

Mechanical Analysis and Design **ME 2104**

Lecture 7

Specification Quality – Function Relationship

Prof Ahmed Kovacevic

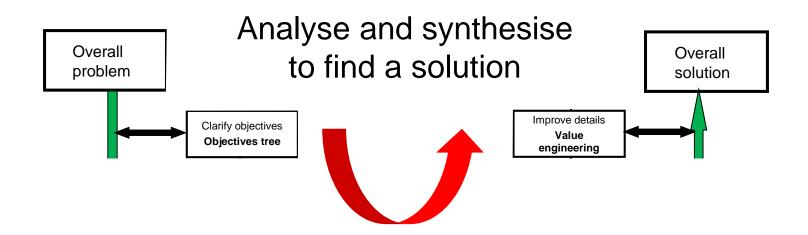
Department of Mechanical Engineering and Aeronautics Room CG25, Phone: 8780, E-Mail: a.kovacevic@city.ac.uk www.staff.city.ac.uk/~ra600/intro.htm

Plan for today

- Team meeting (finish FM, start QFD) (45 min)
- Clarify issues from last week (10 min)
- Lecture (25 min)
 - » Quality Functional Relationship
- Additional lecture (10 min)
 - » Preparation for 1st project review

Clarify issues from last week

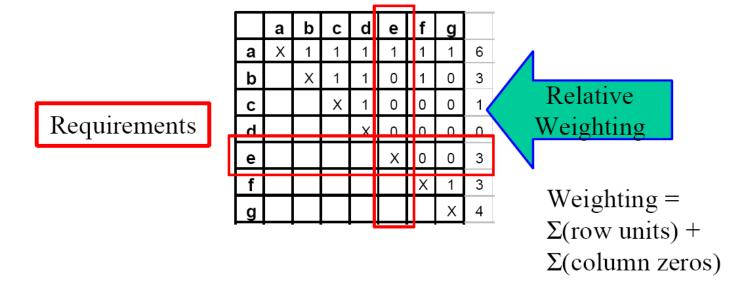
Team issues:


- » Reports from Coaches mixed success???
- » Management tools (team leaders.,,,)
- » Coaches are assessing you…
- » Step by step process…

Objectives tree

- » Weighting
- Functional Model
 - » How detailed?

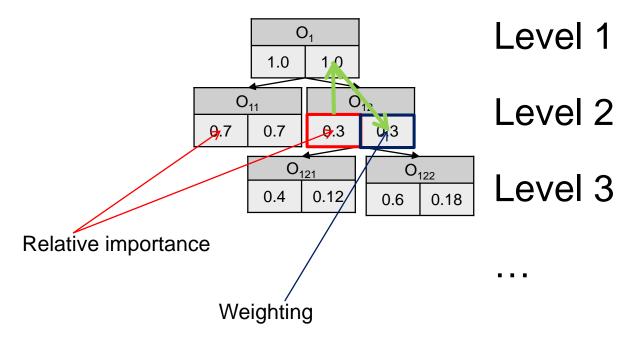
Ways to obtain a solution



Find a solution directly

Objectives tree – weighting

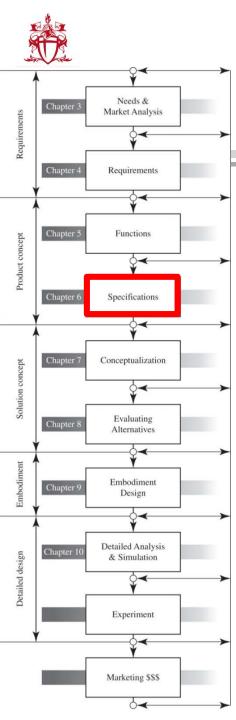
1) Binary weighting matrix



Once summed normalise from 1-9

Objectives tree – weighting

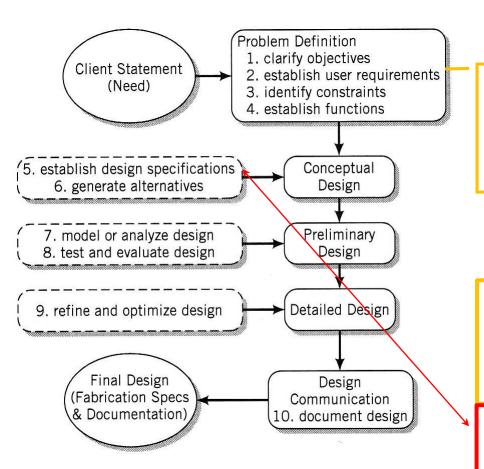
2) Relative importance based weighting



Each level to be normalised from 1-9 Use Level 3 in QFD Matrix

How detailed FM?

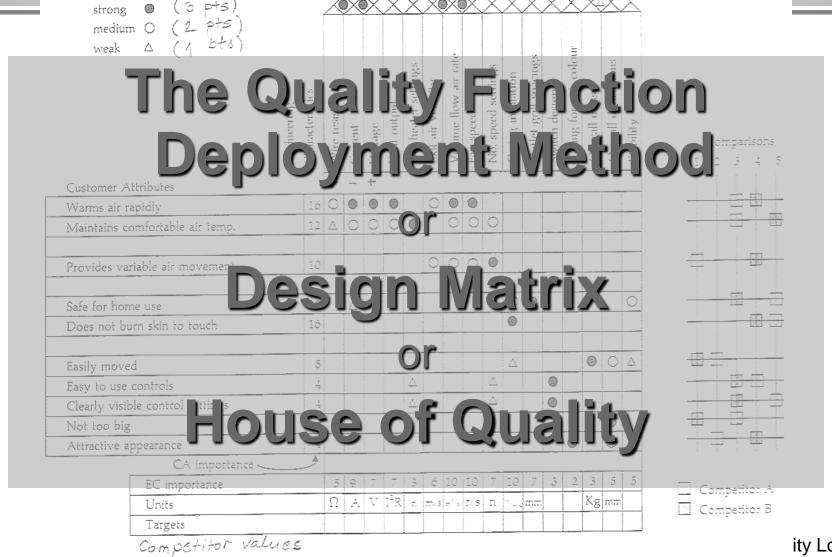
- At least 24 sub-functions
- Main sub-functions are:
 - » Ball storage & loading
 - » Sealing
 - » Aiming
 - » Launching
- The main sub-functions to be detailed in at least 4 sub-functions each...


Specification - Lecture (Part 1)

- Engineering Design Process 2nd
 Edition, Chapter 6
 - » Quantify qualitative objectives
 - » Organize specifications into categories
 - » Further clarify the need statement
 - » A specification consists of a metric and value
 - Metrics are usually derived from functions (Chapter 5 & Lecture 5)
 - Specifications can be established using different methods; we will use the 'Performance Specification Method' (Chapter 6, section 6.2 & Lecture 8)

 Ahmed Kovacevic, City University London

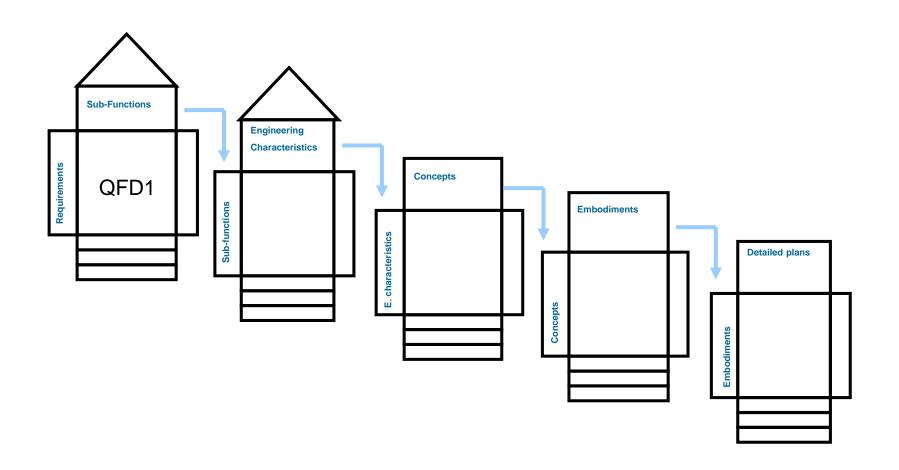
Phase 4: Establish Function



- Clarify Objectives The Objectives tree method
 - Prepare list of objectives
 - Order the list
 - Draw the objectives tree
- 2. Establish user requirements
- 3. Identify constraints
- 4. Establish functions
 - Create 'black box' model of the product
 - Break down overall function in sub-functions
 - Connect sub-function chains together
 - Define the system boundaries (Constrains)
- 5. Establish design specifications
 - Quality-Function deployment
 - Quality-Function matrix (house of quality)
 - Performance specification Method

Relationships:

Establish Design Specification



Quality Function Deployment

- Quality (Objectives tree) is defined first
 - » Customer needs and requirements
 - » Desirable product attributes qualities
- Functions (Functional model) defined and analysed
 - » Function and sub-functions of product subsystems
 - » Required functions to obtain attributes
- Quality-Function Deployment (1st QFD) defined
 - » Function and sub-functions of product subsystems required to obtain attributes
- Engineering characteristics (2nd QFD) defined
 - » Performance, Prescription, Procedure
 - » Developed physical properties quantities

QFD Charts

Steps in QFD Method

- QFD has background in Japanese design science.
 Concerned with the translation of customer requirements into engineering characteristics.
 - 1. Identify customer requirements in terms of product attributes,
 - 2. Determine the relative importance of attributes,
 - 3. Evaluate the attributes of competing products,
 - 4. Draw a matrix of product attributes against engineering characteristics,
 - 5. Identify the relationship between engineering characteristics and product attributes,
 - 6. Identify relevant interactions between engineering characteristics,
 - 7. Set target figures to be achieved for the engineering characteristics.

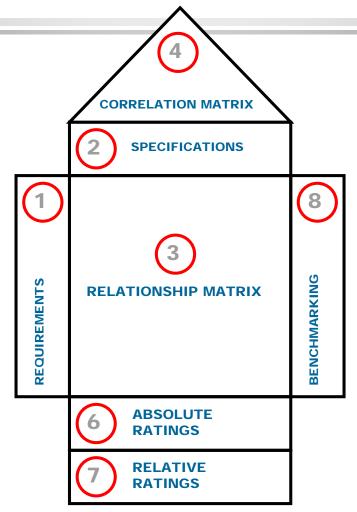
Steps in QFD Method (1)

- 1. Identify customer requirements in terms of product attributes
 - Customer requirements should not be re-interpreted but only described in terms of product requirements. (Objectives tree)
- 2. Determine the relative importance of attributes,
 - Rank-ordering methods can be used to help determine the relative weights of each attribute.

To do that systematically compare pair of objectives, one against the other.

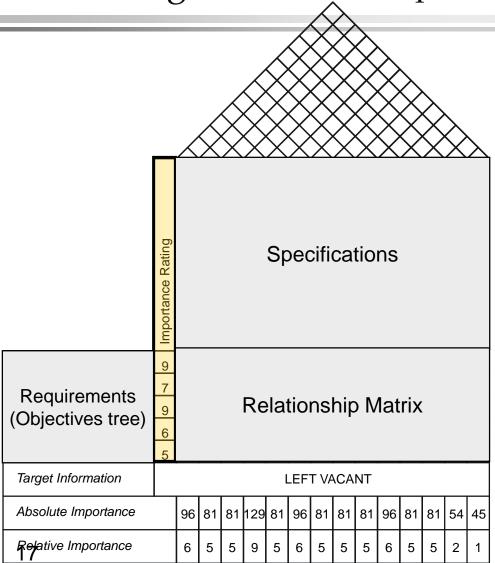
<u>Objectives</u>	Α	В	С	D	E	row total
Α	-	0	0	0	1	1
В	1	-	1	1	1	4
С	1	0	-	1	1	3
D	1	0	0	-	1	2
Ε	0	0	0	0	-	0

- 3. Evaluate the attributes of competing products,
 - Performance scores for competing products and the own product should be listed against the set of customer requirements



Steps in QFD Method (2)

- 4. Draw a matrix of product attributes against engineering characteristics,
 - All engineering characteristics that influence any of product attributes should be included and expressed in terms of measurable units.
- 5. Identify the relationship between engineering characteristics and product attributes,
 - The strength of the relationship can be expressed by numbers or symbols.
- 6. Identify relevant interactions between engineering characteristics,
 - The roof matrix provides the check and gives an opportunity to recognise strong connections
- 7. Set target figures to be achieved for the engineering characteristics.
 - These information are obtained from the comparison with competitor products or from trials with customers. These can be set comparative to competitors.



$QFD\ Chart\ 1\ {\scriptstyle \text{(Specifications \& Requirements)}}$

Stage 1 Chart - Requirements & Specifications

- Each requirement is given a rating
 - 1 9 (9 is the most important)
 - e.g. if safety is very important it can be rated 9 etc.
- Relationship (correlation) of each specification and each requirement is rated
 - This is to find out how well each specification addresses each requirement.
- Relationships are rated as follows:
 - 0 (or blank) if there is NO correlation
 - 1 if there is a slight or weak correlation
 - > 3 if there is medium correlation
 - 9 if there is high/strong correlation

Ahmed Kovacevic, City University London

Stage 1 Chart - Requirements & Specifications

	\longrightarrow														
			\langle										\geqslant	\geq	\rightarrow
	Importance Rating	Provide seat area	Provide Strength (seat)	Provide comfort to buttocks	Support seat	Provide saet height	Provide hand rest area	Support hand rest	Provide Strength (H.R.)	Provide height to (H.R.)	Provide back rest area	Provide strength (B.R.)	Provide height (B.R.)	Provide Manouverability	Provide pleasing appearance
Seat to rest in comfort	9	9	9	9	9	9									
Support to back	7				3						9	9	9		
Support for hand rest	9				3		9	9	9	9					
Easy to move around	6													9	
Pleasing appearance	5	3					3				3				9
Target Information						l	_EF	TVA	٩CA	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					
Absolute Importance		96	81	81	129	81	96	81	81	81	96	81	81	54	45
Relative Importance		6	5	5	9	5	6	5	5	5	6	5	5	2	1

- Multiply each specification rating by it's corresponding requirement importance rating and add up the column to get the absolute importance rating.
- Eg for the first specification (Provide seat area):
- $(9 \times 9) + (3 \times 5) = 96$
- The highest absolute rating becomes the benchmark value and is given a relative importance of 9. All other specifications are then weighted to this value.
- E.g. 129 is the maximum value becomes 9
- For 1st specification 96/129 x 9 = 6 rounded down

Relationships:

strong (3 pts)
medium (2 pts)
weak (1 pts)

Design Matrix

		Engl	Wire	Curr	Volt	Heat	No.	Exit	Volt	Fan	Zo.	Casi	Out	Swit	Cası	Ove	Ove	Stab
Customer Attributes		12 at 2	+	-	+								-					
Warms air i	rapidly	16	0	•		0		0	0	9								
Maintains o	omfortable air temp.	12	Δ	0	0	0	•		0	0	0							592
Provides variable air movement		10						0	0	0	•							
Safe for hor	me use	20	165	Δ				30				0	0					С
Does not b	urn skin to touch	16		100								0	3					
Easily move	ed	8	-	± -8								Δ				•	0	Δ
Easy to use controls		4		-			Δ				Δ							
Clearly visible control settings		4			17	2.8	Δ	100			Δ	1		0		rine.		
Not too big		6	,			16									Δ		0	
Attractive appearance		4	1			1									0	400	0	
	CA importance \				Ĭ.								11					
	EC importance	4 - W	5	9	7	7	3	6	10	10	7	10	7	3	2	3	5	5

Kg mm Competitor A Competitor B

ing form & colour

rall dimensions

Comparisons

let grill spacings

ame flow air rate

speed settings

heater settings

Ω A V I²R n m/s m/s r/s n

Units

Targets

Preparation for 1st Project Review

- Report 10-15 pages, to include all elements of the project and
- PPT Clear, large fonts, not much text
- 30th October @ 11,00am in AG21 Groups 1-5
- 3rd November @ 10,00am in ELG01 Groups 6-9
 - » Please be in room on time ready for presentation
 - » Order: Team 1, 2, 3, ..., 6,7,...
 - » Entire group to step in front... but not all need to present...

Deliverables for Phase 1 (Vision and Concept)

Report (Moodle): 29th October @ 17:00 – Word and pdf

Presentation: G1-5 30th October AG21 @ 11:00 – PPT+ Notebook

G6-9 3rd November ELG01@11:00 – PPT+ Notebook

<u>Team management</u>: <u>Function:</u>

Working agreement Black Box - Functional Model

Team Branding and Logo Full Actual Functional Model

WBS Preliminary Parameter Analysis

Team calendar

Gantt chart QFD1:

Group Notebook Con

Requirements:

Figure of Merit analysis

Budget, very short Introduction

Market Research

Client Statement/Constraint

Objective Tree and Weightings

Preliminary Requirements List

QFD1.

Competitors analysis

Weighting of the Objectives

Importance of Functions

Projectile motion and pressure calc.

Morphological Chart

Concept Variants

Team Vision

Plan for Phase 2 - Embodiment