	Mechanical Analysis and Design ME 2104

Lecture 6

Modelling of a Tennis Ball Server

Prof Ahmed Kovacevic

School of Engineering and Mathematical Sciences
Room C130, Phone: 8780, E-Mail: a.kovacevic@city.ac.uk www.staff.city.ac.uk/~ra600/intro.htm

$\begin{array}{\|l} \hline \text { Eag } \\ \text { CITY UNIIERSITY } \\ \text { LONDON } \end{array}$		
Modeling of a Tennis Ball Server		
Definition of a Projectile: " A projectile is a fired, thrown, or otherwise projected object, such as a bullet, having no capacity for self propulsion " In the absence of a propulsion force, the only force acting on an idealized projectile is gravity " Additional forces - due to drag, lift and wind - will also be present and may or may not be significant		
		Ahmed Kovacevic, City University

Projectile Motion Calculation

Determining Values of v_{0} or θ Needed to Strike a Target
en B. pour launcher can fire only at discrete values θ needed
(a) $x=x_{0}+v_{0}(x, y)$: First write position equations:
Let $L=\left(x-x_{0}\right)$ and $h=\left(y-y_{0}\right)$, solve (a) to get: (c) $t=\frac{L}{v_{0} \cos \theta}$

Substitute (c) into (b): $\quad h=v_{0} \sin \theta\left(\frac{L}{v_{0} \cos \theta}\right)-\frac{1}{2} g\left(\frac{L}{v_{0} \cos \theta}\right)^{2}$ Using $\sin \theta / \cos \theta=\tan \theta$ and the identity $(1 / \cos \theta)^{2}=\sec ^{2} \theta=\tan ^{2} \theta+1$ We obtain (d) $\tan ^{2} \theta-\frac{2 v_{0}^{2}}{g L} \tan \theta+\left[\frac{2 v_{0}^{2} h}{g L^{2}}+1\right]=0$
This is a quadratic equation of the form $a u^{2}+b u+c$, where $u=\tan \theta$. The two roots correspond to the two launch angles ($\theta_{1}=\tan u_{1}$ and $\theta_{2}=\tan ^{-1} u_{2}$) which may be used to reach the same target.
Method A: Set your launcher at a fixed launch angle, θ. Calculate
the launch velocity launcheded to strike a target located at an
arbitrary (x, y) position:
st write position equations:
$\begin{array}{ll}\text { (a) } x=x_{0}+v_{0}(\cos \theta) t & \text { (b) } \boldsymbol{y}=y_{0}+v_{0}(\sin \theta) t-1 / 2 g t^{2}\end{array}$
Let $L=\left(x-x_{0}\right)$ and $h=\left(y-y_{0}\right)$, solve (a) to ge
(c) $v_{0} t=\frac{L}{\cos \theta}, \quad$ sub this into (b): $\quad h=\boldsymbol{\operatorname { s i n }} \theta\left(\frac{L}{\cos \theta}\right)-\frac{1}{2} g t^{2}$
Solve for t.
(d) $t=\sqrt{\frac{2(L \tan \theta-h)}{g}}$
(e) $v_{0}=\frac{L}{\cos \theta} \sqrt{2(L \tan \theta-h)}$

\% Citry unversity	
Work-Energy to Produce Desired V_{0}	
The Work-Energy equation:	
$\Sigma U_{1-2}=T_{2}-T_{1}$	
Where,	
$T_{1}=0$	
$T_{2}=m V^{2} / 2$	
ΣU_{1-2} - work done on the projectile while in the launcher. $\begin{aligned} & \text { Schematic of Launcher; } \\ & \mathrm{d}=\text { spring deflection }\end{aligned}$	
Recall: work $=$ force \times distance	$\mathrm{d} \sin \theta=$ change in elevation of projectile
Work done on the projectile is sum of :	
a) Work of the spring: $\quad U_{s}=+k d^{2} / 2$	
b) Gravity: $\quad U_{g}=-m g(d \sin \theta)$	
c) Friction - not estimated	
$\Sigma \mathrm{U}_{1-2}=\mathrm{T}_{2}-\mathrm{T}_{1}$	
$\mathrm{kd}^{2} / 2-\mathrm{mg}(\mathrm{d} \sin \theta)-$ Friction $=1 / 2 \mathrm{~m} \nu^{2}+\mathrm{KE}$ (of spring, mechanism	
	Ahmed Kovacevic, City University London

$\left.\begin{array}{l}\text { Derk-Energy Example } \\ \text { Determine spring stiffness, } k \\ \text { Determine deflection needed to strike an } 8 \mathrm{~m} \text { target } \\ \text { with a } 55 \mathrm{~g} \text { projectile. } \\ \text { Neglect friction and kinetic energy imparted to } \\ \text { mechanism. } \\ \begin{array}{ll}\text { (1) Spring Stiffness (Spring from a hardware store) } \\ 5 \mathrm{~kg} \text { load will compress the spring for } 17.5 \mathrm{~mm} \text {; Therefore, } \mathrm{k}_{\mathrm{sp}}=2.8 \mathrm{~N} / \mathrm{mm}=2.8 \mathrm{kN} / \mathrm{m} \\ \text { (2) From previous chart: (} \mathrm{v}_{0}=9.2 \mathrm{~m} / \mathrm{s}, \theta=56^{\circ} \text {) to strike } 8 \mathrm{~m} \text { target } \\ \text { (3) Given values: } & \text { (a) Mass }=55 \mathrm{~g}=0.055 \mathrm{~kg} \\ \text { (b) Velocity }=9.2 \mathrm{~m} / \mathrm{s}\end{array} \\ \begin{array}{l}\text { L = spring deflection } \\ \mathrm{d} \sin \theta=\text { change in elevation of projectile }\end{array} \\ \text { Ahmed Kovacevic, City University London }\end{array}\right]$

(6) Caution
This is only approximate value since friction and kinetic energy of the launch mechanism are
neglected. However, this gives an idea of how to select a spring or other mechanism for
achieving launch of the ball.
(7) Velocity
To achieve accurate launch one needs to adjust velocity accurately.
If a launch to the distance of 8.5 m is required.
At the launch angle of 56° the required velocity is $9.48 \mathrm{~m} / \mathrm{s}$. The calculation yields a spring
deflection of 41.5 mm , only 1.5 mm more than needed for the first example.
Note: This is difficult to achieve!
Ahmed Kovacevic, city University London

- For modeling purposes: " Find range of velocities and angles necessary to get tennis ball to the targets " Next, depending on your chosen design, determine how you will supply the necessary initial velocity " Consider drag effects as well

