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Modeling of a Tennis Ball Server

� Definition of a Projectile:  
» A projectile is a fired, thrown, or otherwise 

projected object, such as a bullet, having no 
capacity for self propulsion

» In the absence of a propulsion force, the only force 
acting on an idealized projectile is gravity

» Additional forces – due to drag, lift and wind – will 
also be present and may or may not be significant
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Modeling of a Tennis Ball Server

� Choice of Projectile:
» Neglecting drag, lift and wind should work well for typical 

projectile unless the problem involves a low mass or high 
cross-sectional area projectile

» Consider the drag force on a ping pong ball (immediately after 
launch; assuming a launch velocity of 9.5 m/s):

Fd = Cd·ρ·A·v2

Fd = (1/2)(1.21 kg/m3)[π(.038/2)2](9.5 m/s)2

= 0.062 kg·m/s2 = 0.062 N

» Consider the force in light of the mass 
(0.0025 kg = 2.5 g) of a ping pong ball

» Using F = ma:  0.062 N = 0.0025·a
a = 24.8 m/s2 !! > 9.81 m/s2
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Basic Projectile 
Motion Equations

Commonly Used Projectile Equations (in x-y coordinate system) 

Coordinate Direction:             x y 

Acceleration: ax = 0 
 

            ay = -g 
where,      g = 9.81 m/s2  
 

Velocity: vx = v0x = const    (2)   vy = v0y - gt 

Position:  (1)  x = x0 + vxt    (3)   y = y0 + v0yt - 1/2 gt2 
Additional equation:     (4)   vy

2 = v0y
2 - 2g (y - y0 ) 

Calculating v0r and v0s, 

 given v0 and θ0. 

v0y

v0x = vx

v0

θ

 

   (5)  vx = v0 cos θθθθ 

   (6)  v0y = v0 sin θθθθ 
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Projectile Motion Calculation

Determining Values v0 or θθθθ needed to strike a target 

Method A:  Set your launcher at a fixed launch angle, θ.  Calculate 
the launch velocity, v0, needed to strike a target located at an 
arbitrary (x,y) position:   

  First write position equations: 

        (a)  x = x0 + v0(cos θθθθ)t           (b)  y = y0 + v0(sin θθθθ)t - 1/2 gt2 

Let L= ( x - x0 ) and  h = ( y - y0 ),  solve (a) to get 

  (c)  v t
L

0 ====
cos θθθθ

,      sub this into (b):    h
L

gt==== 





 −−−−sin

cos
θθθθ

θθθθ
1
2

2  

Solve for t:         (d)    g

hL
t

)tan(2 −= θ
 

Substitute t into equation (c) and solve for v0:     

 

               (e)   v
L g

L h0 2
====

−−−−cos ( tan )θθθθ θθθθ
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Projectile Motion Calculation

Determining Values of v0 or θθθθ Needed to Strike a Target 
Method B:  If your launcher can fire only at discrete values of v0, 

select an appropriate v0 and calculate the precise angle θ needed 
to strike a target located at (x,y):  First write position equations: 

        (a)  x = x0 + v0(cos θθθθ)t           (b)  y = y0 + v0(sin θθθθ)t - 1/2 gt2 

Let L= (x - x0) and  h = (y - y0),  solve (a) to get:  (c)   t
L

v
====

0 cos θθθθ
 

Substitute (c) into (b):    h v
L

v
g

L
v

====














−−−−












0

0

1
2

0

2

sin
cos cos

θθθθ
θθθθ θθθθ

   

Using  sinθ/cosθ = tanθ  and the identity  (1/cosθ)2 = sec2θ = tan2θ + 1 

We obtain (d)  tan tan2 2 0
2 2 0

2

2
1 0θθθθ θθθθ−−−− ++++ ++++















====
v

gL

v h

gL
 

This is a quadratic equation of the form  au2 + bu + c, where u = tanθ.  
The two roots correspond to the two launch angles  ( θ1=tan-1u1   and   
θ2=tan-1u2 )  which may be used to reach the same target.   
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Projectile Example

Example 1:  Projectile Heuristics 

A “heuristic” is a “rule-of-thumb.”  
The objective of this example is to use 
some simple numbers is to help the 
learner to more easily estimate 
approximately what speeds might be 
necessary for a launched projectile.  
Determine, for level ground,   
(1)  The launch angle that gives the 
maximum distance;   
(2)  The corresponding launch 
velocity;  (3)  The maximum height of 
the trajectory. 

Equation summary:  (a)  Optimal angle: θ = 45º 
(b)  Minimum launch velocity to strike a target: 

gLv =0  

(c)  Maximum height of the projectile: ymax = L/4 

(1)  To find the launch angle that gives the maximum distance (on level ground), first write position 
equations. (Let  L= ( x - x0 ) and  h = ( y - y0 ) = 0 ): 

(a)  L = v0(cos θ)t            (b)  h = 0 = v0(sin θ)t – 1/2 gt2 

Divide (b) by t to get:    (c)  0 = v0(sin θ) – 1/2 gt  

Rearrange (c) to get the landing time:   tland = [(2v0/g)sin θ] 
Substitute tland into (a) to get L = (2v02/g)[cos θ sin θ] 

Since cos θ sin θ = (sin 2θ )/2, for level ground we can calculate the landing distance L from:   

L = (v02/g)sin 2θ 

Since sin 2θ is maximized at 2θ = 90º, L is therefore maximum at θ = 45º.  Specifically, L= (v02/g). 
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Projectile Example

Example 1:  Projectile Heuristics 

A “heuristic” is a “rule-of-thumb.”  
The objective of this example is to use 
some simple numbers is to help the 
learner to more easily estimate 
approximately what speeds might be 
necessary for a launched projectile.  
Determine, for level ground,  (1)  The 
launch angle that gives the maximum 
distance;  (2)  The corresponding 
launch velocity;  (3)  The maximum 
height of the trajectory. 

Equation summary:  (a)  Optimal angle: θ = 45º 
(b)  Minimum launch velocity to strike a target: 

gLv =0   

(c)  Maximum height of the projectile: ymax = L/4 

(2)  The minimum launch velocity to reach a target (on level ground) at a distance L is: 

gLv =0 .  From 
    
v
0

= L

cosθ
g

2(Ltanθ − h)
. 

(3)  The maximum height, ymax, of the trajectory is found as follows:     (Recall that at ymax, vy = 0) 

 vy
2 = 0 = (v0 sin θ)2 - 2g(ymax - 0 ) 

Solve for ymax:       ymax = (v0 sin θ)2/2g 

If θ = 45º,  sin 45 = 2/2 , and (sin 45)2 = 1/2 .  also note that   v0
2 = gL. 

Finally,  ymax = L/4 
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Projectile Example

Example 1:  Projectile Heuristics 

A “heuristic” is a “rule-of-thumb.”  
The objective of this example is to use 
some simple numbers is to help the 
learner to more easily estimate 
approximately what speeds might be 
necessary for a launched projectile.  
Determine, for level ground,  (1)  The 
launch angle that gives the maximum 
distance;  (2)  The corres-ponding 
launch velocity;  (3)  The maximum 
height of the trajectory. 

Equation summary:  (a)  Optimal angle: θ = 45º 

(b)  Minimum launch velocity to strike a target: gLv =0   

(c)  Maximum height of the projectile: ymax = L/4 

A simple numerical example:  (These are “ballpark” numbers):  A slow pitch softball pitcher wishes 
to hit home plate (approximately 15 m away) with a pitch with minimum effort.  Assume no drag 
and that he releases the ball close to ground level (h = 0) very near the pitching rubber.   

The optimal angle is  45º. 

Minimum velocity 0 9.81 15 144 12 /v gL m s= = ⋅ ≈ = .   

The height of the trajectory would be L/4 = 12/4 = 3 m 
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Projectile Example

Launch velocities vs. launch angles for selected target distances
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Projectile Example

Max height  vs. launch angles for selected target distances
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Work-Energy to Produce Desired V0

ΣU1-2 = T2 - T1 
 

kd
2
/2 - mg(d sin θ) – Friction = 1/2 mv

2
 + KE (of spring, mechanism 

The Work-Energy equation:

ΣU1-2=T2 -T1

Where,
T1, T2 – Initial and final Kinetic Energy of the projectile
T1=0
T2=mv2/2
ΣU1-2 - work done on the projectile while in the launcher.

Recall:   work = force x distance
Work done on the projectile is sum of :
a) Work of the spring: Us=+kd2/2
b) Gravity: Ug=-mg (d sinθ)
c) Friction – not estimated
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Work-Energy Example

(1) Spring Stiffness (Spring from a hardware store)  
5kg load will compress the spring for 17.5 mm; Therefore, ksp = 2.8 N/mm= 2.8 kN/m  

(2) From previous chart:  (v0 = 9.2 m/s, θ = 56°) to strike 8 m target

(3) Given values: (a) Mass = 55 g =0.055 kg
(b) Velocity  = 9.2 m/s

Determine spring stiffness, k

Determine deflection needed to strike an 8m target 
with a 55g projectile.  

Neglect friction and kinetic energy imparted to 
mechanism.
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Work-Energy Example

(4)  Write work-energy equation:

T1+ΣU1-2 = T2

kd2/2- mg (d sin θ) = mv2/2

2.8 d2/2 - 0.055 9.81 sin 56° d - 0.055 9.22 /2 = 0

This is a quadratic equation:

1400d2 - 0.447d – 2.327 = 0,      of the form    ad2 + bd + c = 0

Use the quadratic equation yields roots d1,2 = 0.04 m

(5)  Result:

The launcher spring needs to compress for 40 mm in order to propel a 55g 
projectile out of the launcher with a velocity of 9.2 m/s.   

This is for a spring with ksp = 2.8 N/mm.
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(6)  Caution

This is only approximate value since friction and kinetic energy of the launch mechanism are 
neglected.  However, this gives an idea of how to select a spring or other mechanism for 
achieving launch of the ball.

(7)  Velocity

To achieve accurate launch one needs to adjust velocity accurately. 

If a launch to the distance of 8.5 m is required.  

At the launch angle of 56° the required velocity is 9.48 m/s. The calculation yields a spring 
deflection of 41.5mm, only 1.5 mm more than needed for the first example.  

Note: This is difficult to achieve!

Work-Energy Example
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Summary

� For modeling purposes:
» Find range of velocities and angles necessary to 

get tennis ball to the targets
» Next, depending on your chosen design, 

determine how you will supply the necessary initial 
velocity

» Consider drag effects as well
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Plan for today
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