

Mechanical Analysis and Design ME 2104

Lecture 4

Mechanical Analysis Gear trains

Prof Ahmed Kovacevic

School of Engineering and Mathematical Sciences Room C130, Phone: 8780, E-Mail: <u>a.kovacevic@city.ac.uk</u> <u>www.staff.city.ac.uk/~ra600/intro.htm</u>

Plan for the analysis of mechanical elements

Objective:

Procedures for design and selection of mechanical elements

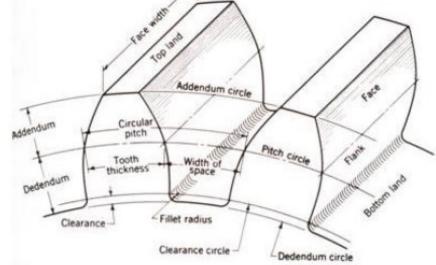
- Week 1 Shafts and keyways
- Week 2 Bearings and screws
- Week 3 Belt and chain drives
- Week 4 Gears and gear trains
- Week 5 Design Project Review

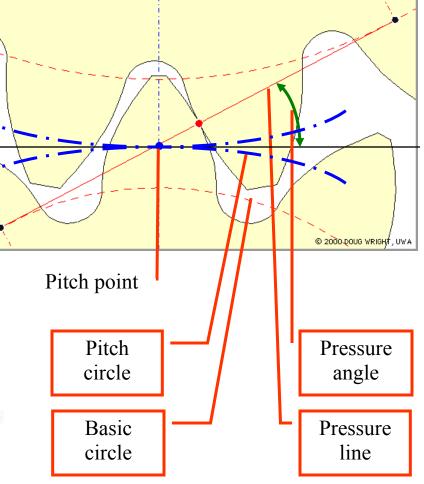
Plan for this week

- Gears
- Gear trains
- Examples

Gear types

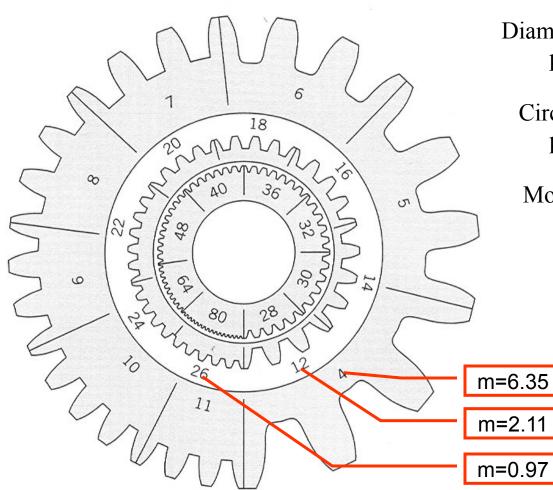

Gear	Input/Output		Motion Axis	Loads
Spur	Rotary	Rotary	Parallel	Tangent
Bevel	Rotary	Rotary	Angled	Tangent
Helical	Rotary	Rotary	Parallel or Crossed	Tangent and Axial
Rack	Rotary	Linear	90°	Tangent
Worm	Rotary	Rotary or Linear	90°	Tangent Not back drivable



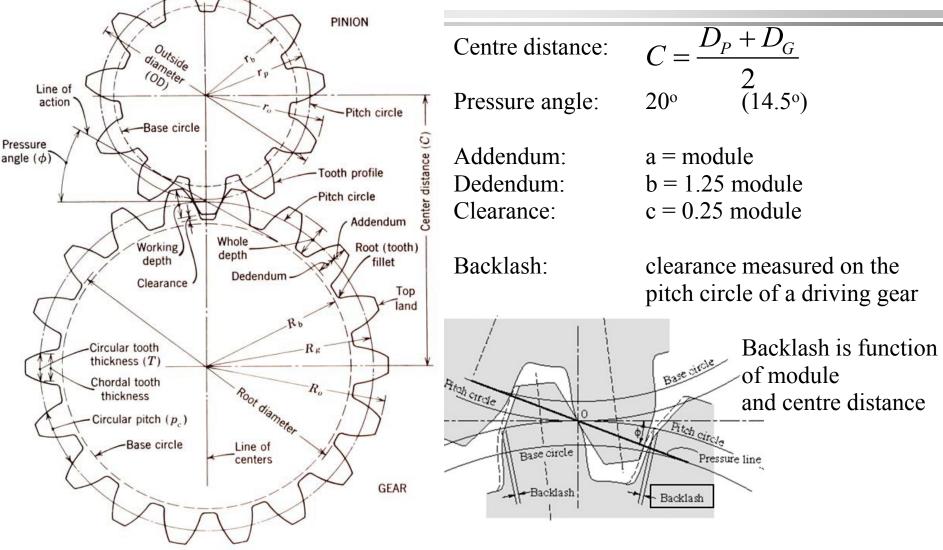


How gears work

•Law of Gearing:

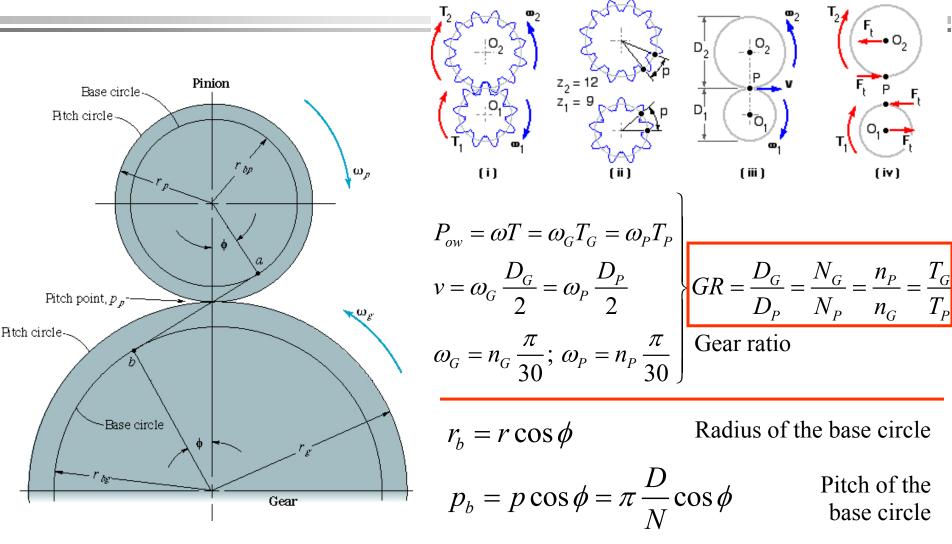

^{(IIII}) Any two curves or profiles engaging each other and satisfying the law of gearing are *conjugate curves*

Module and Pitch



ametral pitch	$P = \frac{N_G}{D_G} = \frac{N_P}{D_P} \left[in^{-1} \right]$
Circular pitch	$p = \frac{\pi}{P} = \pi m = \pi \frac{D}{N} [mm]$
Module	$m = \frac{D}{N} [mm]; \ m = \frac{25.4}{P}$

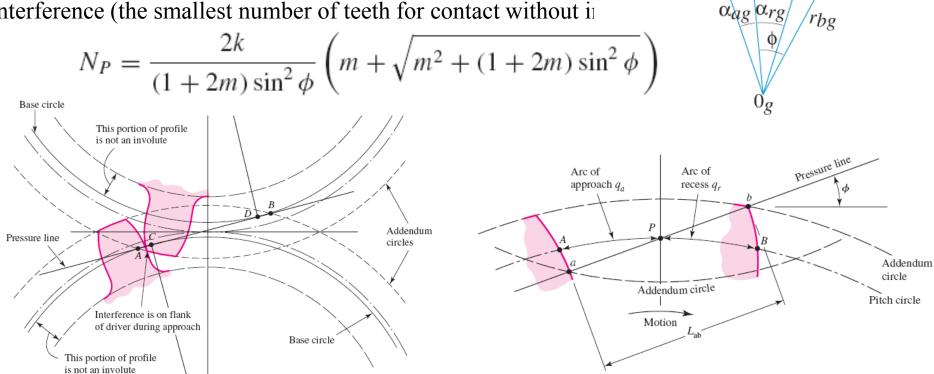
Standard modules are 0.5, 0.8, 1, 1.25, 1.5, 2, 2.5, 3, 4, 5, 6



Relations between gear parameters

Relations between gear parameters

Contact ratio and interference


T

T

Contact ratio:

$$c_r = \frac{L_{ab}}{p_b} = \frac{L_{ab}}{p\cos\phi}$$
$$L_{ab} = \sqrt{r_{op}^2 + r_{bp}^2} + \sqrt{r_{og}^2 + r_{bg}^2} - C_d \sin\phi$$

Interference (the smallest number of teeth for contact without in

 0_n

Φ

 α_{ap}

 r_{Og}

 α_{rp}

 r_p

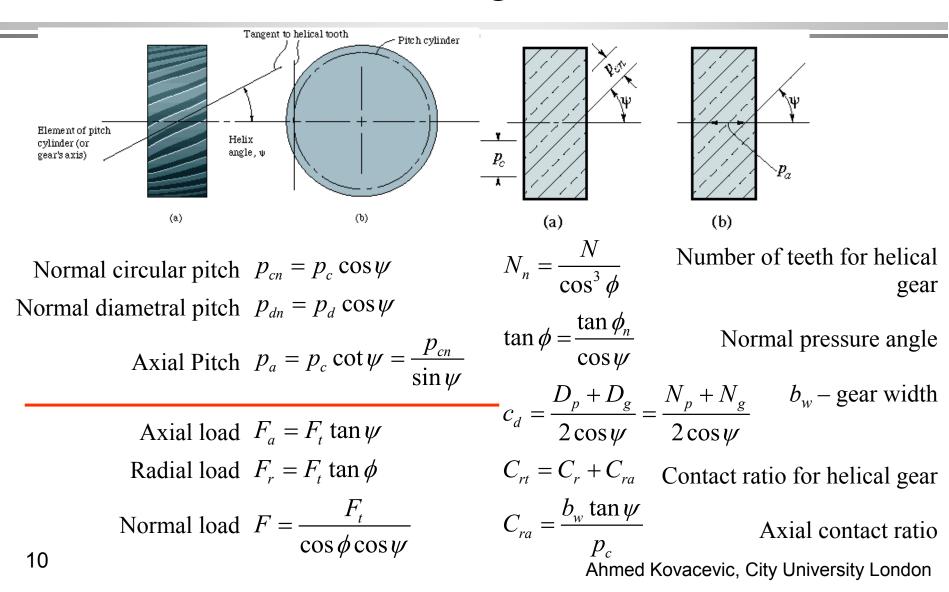
rg

 r_{op}

rbp/

 $L_a^*b^*$

h


0

`bp

*

Helical gears

Example 11 – helical gear

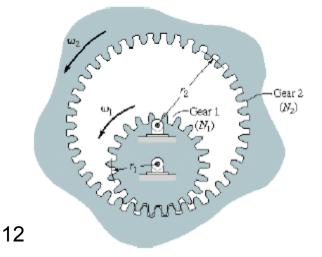
An involute gear drives a high-speed centrifuge. The speed of the centrifuge is 18000 rpm. It is driven by a 3000 rpm electric motor through 6:1 speedup gearbox. The pinion has 21 teeth and the gear has 126 teeth with a diametral pitch of 14 per inch. The width of gears is 45.72 mm and the pressure angle is 20°. Power of the electric motor is 10kW.


Determine :

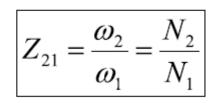
- a) A contract ratio of a spur gear $C_r = 1.712$ a) A contact ratio of a helical gear with helix angle of 30°. b) b)
- A helix angle if the contact ratio is 3 C)
- d) Axial, radial and contact (normal) force for both helix angles.

- $C_{r1} = 6.343$
- *ψ*=9.122° C)
- d) $F_{a1}=160.8 N$ $F_{22}=44.7 N$

External Meshing


Gear ratio

 N_2 ω_{γ} Z_{21} N_1 \mathcal{O}_1


Center distance

$$c_d = r_1 + r_2$$

Internal Meshing

Gear ratio

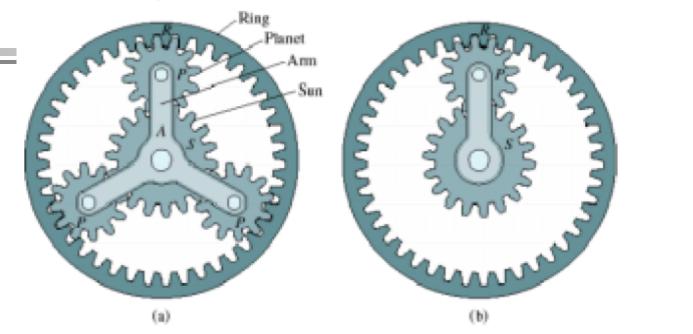
Center distance

$$c_d = r_1 - r_2$$

_

n

Simple Gear Trains

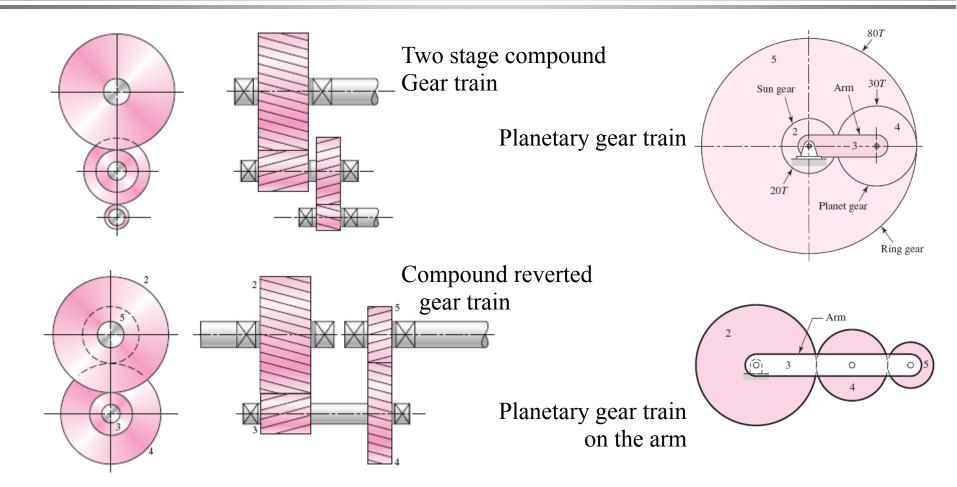

Compound Gear Trains Gear ratio $Z_{51} = \frac{\Omega_5}{\Omega_1}$ $\frac{\Omega_5}{\Omega_5} = \frac{\Omega_5}{\Omega_5} \frac{\Omega_4}{\Omega_4} \frac{\Omega_3}{\Omega_2} \frac{\Omega_2}{\Omega_2}$ Shaft 1: $\Omega_1 = \Omega_4 \ \Omega_3 \ \Omega_2 \ \Omega_1$ Shaft 5: Speed = Ω_1 Shaft 3: Speed = Ω_5 Shaft 4: Speed = Ω_3 Shaft 2: Speed = Ω_4 Speed = Ω_2 Ω_5 N_{5} N_{7} <u>C</u>2

Ahmed Kovacevic, City University London

.

Planetary Gear Train

To relate the rpm of the ring to the rpm's of the arm and sun:

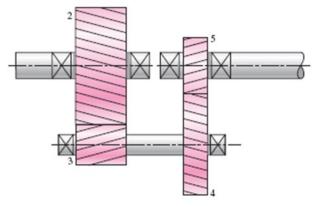

To relate the rpm of the planets to the rpm's of the arm and sun:

Relationship between the numbers of teeth on the ring, planets and sun:

$$\frac{\omega_{\text{ring}} - \omega_{\text{arm}}}{\omega_{\text{sun}} - \omega_{\text{arm}}} = -\frac{N_{\text{sun}}}{N_{\text{ring}}}$$
$$\frac{\omega_{\text{planet}} - \omega_{\text{arm}}}{\omega_{\text{sun}} - \omega_{\text{arm}}} = -\frac{N_{\text{sun}}}{N_{\text{planet}}}$$
$$N_{\text{ring}} = N_{\text{sun}} + 2N_{\text{planet}}$$

Examples of gear trains

Example 12 – Compound gear train


A gearbox is needed to provide an exact 30:1 increase in speed, while minimizing the overall gearbox size. The input and output shafts should be inline.

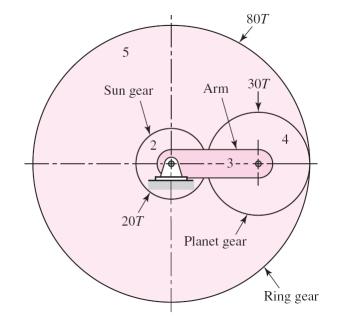
Governing equations are:

$$N_2/N_3 = 6$$

 $N_4/N_5 = 5$
 $N_2 + N_3 = N_4 + N_5$

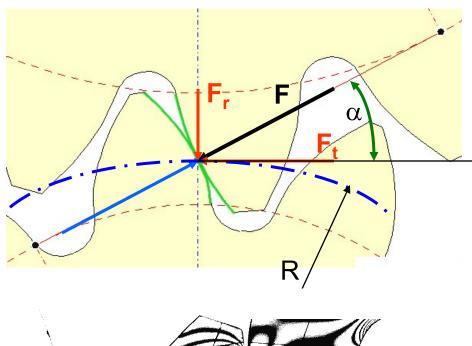
Specify appropriate teeth numbers.

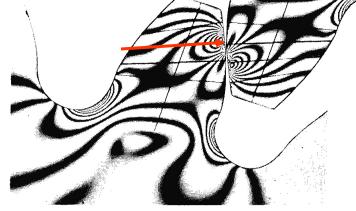
$$N_2 = 108; N_3 = 18; N_4 = 105; N_5 = 21$$



Example 13 – Planetary gear train

The sun gear in the figure is the input, and it is driven clockwise at 100 rpm. The ring gear is held stationary by being fastened to the frame.


Find the rev/min and direction of rotation of the arm and gear 4.


$$n_3 = -20 \text{ rpm}, n_4 = 33.3 \text{ rpm},$$

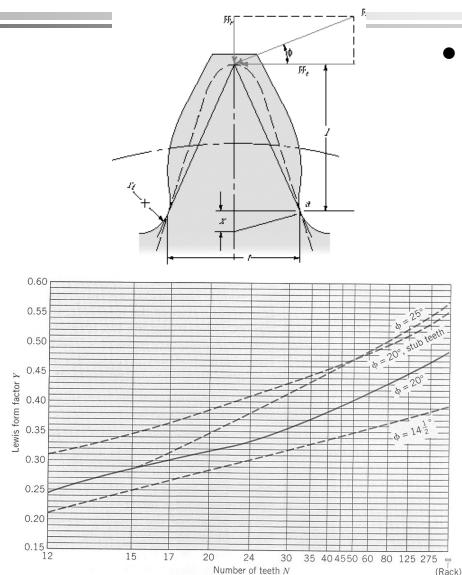
Gear Force Calculation

- Stress based on the Force acting
- The force is caused by the transmitted torque. That force always acts along the pressure line.

$$T = \frac{P}{\omega} = F_t R \rightarrow$$

$$F = \frac{F_t}{\cos \alpha}$$

$$F_{t} = \frac{30P}{\pi n R} [N]$$
$$F = \frac{30P}{\pi n R \cos \alpha}$$


• The force induces stress concentration on gear.

We need to answer:

How much power a pair of gears in question can transfer?

Basic gear stress calculation

- Basic analysis of gear-tooth is based on Lewis Equation which has following assumptions:
 - » The full load is applied on the tip of a single tooth (the worse case)
 - » Radial component is negligible
 - » The load is distributed uniformly along the teeth width
 - » Friction forces are negligible
 - » Stress concentration is negligible.

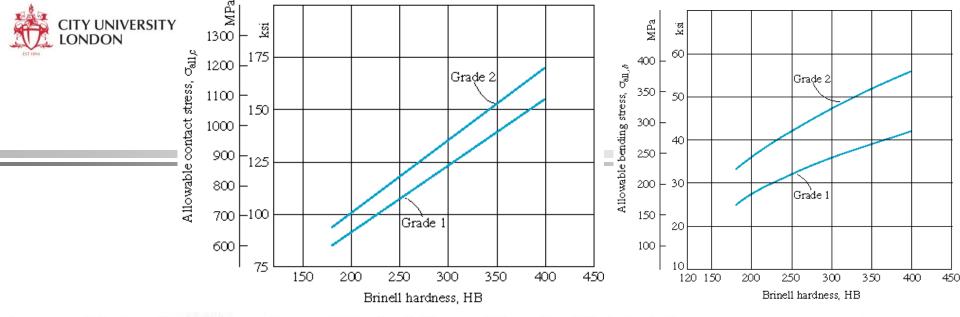
Basic stress in teeth

$$\sigma_{B} = \frac{F_{t}}{mbY}$$

Power transmitted

$$P_B = \frac{S_y}{f_s} n D m b Y$$

	Driven Machines					
Power Source	Uniform	n Light s	hock M	oderate shock	Heavy shock	
		Ap	plication fact	or, Ka		
Uniform	1.00	1.2		1.50	1.75	
Light shock	1.20	1.4	0	1.75	2.25	~
Moderate shock	1.30	. 1.7	0	2.00	2.75	B
Diametral	pitch pd,	Modul	le, <i>m</i> ,	Size f	factor, K_s	_
in.	-1	m	n			_
≥5	5		≤5		1.00	
4		6			1.05	-
3		8			1.15	_
3 1.2	5	12 20			1.25 1.40	
1.2	5	-	idth, b _w m:	•		
. 0	100	200	300		0 500	
Load distribution factor, K _m					1.5	$\frac{b}{d}$
to 1.6						
onf						
1.4						
iutist 1.2						
<u>§</u> 1.0						
- 0	2 4	68	10 12	14 16	5 18 20	
		Face w	ridth, b 🛒 in	1.		
1.00						
K,		V	/ery accurate g	earing		
j 0.80						
cfac					0 vel turber	
Dynamic factor, K _y 80 80		6	-7 Transtai	9 ssion accutacy le		
		~_≤5 Ŭ	Qy= Wall			
0.40	1000 2000	3000 4000	5000 6000	7000 8000	9000 10 000	
		Pitch-line v	elocity, ν _f ft/n	nin		

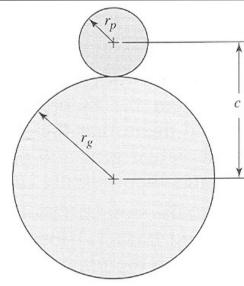

Correction factors

Basic stress must be corrected for:

- Shocks,
- Size effects,
- Uneven load distribution,
- Dynamic effects.

$$\sigma = \sigma_B \frac{K_a K_s K_m}{K_v}$$
$$P = P_B \frac{K_a K_s K_m}{K_v}$$

- K_a Application factor
- K_s Size factor
- K_m Load distribution factor
- K_v Dynamic factor


Average Mechanical Properties and Typical Uses of Ductile (Nodular) Iron

Brinell	171	langation	Deicconte	Tensile	Modulus				
Hardness, H_B			Ratio	GPa	10 ⁶ psi		Typical	Uses	
167	a 2001	15.0	0.29	169	24.5	Valves and	fittings for stea	m and chem	icals
167		15.0	0.29	168	24.4	Machine co	mponents subje	ect to shock a	and fatigue
192		11.2	0.31	168	24.4	Crankshafts	, gears, rollers		
331		1.5	0.28	164	23.8				
	Tensi	ile Strength	1				Torsional	Strength	
Ulti	mate	3	lield			Ult	imate	Y	lield
MPa	10 ⁶ psi	MPa	10 ⁶ psi	MPa	10 ⁶ psi	MPa	10 ⁶ psi	MPa	10 ⁶ psi
461	66.9	329	47.7	359	52.0	472	68.5	195	28.3
464	67.3	332	48.2	362	52.5	475	68.9	297	30.0
559	81.8	362	52.5	386	56.0	504	73.1	193	28.0
974	141.3	864	125.3	920	133.5	875	126.9	492	71.3
	Ultin 461 464 559	Hardness, El H_B (%) 167 (%) 167 167 192 331 Tensi Ultimate MPa 10 ⁶ psi 461 66.9 464 67.3 559 81.8	Hardness, H_B Elongation (%) (in 50 mm) 167 15.0 167 15.0 167 15.0 192 11.2 331 1.5 Tensile Strength Ultimate Y MPa 10 ⁶ psi MPa 461 66.9 329 464 67.3 332 559 81.8 362	Hardness, H_B Elongation (%) (in 50 mm)Poisson's Ratio16715.00.2916715.00.2919211.20.313311.50.28Tensile StrengthYieldMPa106 psiMPa106 psi46166.932947.746467.333248.255981.836252.5	Hardness, H_B Elongation (%) (in 50 mm)Poisson's RatioGPa16715.00.2916916715.00.2916819211.20.311683311.50.28164Tensile StrengthCom Str UltimateMPa106 psiMPa106 psiMPa46166.932947.735946467.333248.236255981.836252.5386	Hardness, H_B Elongation (%) (in 50 mm)Poisson's RatioGPa10° psi16715.00.2916924.516715.00.2916824.419211.20.3116824.43311.50.2816423.8Tensile StrengthCompressive Strength: UltimateMPa10° psiMPa10° psiMPa10° psi46166.932947.735952.046467.333248.236252.555981.836252.538656.0	Hardness, H_B Elongation (%) (in 50 mm)Poisson's RatioGPa10° psi16715.00.2916924.5Valves and Machine could 16816715.00.2916824.4Machine could Crankshafts 16819211.20.3116824.4Crankshafts Pinions, gea3311.50.2816423.8Pinions, geaCompressive Strength: UltimateUltimateUltimateMPa10° psiMPa10° psiMPa46166.932947.735952.047246467.333248.236252.547555981.836252.538656.0504	Hardness, H_B Elongation (%) (in 50 mm) Poisson's Ratio GPa 10 ⁶ psi Typical 167 15.0 0.29 169 24.5 Valves and fittings for stea Machine components subjecting 167 15.0 0.29 168 24.4 Machine components subjecting 192 11.2 0.31 168 24.4 Crankshafts, gears, rollers 331 1.5 0.28 164 23.8 Pinions, gears, rollers, slide Ultimate Yield Compressive Strength: Ultimate MPa 10 ⁶ psi MPa 10 ⁶ psi 461 66.9 329 47.7 359 52.0 472 68.5 464 67.3 332 48.2 362 52.5 475 68.9 559 81.8 362 52.5 386 56.0 504 73.1	Hardness, H_B Elongation (%) (in 50 mm) Poisson's Ratio GPa 10 ⁶ psi Typical Uses 167 15.0 0.29 169 24.5 Valves and fittings for steam and chemin Machine components subject to shock and Crankshafts, gears, rollers 192 11.2 0.31 168 24.4 Machine components subject to shock and Crankshafts, gears, rollers, slides Juitimate Tensile Strength Vield Compressive Strength: Ultimate Torsional Strength MPa 10 ⁶ psi MPa 10 ⁶ psi MPa 10 ⁶ psi MPa 461 66.9 329 47.7 359 52.0 472 68.5 195 464 67.3 332 48.2 362 52.5 475 68.9 297 559 81.8 362 52.5 386 56.0 504 73.1 193

^aThe first two sections of grade number indicate minimum values (in ksi) of tensile ultimate and yield strengths. *Source: ASM Metals Reference Book*, American Society for Metals, Metals Park, OH, 1981.

Example 14 – Gear stress calculation

SOLUTION:

Centre distance:

The pitch diameter of the pinion is:

The pitch velocity is:

Transferred load (Tangential force):

Pinion A and gear B are shown in figure. Pinion A rotates at 1750 rpm, driven directly by an electric motor. The driven machine is an industrial saw consuming 20 kW. The following conditions are given:

<i>N_P</i> =20	m=3 mm	Q _v =6
N _G =70	b=38 mm	f _s =1.5
n _p =1750 rpm	Pow=20 kW	

What is the centre distance? Compute the stress due to bending in the pinion and gear and find required Brinell hardness for this application.

$$c = \frac{(D_P + D_G)}{2} = \frac{m(N_P + N_G)}{2} = \frac{390}{2} = 135 [mm]$$

$$D_P = mN_P = 3 \cdot 20 = 60 [mm] = 0.06 [m]$$

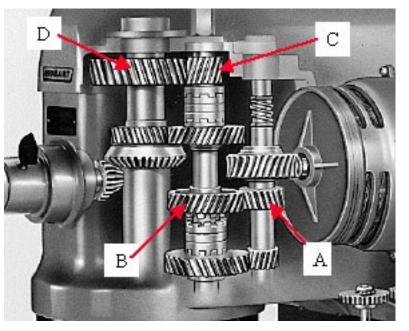
$$V_P = \frac{\pi n_P D_P}{60} = \frac{\pi \cdot 1750 \cdot 0.06}{60} = 5.5 [m/s] = 1090 [ft / min]$$

$$F_t = \frac{60Pow}{\pi n_P D_P} = \frac{60 \cdot 20000}{\pi \cdot 1750 \cdot 0.060} = 3638 [N]$$

Example 14 – cont.

From the diagram:	$Y_{P}=0.34$ and $Y_{G}=0.42$
Basic bending stress is: pinion –	$\sigma_{BP} = \frac{F_t}{mbY_P} = \frac{3638}{0.003 \cdot 0.038 \cdot 0.34} = 94 \cdot 10^6 [Pa]$
gear -	$\sigma_{BG} = \frac{F_t}{mbY_G} = \frac{3638}{0.003 \cdot 0.038 \cdot 0.42} = 76 \cdot 10^6 [Pa]$
Correction factors are: (from diagrams and tables)	Application factor $K_a=1.5$ Size factor $K_s=1.0$ Load distribution $K_m=1.2$ Dynamic factor $K_v=0.68$
Corrected pinion bending stress:	$\sigma_{P} = \sigma_{BP} \frac{K_{a} K_{s} K_{m}}{K_{v}} = 2.64 \cdot 94 \cdot 10^{6} = 248 [MPa]$
Allowable stress required for this application:	$S = f_s \sigma_P = 248 \cdot 1.5 = 372 [MPa]$

From the diagram, any material with Brinel hardness higher than HB=400 will satisfy application requirements.


Example 15 – Industrial mixer

A gear train is made up of helical gears with their shafts in a single plane, such as the arrangement in the vertical mixer shown. The gears have a normal pressure angle of 20° and a 30° helix angle. The middle shaft is an idler. Gears AB and CD are engaged, the others in the illustration are not in contact. The module of all gears is 2 mm. The table gives the number of teeth per gear. Gear A exerts a load of 1200 N onto gear B. The shaft containing gear A is driven by the motor at a speed of 200 rpm. All gears are Grade

2 and have been hardened to – HB 350 and have 50 mm face widths.

Find:

The normal load exerted by gear C on gear D and the speed of gear D and the safety factor for gear D based on bending and contact stresses.

Coursework