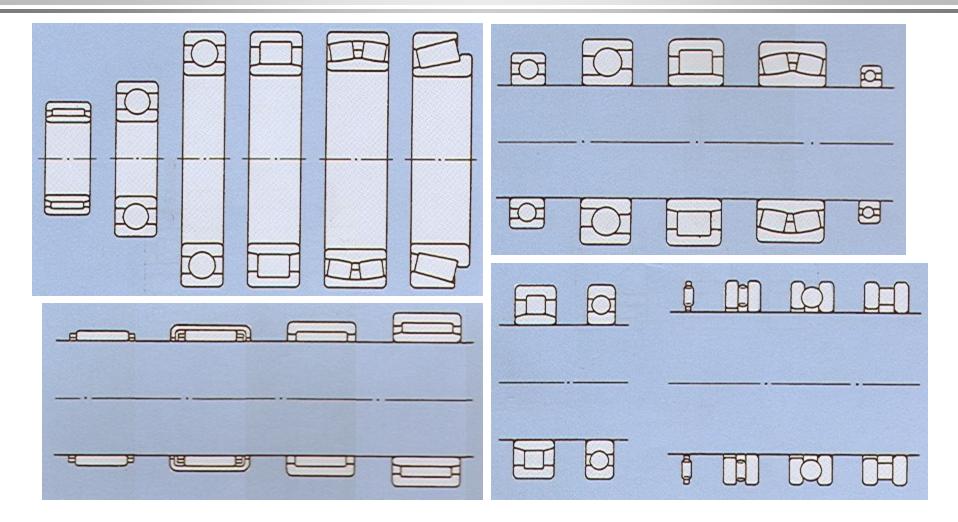
Rolling element bearings

Rolling element bearings

Designed to take:

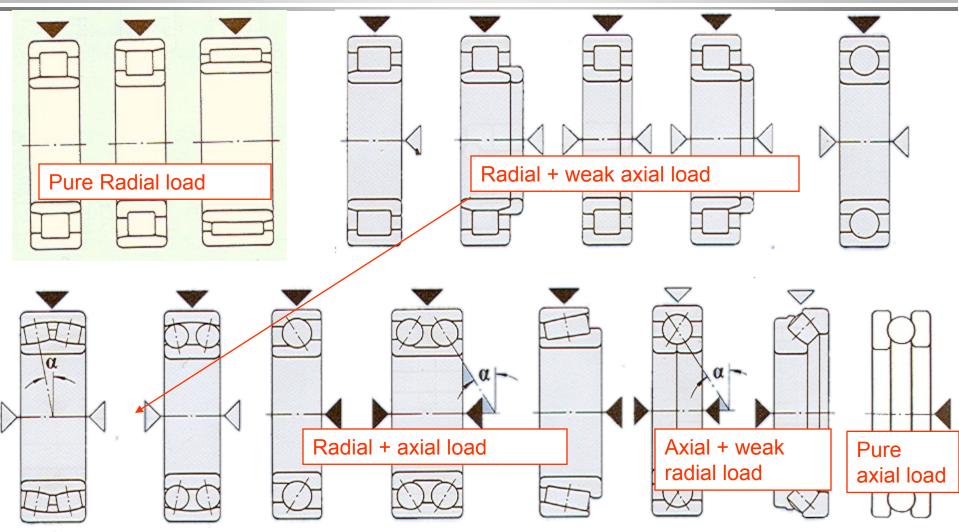
- Pure radial loads
- Pure thrust loads
- Combination of the two kinds of loads

Main parts:


- Outer ring
- Inner ring
- Rolling elements (balls)
- Separator

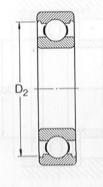
Selection of bearings:

- Type and amount of load
 - (axial thrust, radial)
- Size, Speed
- Lubrication
- Life rating



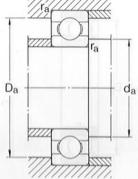
Comparison of bearing types

Forces that bearings can sustain


Deep groove ball bearings single row d 35-55 mm

4

--B--r1 r_2 D D1 $d d_1$


With full outer ring shoulders

How to select a bearing from the catalogue

With recessed outer ring shoulders

Princ	cipal ensions		Basic loa dynamic	ad ratings static	Fatigue Ioad limit	Speed ra Lubricatio grease		Mass	Designat	ion internet	Dime	nsions			
d	D	В	C	C ₀	Pu	grease					d	d N	D1 ≈	$\overset{D_2}{\approx}$	r _{1,2} min
mm	0		N		N	r/min	nam	kg		100	mm				кg
35	47	7	4 750	3 200	166	13 000	16 000	0,030	61807	15 17,9	35	38,7	43,5		0,3
40	55 62 62 72 80 100 52 62 68 68 68 80 90	10 9 14 17 21 25 7 12 9 15 18 23	9 560 12 400 15 900 25 500 33 200 55 300 4 940 13 800 13 300 16 800 30 700 41 000	6 200 8 150 10 200 15 300 31 000 3 450 9 300 9 150 11 600 19 000 24 000	290 375 440 655 815 1 290 186 425 440 490 800 1 020	$\begin{array}{c} 11\ 000\\ 10\ 000\\ 9\ 000\\ 8\ 500\\ 7\ 000\\ 11\ 000\\ 9\ 500\\ 9\ 500\\ 8\ 500\\ 7\ 500\\ 8\ 500\\ 7\ 500\\ 7\ 500\\ \end{array}$	14 000 13 000 13 000 11 000 10 000 8 500 14 000 13 000 12 000 12 000 10 000 9 000	0,080 0,11 0,16 0,29 0,46 0,95 0,034 0,12 0,13 0,19 0,37 0,63 0,63	61907 16007 6007 6207 6307 6407 61808 61908 16008 6008 6008 6208 6308 6408	10,2 20,2 20,2 21,7 21,7 21,7 20,4 20,2 22,7 24,2 24,2 22,4 22,4 22,4	40	41,6 44 43,7 46,9 49,5 57,4 43,7 47 49,4 49,2 52,6 56,1 62,8	48,6 53,3 53,6 60,6 66,1 80,6 48,5 55,2 57 59,1 67,9 74,7 88	- 55,7 62,7 69,2 - - 61,1 69,8 77,7	0,6 0,3 1 1,1 1,5 1,5 0,3 0,6 0,3 1 1,1 1,5 2
45	110 58 68 75 75 85 100 120	27 7 12 10 16 19 25 29	63 700 6 050 14 000 15 600 20 800 33 200 52 700 76 100	36 500 4 300 9 800 10 800 14 600 21 600 31 500 45 000	1 530 228 465 520 640 915 1 340 1 900	6 700 9 500 9 000 9 000 9 000 7 500 6 700 6 000	8 000 12 000 11 000 11 000 11 000 9 000 8 000 7 000	1,25 0,040 0,14 0,17 0,25 0,41 0,83 1,55	61809 61909 16009 6009 6209 6309 6409		45	48,7 52,3 55 54,7 57,6 62,1 68,9	54,5 60,8 65,4 65,6 72,9 83,7 96,9	- - 67,8 75,2 86,7	2 0,3 0,6 1 1,1 1,5 2

Dime	ensions					nent and isions	l fillet	
d	d₁≋		D°2	r _{1,2} min	d _a min	D _a max	r _a max	
mm			-	(p)	mm	riic	1/1	
35	38,7	43,5	112	0,3	37	45	0,3	
	41,6	48,6	C. Cala	0,6	39	51	0,6	
	44	53,3	185	0,3	37	60	0,3	
	43,7	53,6	55,7	1 10	40	57	1	
	46,9	60,6	62,7	1,1	41,5	65,5	101 1.6	
	49,5	66,1	69,2	1,5	43	72	1,5	
	57,4	80,6	19.2	1,5	43	92	1,5	
40	43,7	48,5	112	0,3	42	50	0.3	
	47	55,2	112	0,6	44	58	0,6	
	49,4	57	101-	0,3	42	66	0,3	
	49,2	59,1	61,1	1000	45	63	1	
	52,6	67,9	69,8	1,1	46,5	73,5	1	
	56,1	74,7	77,7	1,5	48	82	1,5	
	62,8	88	10-2	2	49	101	2	
45	48,7	54,5	412	0,3	47	56	0,3	
	52,3	60,8	112	0,6	49	64	0,6	
	55	65,4	101	0,6	49	71	0,6	
	54,7	65,6	67,8	1	50	70	1	
	57,6	72,9	75,2	1,1	51,5	78,5	1 1 1	
	62,1	83,7	86,7	1,5	53	92	1,5	
	69.0	06.0		0	EA	111	1,0	

54 111 2

Bearing Life - Definitions

- Stresses: inner ring rolling element + rolling element outer ring.
- <u>Metal fatigue</u> is the only cause of failure for clean, properly lubricated, sealed and cooled bearings. (Dynamic loading)
- Endurance of a bearing is limiting factor *bearing life* **L**:
 - » Number of revolutions of the inner ring until the first evidence of fatigue.
 - » Number of hours of use at standard angular speed until the first evidence of fatigue
- Rating life (minimum life) of a bearing, L_{10}
 - » number of revolution or hours of operation that 90% of a group of identical bearings will achieve or exceed before the failure criterion develops.
- Both previous life estimations are based on the *reliability factor*.
- The 'new' theory includes <u>fatigue load limit P_u</u> when estimating the bearing life

10

Bearing Life - Calculation

- The size of a bearing is initially selected on the relation of its load carrying capacity and the carried load with the life and reliability requirement.
- Load carrying capacity is specified for each bearing in a catalogue with:
 - » C basic dynamic load rating for variable loads and high speeds
 - » Co basic static load rating for static loads and low speeds
- *The load* calculated from free body diagrams or by other means.
- *Rating life* can be calculated from the life equation. The form of the life equation depends on the accuracy required. *Basic rating life is*:

 $L_{10} = \left(\frac{C}{P}\right)^{a} \qquad [10^{6} rev]$ $L_{10h} = \frac{10^{6}}{60n} L_{10} \qquad [hours]$ $L_{10s} = \frac{\pi D}{1000} L_{10} \qquad [10^{6} km]$

a = 3 - for ball bearings
a = 3.33- for roller bearings
P [N] - equivalent dynamic load rating
n [rpm] - rotational speed
D [m] - wheel diameter
Ahmed Kovacevic, City University London

Equivalent dynamic bearing load

$$P = x F_r + y F_a$$

P [N] - equivalent dynamic
bearing load
$F_r[N]$ – actual radial bearing load

- $F_a[N]$ actual axial bearing load
- x radial load factor
- y axial load factor

Bearing type	Condition	X	у
	F _a /F _r <=0.5	1	0
Deep groove ball bearing	F _a /F _r >0.5	0.56	1-2
Solf aligning ball bearings	F _a /F _r <=e*	1	Y*
Self aligning ball bearings	$F_a/F_r > e^*$	0.65	y*
Angular contact ball	F _a /F _r <=1.14	1	0
bearings	F _a /F _r >1.14	0.35	0.57
Double row angular contact	F _a /F _r <=0.86	1	0.73
ball bearings	F _a /F _r >0.86	0.62	1.17
Four-point contact ball	F _a /F _r <=0.95	1	0.66
bearings	F _a /F _r >0.95	0.6	1.07
Cylindrical roller bearing	F _a /F _r <=0.2	1	0
(with flanges)	F _a /F _r >0.2	0.92	0.6
Needle roller bearings	-	1	0
Trust roller bearings	-	0	1
	F _a /F _r <=e*	1	0
Taper roller bearings	F _a /F _r >e*	0.4	Y*
Taper roller bearings	1.00	0.75	0.60

Adjusting Bearing Life

а

• To adjust bearing life from rated to desired speed and life

 $PL_{R}^{\frac{1}{a}} = const.$ $L_{R} = 60nL_{Rh}$ $P_{R}(60L_{R}n_{R})^{\frac{1}{a}} = P_{D}(60L_{D}n_{D})^{\frac{1}{a}}$

• To adjust bearing life for different reliability

$$R_{D} = \exp\left[-\left(\frac{x_{B} - x_{o}}{\theta - x_{o}}\right)^{b}\right]$$
$$x = \frac{L}{L_{10}}$$
$$C_{10} = a_{oc}P_{D}\left[\frac{x_{D}}{x_{0} + (\theta - x_{0})(1 - R_{D})^{1/b}}\right]^{b}$$

Adjusted Bearing Life

• If the bearing is not operating in the ideal conditions then the basic rating life should be adjusted:

$$L_{adj} = a_T a_R a_{OC} L_{10} \qquad [10^6 \, rev]$$

Temperature [°C]	150		20	0		250		30)0	
a _T	1.00		0.9	0	0.75		0.75		0.0	60
Reliability [%]	90	95	5	9	6	97		98	99	
a _R	1.00	0.6	52	0.5	53	0.44		0.33	0.21	

a_{OC} – application factor (quality of lubrication and sealing).
 a_{OC} = 0.20 – 2.20
 Values depend on relative viscosity of lubricant.

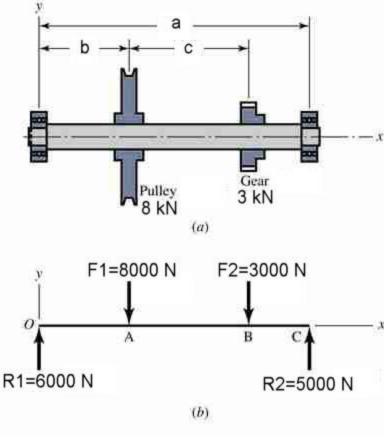
Rearing Type	Direction of Load		Ratio of Load/Bulk		Misalignment Capacity				
	radial	axial	both	high	med	low	high	med	low
Thrust Ball		у			У				у
Deep Groove Ball	у		у		у			у	
Cylindrical Roller	у		certain types		У				У
Needle Roller	у			у					у
Tapered Roller	у	у	У		у				у
Self-aligning Ball	у		У			у	у		
Self-aligning Spherical Roller	у		у		У		у		
Angular Contact Ball		у	У			у			у

Machine Usage Type	Life Required of Bearings (Hours)
household appliances — intermittent use	300 - 3000
hand tools, construction equipment — short period use	3000 - 8000
lifts, cranes — high reliability for short periods	8000 - 12000
8h/day gears, motors — full day partial use	10000 - 25000
8h/day machine tools, fans — full day full use	20000 - 30000
continuous use	40000 - 50000

Example

Consider SKF, which rates its bearings for 1 million revolutions. If you desire a life of 5000 h at 1725 rev/min with a load of 400 lbf with a reliability of 90 percent, for which catalog rating would you search in an SKF catalog?

The rating life is $L_{10} = L_R = \mathcal{L}_R n_R 60 = 10^6$ revolutions. From Eq. (11–3),


$$C_{10} = F_D \left(\frac{\mathcal{L}_D n_D 60}{\mathcal{L}_R n_R 60}\right)^{1/a} = 400 \left[\frac{5000(1725)60}{10^6}\right]^{1/3} = 3211 \text{ lbf} = 14.3 \text{ kN}$$

The design load on a ball bearing is 413 lbf and an application factor of 1.2 is appropriate. The speed of the shaft is to be 300 rev/min, the life to be 30 kh with a reliability of 0.99. What is the C_{10} catalog entry to be sought (or exceeded) when searching for a deep-groove bearing in a manufacturer's catalog on the basis of 10⁶ revolutions for rating life? The Weibull parameters are $x_0 = 0.02$, ($\theta - x_0$) = 4.439, and b = 1.483.

$$x_D = \frac{L_D}{L_R} = \frac{60\mathcal{L}_D n_D}{L_{10}} = \frac{60(30\ 000)300}{10^6} = 540$$

Thus, the design life is 540 times the L_{10} life. For a ball bearing, a = 3. Then, from Eq. (11–7),

$$C_{10} = (1.2)(413) \left[\frac{540}{0.02 + 4.439(1 - 0.99)^{1/1.483}} \right]^{1/3} = 6696 \text{ lbf}$$

Example

Select the bearings and determine their rating life for the driving mechanism shown in the Figure. The shaft is 450 mm long and supported by deep-groove bearing in point *O* and plane roller bearing in point *C*. Assume minimum shaft diameter to be 20 mm. Mounted upon the shaft are a V-belt pulley, which contributes a radial load of F_1 =8kN to the shaft, and a gear which contributes a radial load of F_2 =3kN. The two loads are in the same plane and have the same direction. Minimum required bearing life is 2000 h with 90% reliability. Shaft rotates constantly at n=1000 rpm.

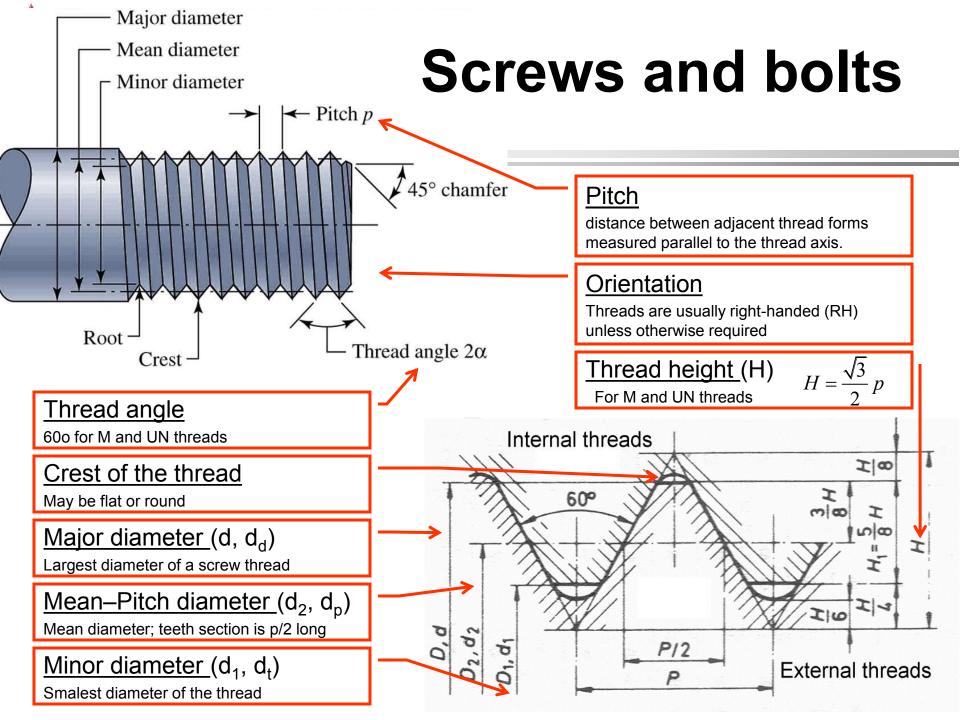
F1=8 kN	a=450 mm	ı	c=200 mm
F2=3 kN	b=150 mm	1	d=20 mm
$L_{10h} = (L_{10h})_0 = (L_{10h})_0$	_c =2000 h	n=1000 rpm	ı

SOLUTION:

$$L_{10h} = \frac{10^6}{60n} \left(\frac{C}{P}\right)^a \Longrightarrow C = P * \sqrt[a]{\frac{60n}{10^6}} L_{10h}$$

$$C_0 = 6000 * \sqrt[3]{\frac{60*1000}{10^6}2000} = 29,595N$$

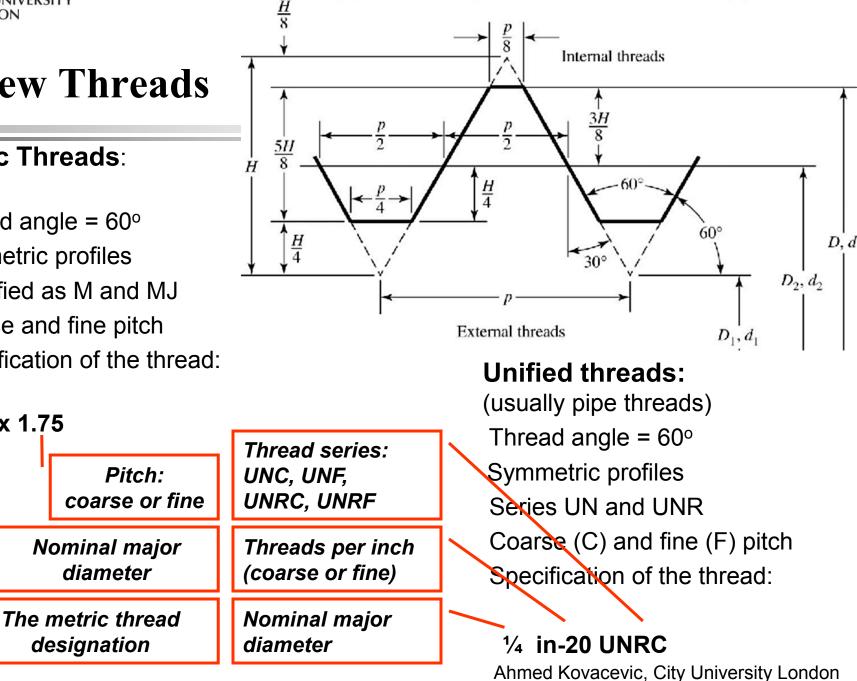
$$C_0 = 5000 * {}_{3.33} \sqrt{\frac{60*1000}{10^6}} 2000 = 21,025N$$
16


 $P_O = R_1 = 6000N$ $P_C = R_2 = 5000N$

Selected from the catalogue for deep-groove ball bearings: 6404 20x72x19 mm C=30,700 N

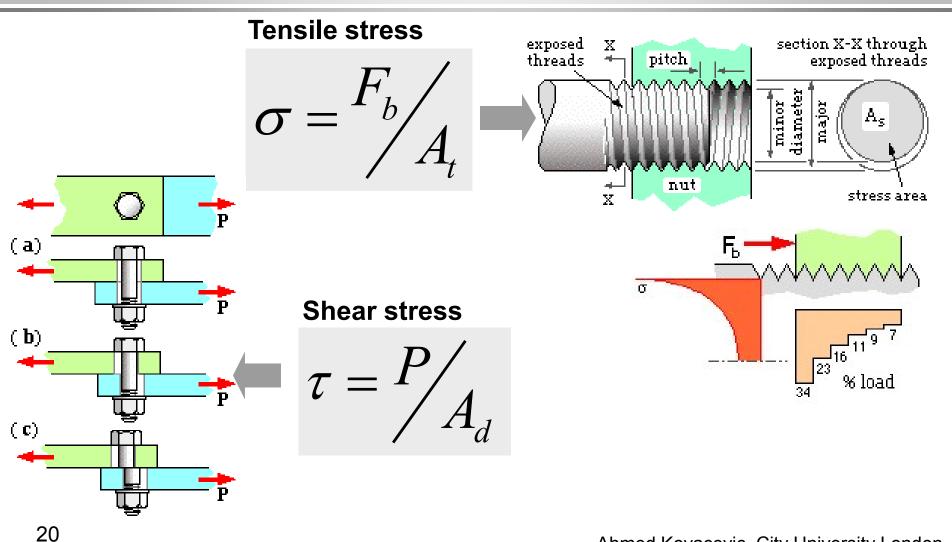
Selected from the catalogue for cylindrical roller bearings: NU 204 20x47x14 mm C=25,100 N

Screws and **Bolts**



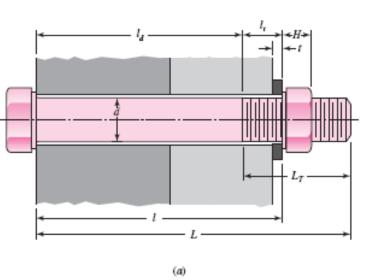
Screw Threads

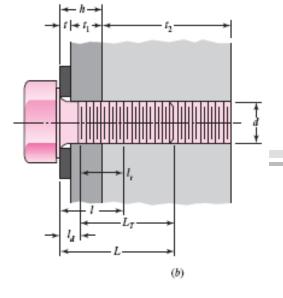
Metric Threads:


M12 x 1.75

Thread angle = 60° Symmetric profiles Identified as M and MJ Coarse and fine pitch Specification of the thread:

Load that a bolt can sustain


Nominal	G	oarse-Pitch	Series		Fine-Pitch Series				
Major Diameter d	Major Tensile- Mir ameter Pitch Stress Dian		Minor- Diameter Area A _r	Pitch P	Tensile- Stress Area A,	Minor- Diameter Area A _r			
1.6	0.35	1.27	1.07	Л	Л	•			
2	0.40	2.07	1.79		letr	1C			
2.5	0.45	3.39	2.98	_ v		-			
3	0.5	5.03	4.47	11		1			
3.5	0.6	6.78	6.00	th	irea	ds			
4	0.7	8.78	7.75						
5	0.8	14.2	12.7	all din	nensions	in mm)			
6	1	20.1	17.9						
8	1.25	36.6	32.8	1	39.2	36.0			
10	1.5	58.0	52.3	1.25	61.2	56.3			
12	1.75	84.3	76.3	1.25	92.1	86.0			
14	2	115	104	1.5	125	116			
16	2	157	144	1.5	167	157			
20	2.5	245	225	1.5	272	259			
24	3	353	324	2	384	365			
30	3.5	561	519	2	621	596			
36	4	817	759	2	915	884			
42	4.5	1120	1050	2	1260	1230			
48	5	1470	1380	2	1670	1630			
56	5.5	2030	1910	2	2300	2250			
64	6	2680	2520	2	3030	2980			
72	6	3460	3280	2	3860	3800			
80	6	4340	4140	1.5	4850	4800			
90	6	5590	5360	2	6100	6020			
100	6	6990	6740	2	7560	7470			
110				2	9180	9080			



Property classes for screws

Metric Mechanical-Property Classes for Steel Bolts, Screws, and Studs*

Property Class	Size Range, Inclusive	Minimum Proof Strength,† MPa	Minimum Tensile Strength,† MPa	Minimum Yield Strength,† MPa	Material	Head Marking
4.6	M5-M36	225	400	240	Low or medium carbon	4.6
4.8	M1.6-M16	310	420	340	Low or medium carbon	4.8
5.8	M5-M24	380	520	420	Low or medium carbon	5.8
8.8	M16-M36	600	830	660	Medium carbon, Q&T	8.8
9.8	M1.6-M16	650	900	720	Medium carbon, Q&T	9.8
10.9	M5-M36	830	1040	940	Low-carbon martensite, Q&T	10.9
12.9	M1.6-M36	970	1220	1100	Alloy, Q&T	12.9

Joint-Fastener stiffness

Washer thickness: t from Table A-32 or A-33

Nut thickness [Fig. (a) only]: *H* from Table A–31

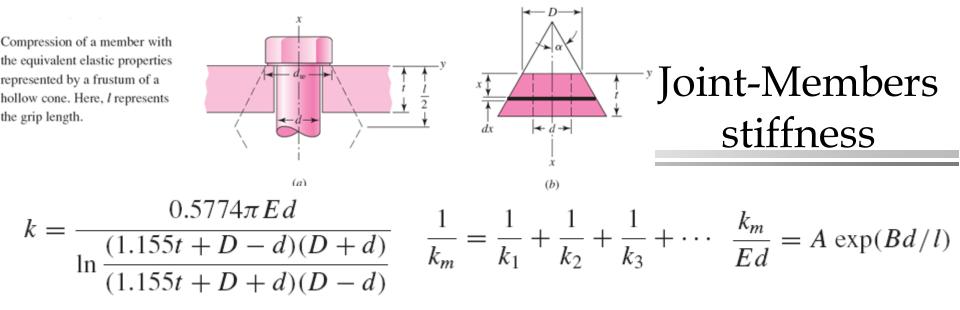
Grip length:

For Fig. (*a*): l = thickness of all material squeezed between face of bolt and face of nut

For Fig. (b):
$$l = \begin{cases} h + t_2/2, & t_2 < d \\ h + d/2, & t_2 \ge d \end{cases}$$

Fastener length (round up using Table A–17*):

For Fig. (<i>a</i>):	L > l + H
For Fig. (b):	L > h + 1.5d


Threaded length L_T : Inch series:

$$L_T = \begin{cases} 2d + \frac{1}{4} \text{ in,} & L \le 6 \text{ in} \\ 2d + \frac{1}{2} \text{ in,} & L > 6 \text{ in} \end{cases}$$

Metric series:

$$L_T = \begin{cases} 2d + 6 \text{ mm}, & L \le 125 \text{ mm}, d \le 48 \text{ mm} \\ 2d + 12 \text{ mm}, & 125 < L \le 200 \text{ mm} \\ 2d + 25 \text{ mm}, & L > 200 \text{ mm} \end{cases}$$

Length of unthreaded portion in grip: $l_d = L - L_T$ Length of threaded portion in grip: $l_t = l - l_d$ Area of unthreaded portion: $A_d = \pi d^2/4$ Area of threaded portion: A_t from Table 8–1 or 8–2Fastener stiffness: $k_b = \frac{A_d A_t E}{A_d l_t + A_t l_d}$

Stiffness of the joint
$$C = \frac{k_b}{k_b + k_m}$$

Stiffness Parameters

of Various Member

Stiffness in Bolted Connections,"

J. Wileman, M. Choudury, and I. Green, "Computation of Member

Materials

 $F_b = P_b + F_i = CP + F_i$ $F_m < 0$ $F_m = P_m - F_i = (1 - C)P - F_i$ $F_m < 0$

— Load on a member

Load on the bolt

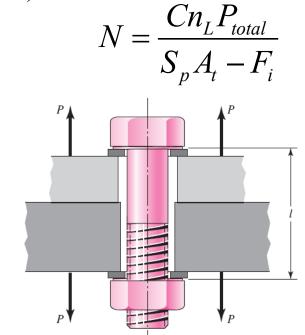
Material Used	Poisson Ratio	Elastic GPa	Modulus Mpsi	А	В
Steel	0.291	207	30.0	0.787 15	0.628 73
Aluminum	0.334	71	10.3	0.796 70	0.638 16
Copper	0.326	119	17.3	0.795 68	0.635 53
Gray cast iron	0.211	100	14.5	0.778 71	0.616 16
General expression				0.789 52	0.629 14

Statically loaded joint with Preload

Recommended Preload

 $F_i = \begin{cases} 0.75F_p & \text{for nonpermanent connections, reused fasteners} \\ 0.90F_p & \text{for permanent connections} \end{cases}$

Load factor per a bolt (ratio of proof load and operating load)


$$n_L = \frac{S_p A_t - F_i}{CP} \qquad \qquad P = \frac{P_{total}}{N}$$

Yielding factor of safety

$$n_p = \frac{S_p A_t}{CP + F_i}$$

Factor of safety against joint separation

$$n_0 = \frac{P_0}{P} \qquad n_0 = \frac{F_i}{P(1-C)}$$

Proof load

 $F_p = A_t S_p$

Number of bolts

Table A-8

Properties of Round Tubing

 $w_a =$ unit weight of aluminum tubing, lbf/ft $w_s =$ unit weight of steel tubing, lbf/ft m = unit mass, kg/m $A = \operatorname{area}, \operatorname{in}^2(\operatorname{cm}^2)$ I = second moment of area, in⁴ (cm⁴) J = second polar moment of area, in⁴ (cm⁴) k = radius of gyration, in (cm)

Z = section modulus, in³ (cm³)

d, t = size (OD) and thickness, in (mm)

From: Shigley's Mechanical Engineering Design, 9th edition

Size, in	Wa	Ws	A	1	k	Z	J
$1 \times \frac{1}{8}$	0.416	1.128	0.344	0.034	0.313	0.067	0.067
$1 \times \frac{1}{4}$	0.713	2.003	0.589	0.046	0.280	0.092	0.092
$1\frac{1}{2} \times \frac{1}{8}$	0.653	1.769	0.540	0.129	0.488	0.172	0.257
$1\frac{1}{2} \times \frac{1}{4}$	1.188	3.338	0.982	0.199	0.451	0.266	0.399
$2 \times \frac{1}{8}$	0.891	2.670	0.736	0.325	0.664	0.325	0.650
$2 \times \frac{1}{4}$	1.663	4.673	1.374	0.537	0.625	0.537	1.074
$2\frac{1}{2} \times \frac{1}{8}$	1.129	3.050	0.933	0.660	0.841	0.528	1.319
$2\frac{1}{2} \times \frac{1}{4}$	2.138	6.008	1.767	1.132	0.800	0.906	2.276
$3 \times \frac{1}{4}$	2.614	7.343	2.160	2.059	0.976	1.373	4.117
$3 \times \frac{3}{8}$	3.742	10.51	3.093	2.718	0.938	1.812	5.436
$4 \times \frac{3}{16}$	2.717	7.654	2.246	4.090	1.350	2.045	8.180
$4 \times \frac{3}{8}$	5.167	14.52	4.271	7.090	1.289	3.544	14.180
Size, mm	m	A	I		k	Z	J
Size, mm 12 × 2	m 0.490	A 0.628	 0.0		k 0.361	Z 0.136	J 0.163
				82			
12×2	0.490	0.628	0.0	82 20	0.361	0.136	0.163
$\begin{array}{c} 12\times2\\ 16\times2 \end{array}$	0.490 0.687	0.628 0.879	0.0 0.2	82 20 73	0.361 0.500	0.136 0.275	0.163 0.440
12×2 16×2 16×3	0.490 0.687 0.956	0.628 0.879 1.225	0.0 0.2 0.2	82 20 73 84	0.361 0.500 0.472	0.136 0.275 0.341	0.163 0.440 0.545
12×2 16×2 16×3 20×4	0.490 0.687 0.956 1.569	0.628 0.879 1.225 2.010	0.0 0.2 0.2 0.6	82 20 73 84 08	0.361 0.500 0.472 0.583	0.136 0.275 0.341 0.684	0.163 0.440 0.545 1.367
12×2 16×2 16×3 20×4 25×4	0.490 0.687 0.956 1.569 2.060	0.628 0.879 1.225 2.010 2.638	0.0 0.2 0.2 0.6 1.5	82 20 73 84 08 69	0.361 0.500 0.472 0.583 0.756	0.136 0.275 0.341 0.684 1.206	0.163 0.440 0.545 1.367 3.015
12×2 16×2 16×3 20×4 25×4 25×5	0.490 0.687 0.956 1.569 2.060 2.452	0.628 0.879 1.225 2.010 2.638 3.140	0.0 0.2 0.2 0.6 1.5 1.6	82 20 73 84 08 69 27	0.361 0.500 0.472 0.583 0.756 0.729	0.136 0.275 0.341 0.684 1.206 1.336	0.163 0.440 0.545 1.367 3.015 3.338
12×2 16×2 16×3 20×4 25×4 25×5 30×4	0.490 0.687 0.956 1.569 2.060 2.452 2.550	0.628 0.879 1.225 2.010 2.638 3.140 3.266	0.0 0.2 0.2 0.6 1.5 1.6 2.8	82 20 73 84 08 69 27 92	0.361 0.500 0.472 0.583 0.756 0.729 0.930	0.136 0.275 0.341 0.684 1.206 1.336 1.885	0.163 0.440 0.545 1.367 3.015 3.338 5.652
12×2 16×2 16×3 20×4 25×4 25×5 30×4 30×5	0.490 0.687 0.956 1.569 2.060 2.452 2.550 3.065	0.628 0.879 1.225 2.010 2.638 3.140 3.266 3.925	0.0 0.2 0.6 1.5 1.6 2.8 3.1	82 20 73 84 08 69 27 92 17	0.361 0.500 0.472 0.583 0.756 0.729 0.930 0.901	0.136 0.275 0.341 0.684 1.206 1.336 1.885 2.128	0.163 0.440 0.545 1.367 3.015 3.338 5.652 6.381
$12 \times 2 \\ 16 \times 2 \\ 16 \times 3 \\ 20 \times 4 \\ 25 \times 4 \\ 25 \times 5 \\ 30 \times 4 \\ 30 \times 5 \\ 42 \times 4$	0.490 0.687 0.956 1.569 2.060 2.452 2.550 3.065 3.727	0.628 0.879 1.225 2.010 2.638 3.140 3.266 3.925 4.773	0.0 0.2 0.6 1.5 1.6 2.8 3.1 8.7	82 20 73 84 08 69 27 92 17 30	0.361 0.500 0.472 0.583 0.756 0.729 0.930 0.901 1.351	0.136 0.275 0.341 0.684 1.206 1.336 1.885 2.128 4.151	0.163 0.440 0.545 1.367 3.015 3.338 5.652 6.381 17.430

Table A-17

Preferred Sizes and Renard (R-Series) Numbers (When a choice can be made, use one of these sizes; however, not all parts or items are available in all the sizes shown in the table.)

Fraction of Inches

 $\frac{1}{64}, \frac{1}{32}, \frac{1}{16}, \frac{3}{32}, \frac{1}{8}, \frac{5}{32}, \frac{3}{16}, \frac{1}{4}, \frac{5}{16}, \frac{3}{8}, \frac{7}{16}, \frac{1}{2}, \frac{9}{16}, \frac{5}{8}, \frac{11}{16}, \frac{3}{4}, \frac{7}{8}, 1, 1\frac{1}{4}, 1\frac{1}{2}, 1\frac{3}{4}, 2, 2\frac{1}{4}, 2\frac{1}{2}, 2\frac{3}{4}, 3, 3\frac{1}{4}, 3\frac{1}{2}, 3\frac{3}{4}, 4, 4\frac{1}{4}, 4\frac{1}{2}, 4\frac{3}{4}, 5, 5\frac{1}{4}, 5\frac{1}{2}, 5\frac{3}{4}, 6, 6\frac{1}{2}, 7, 7\frac{1}{2}, 8, 8\frac{1}{2}, 9, 9\frac{1}{2}, 10, 10\frac{1}{2}, 11, 11\frac{1}{2}, 12, 12\frac{1}{2}, 12, 13, 13\frac{1}{2}, 14, 14\frac{1}{2}, 15, 15\frac{1}{2}, 16, 16\frac{1}{2}, 17, 17\frac{1}{2}, 18, 18\frac{1}{2}, 19, 19\frac{1}{2}, 20$

Decimal Inches

0.010, 0.012, 0.016, 0.020, 0.025, 0.032, 0.040, 0.05, 0.06, 0.08, 0.10, 0.12, 0.16, 0.20, 0.24, 0.30, 0.40, 0.50, 0.60, 0.80, 1.00, 1.20, 1.40, 1.60, 1.80, 2.0, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, 4.6, 4.8, 5.0, 5.2, 5.4, 5.6, 5.8, 6.0, 7.0, 7.5, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20

Millimeters

0.05, 0.06, 0.08, 0.10, 0.12, 0.16, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.0, 1.1, 1.2, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, 10, 11, 12, 14, 16, 18, 20, 22, 25, 28, 30, 32, 35, 40, 45, 50, 60, 80, 100, 120, 140, 160, 180, 200, 250, 300

Renard Numbers*

1st choice, R5: 1, 1.6, 2.5, 4, 6.3, 10

2d choice, R10: 1.25, 2, 3.15, 5, 8

3d choice, R20: 1.12, 1.4, 1.8, 2.24, 2.8, 3.55, 4.5, 5.6, 7.1, 9

4th choice, R40: 1.06, 1.18, 1.32, 1.5, 1.7, 1.9, 2.12, 2.36, 2.65, 3, 3.35, 3.75, 4.25, 4.75, 5.3, 6, 6.7, 7.5, 8.5, 9.5

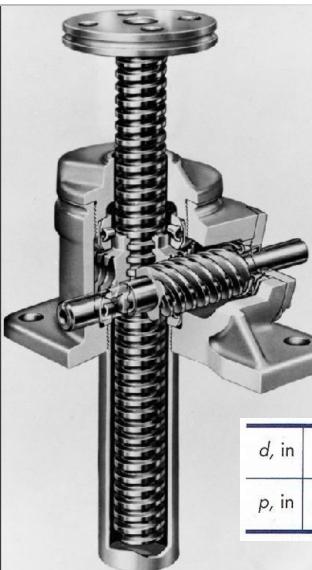
*May be multiplied or divided by powers of 10.

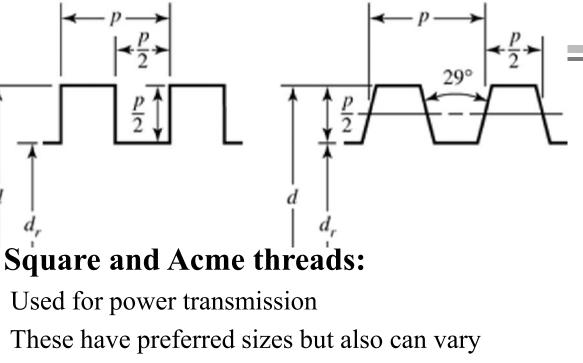
From: Shigley's Mechanical Engineering Design, 9th edition

Table A-31

Table A-33

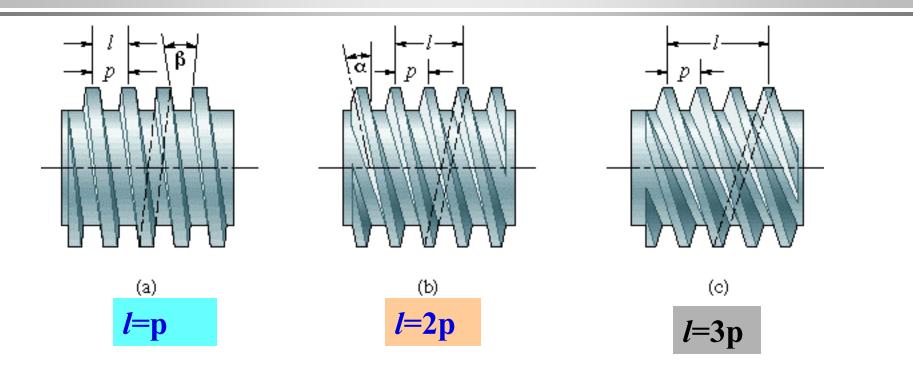
Dimensions of Hexagonal Nuts


Dimensions of Metric Plain Washers (All Dimensions in Millimeters)

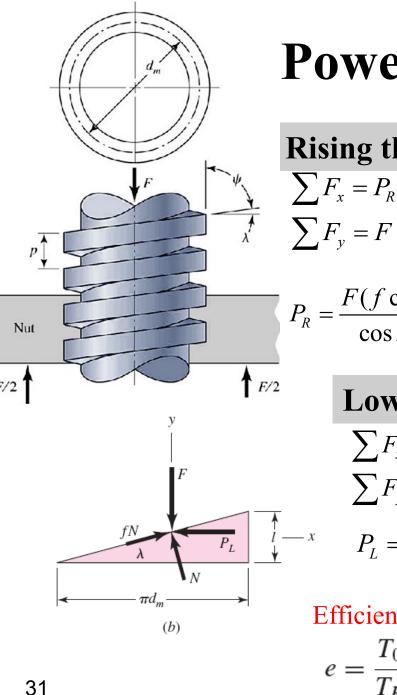

Nominal	Width	He Regular	ight <i>H</i> Thick or		Washer Size*	Minimum ID	Maximum OD	Maximum Thickness	Washer Size*	Minimum ID	Maximum OD	Maximum Thickness
Size, in	W	Hexagonal	Slotted	JAM	1.6 N	1.95	4.00	0.70	10 N	10.85	20.00	2.30
$\frac{1}{4}$	$\frac{7}{16}$	$\frac{7}{32}$	$\frac{9}{32}$	$\frac{5}{32}$	1.6 R	1.95	5.00	0.70	10 R	10.85	28.00	2.80
4 5 16		17 64	21 64	32 3 16	1.6 W	1.95	6.00	0.90	10 W	10.85	39.00	3.50
$\frac{3}{8}$	$\frac{\frac{1}{2}}{\frac{9}{16}}$	64 21 64	64 13 22	$\frac{16}{7}$	2 N	2.50	5.00	0.90	12 N	13.30	25.40	2.80
$\frac{7}{16}$	10 11 16	$\frac{21}{64}$ $\frac{3}{8}$	$\frac{13}{32}$ $\frac{29}{64}$	$\frac{1}{4}$	2 R	2.50	6.00	0.90	12 R	13.30	34.00	3.50
	16 <u>3</u> 4	$\frac{7}{16}$	64 <u>9</u> 16	4 5 16	2 W	2.50	8.00	0.90	12 W	13.30	44.00	3.50
$\frac{\frac{1}{2}}{\frac{9}{16}}$	$\frac{4}{\frac{7}{8}}$	16 <u>31</u> 64	16 <u>39</u>	16 5 16	2.5 N	3.00	6.00	0.90	14 N	15.25	28.00	2.80
16 5	8 <u>15</u> 16	64 <u>35</u> 64	39 64 23 32	16 <u>3</u> 8	2.5 R	3.00	8.00	0.90	14 R	15.25	39.00	3.50
		64 41	32 13	8 27	2.5 W	3.00	10.00	1.20	14 W	15.25	50.00	4.00
$\frac{\frac{3}{4}}{\frac{7}{8}}$	$1\frac{1}{8}$ $1\frac{5}{16}$	$\frac{\frac{41}{64}}{\frac{3}{4}}$	$\frac{13}{16}$ $\frac{29}{32}$	$ \begin{array}{r} \frac{27}{64} \\ \frac{31}{64} \\ \frac{35}{64} \\ \frac{39}{64} \\ \frac{23}{32} \\ \frac{25}{32} \\ \frac{27}{32} \end{array} $	3 N	3.50	7.00	0.90	16 N	17.25	32.00	3.50
		4 55		64 35	3 R	3.50	10.00	1.20	16 R	17.25	44.00	4.00
1	$1\frac{1}{2}$	55 64 31	1	64	3 W	3.50	12.00	1.40	16 W	17.25	56.00	4.60
$1\frac{1}{8}$	$1\frac{11}{16}$	$\frac{31}{32}$	$1\frac{5}{32}$	64	3.5 N	4.00	9.00	1.20	20 N	21.80	39.00	4.00
$1\frac{1}{4}$ $1\frac{3}{8}$	$1\frac{7}{8}$	$1\frac{1}{16}$	$1\frac{1}{4}$	32	3.5 R	4.00	10.00	1.40	20 R	21.80	50.00	4.60
	$2\frac{1}{16}$	$1\frac{11}{64}$	$1\frac{3}{8}$	32	3.5 W	4.00	15.00	1.75	20 W	21.80	66.00	5.10
$1\frac{1}{2}$	$2\frac{1}{4}$	$1\frac{9}{32}$	$1\frac{1}{2}$	$\frac{27}{32}$	4 N	4.70	10.00	1.20	24 N	25.60	44.00	4.60
Nominal					4 R	4.70	12.00	1.40	24 R	25.60	56.00	5.10
Size, mm					4 W	4.70	16.00	2.30	24 W	25.60	72.00	5.60
M5	8	4.7	5.1	2.7	5 N	5.50	11.00	1.40	30 N	32.40	56.00	5.10
M6	10	5.2	5.7	3.2	5 R	5.50	15.00	1.75	30 R	32.40	72.00	5.60
M8	13	6.8	7.5	4.0	5 W	5.50	20.00	2.30	30 W	32.40	90.00	6.40
M10	16	8.4	9.3	5.0	6 N	6.65	13.00	1.75	36 N	38.30	66.00	5.60
M12	18	10.8	12.0	6.0	6 R	6.65	18.80	1.75	36 R	38.30	90.00	6.40
M14	21	12.8	14.1	7.0	6 W	6.65	25.40	2.30	36 W	38.30	110.00	8.50
M16	24	14.8	16.4	8.0	8 N	8.90	18.80	2.30				
M20	30	18.0	20.3	10.0	8 R	8.90	25.40	2.30				
M24	36	21.5	23.9	12.0	8 W	8.90	32.00	2.80				
M30	46	25.6	28.6	15.0								
M36	55	31.0	34.7	18.0	N = narrow; R	= regular; W = w	ide.					

*Same as screw or bolt size.

Power screws


Modifications to these threads are easy

Preferred Pitches for power threads:


<i>d,</i> in	$\frac{1}{4}$	<u>5</u> 16	<u>3</u> 8	$\frac{1}{2}$	<u>5</u> 8	$\frac{3}{4}$	<u>7</u> 8	1	$1\frac{1}{4}$	$1\frac{1}{2}$	$1\frac{3}{4}$	2	$2\frac{1}{2}$	3
p, in	$\frac{1}{16}$	$\frac{1}{14}$	$\frac{1}{12}$	$\frac{1}{10}$	$\frac{1}{8}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{3}$	$\frac{1}{2}$

Multiple threaded screws

(a) Single, (b) double, (c) triple threaded screws.

Power screws

Rising the load $\sum F_x = P_R - N \sin \lambda - f N \cos \lambda$ $\sum F_y = F + f N \sin \lambda - N \cos \lambda$

 $P_{R} = \frac{F(f\cos\lambda + \sin\lambda)}{\cos\lambda - f\sin\lambda}$

$$P_{R}$$

$$F$$

$$fN$$

$$l$$

$$x$$

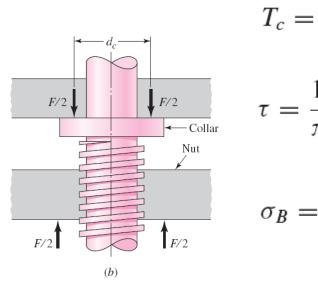
$$nd_{m}$$

$$(q)$$

у Т

 $T_{R} = \frac{Fd_{m}}{2} \left(\frac{\pi fd_{m} + 1}{\pi d_{m} - fl} \right)$

Lowering the load


 $\sum F_x = -P_L - N \sin \lambda + f N \cos \lambda$ $\sum F_y = F - f N \sin \lambda - N \cos \lambda$ $I_L = \frac{F(f \cos \lambda - \sin \lambda)}{\cos \lambda + f \sin \lambda} \qquad T_L = \frac{Fd_m}{2} \left(\frac{\pi fd_m - 1}{\pi d_m + fl} \right)$

Efficiency of thread $e = \frac{T_0}{T_R} = \frac{Fl}{2\pi T_R}$

Condition for self locking $\pi f d_m > l$ $f > \tan \lambda$

Stress and Strength of power screws

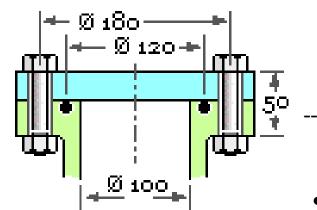
$$\begin{aligned} f_c &= \frac{F f_c d_c}{2} \\ &= \frac{16T}{\pi d_r^3} \quad \sigma = \frac{F}{A} = \frac{4F}{\pi d_r^2} \end{aligned}$$

Torque due to friction in collar

Shear and Axial stress in the body of the screw

Bearing stress

$$\sigma_b = \frac{M}{Z} = \frac{Fp}{4} \frac{24}{\pi d_r n_t p^2} = \frac{6F}{\pi d_r n_t p}$$


 $-\frac{F}{\pi d_m n_t p/2} = -\frac{2F}{\pi d_m n_t p}$

Bending stress at the root of the thread

c=d/2 - maximum span $I=\pi d^4/64 - second moment of area$ Z=c/I - section modulus

The cover of a pressurised cylinder is attached by a self-energising seal and 6 identical bolts M10x1.5 of class 8.8. The fluid pressure is essentially constant at 6 MPa. A safety factor of three is required. Check if the given bolt can sustain the pressure!

P=6MPa 6 class 8.8 M10x1.5 $d_s=120 \text{ mm} N_d=3$ $S_t/\sigma=?$

•SOLUTION:

 $\sigma = \frac{F_b}{A} = \frac{11300}{58}$

•Force on the cover caused by the pressure:

•Force on the individual bolt

•From tables:

Tensile stress area $A_t = 58mm^2$

 $58mm^2$ Proof strength $S_p = 590 MPa$

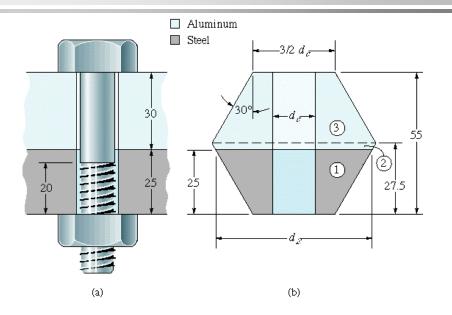
 $F_{c} = p \cdot A_{s} = p \frac{\pi d_{s}^{2}}{4} \qquad F_{c} = 6 \cdot 10^{6} \frac{\pi \cdot 0.12^{2}}{4} = 67858N = 67.9kN$ $F_{b} = \frac{F_{c}}{6} = \frac{67.9}{6} \qquad F_{b} = 11.3\,kN$

 $\sigma = 194 MPa$

•Stress on each bolt:

$$\frac{S_p}{\sigma} = \frac{590}{194} = 3.04 \approx N_d$$

•Selected number of bolts can sustain the load

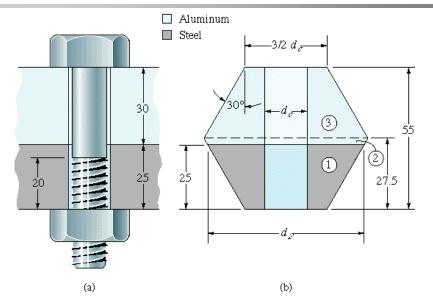

Example 5 – Joint stiffness

A hexagonal bolt and nut assembly is used to join two members. The bolt and the nut are made of steel and the frustum cone angle is 30°. The tread crest diameter is 14 mm and the root diameter is 12 mm. Use the table from lectures for material properties.

Find the bolt and joint stiffness.

Result:

 k_b =4.702e⁸ N/m; k_m =12.38e⁸ N/m C=0.2753



Example 6 – Bolt preload

A hexagonal bolt and nut assembly is used to join two members. The bolt and the nut are made of steel and the frustum cone angle is 30°. The tread crest diameter is 14 mm and the root diameter is 12 mm.

Use the table from lectures for material properties.

Use calculated results k_b =4.702e⁸ N/m; k_m =12.38e⁸ N/m C=0.2753

Determine the maximum load for bolt-joint failure while assuming the non permanent connection and a static safety factor of 2.5. Grade 5.8 coarse thread is used.

P_i=34400 N, P_{max,b}=13111 N, Pmax,j=21163 N.