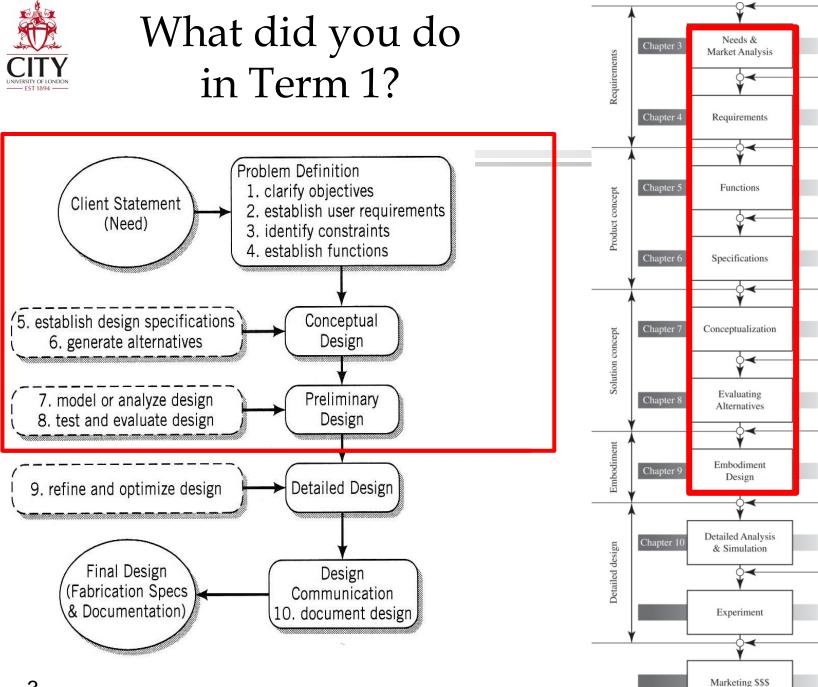


Mechanical Analysis and Design **ME 2104**

Lecture 12

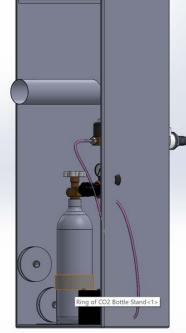
From Embodiment to Detail design


Prof Ahmed Kovacevic

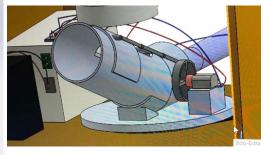
Department of Mechanical Engineering and Aeronautics Room CG25, Phone: 8780, E-Mail: a.kovacevic@city.ac.uk www.staff.city.ac.uk/~ra600/intro.htm

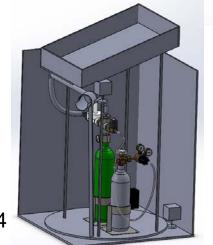
Plan for today

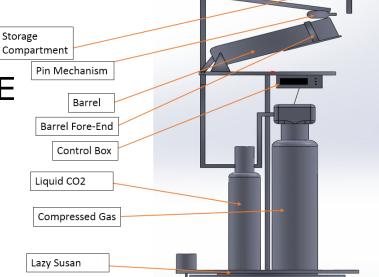
- Lecture Detail design (20 min)
- Deliverables for 3rd Project Review (5 min)
- Manufacturing (20 min)
- Team meeting (45 min)
- Summary (5 min)


Ahm

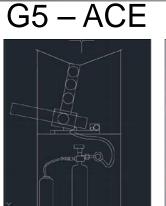
of London

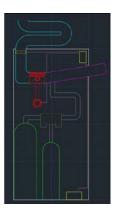

Concepts developed

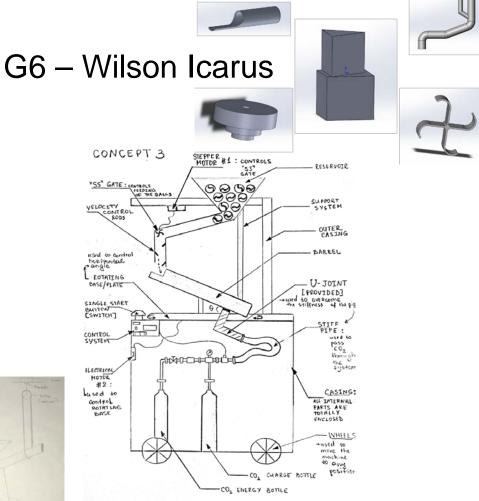



G2 – Advantage

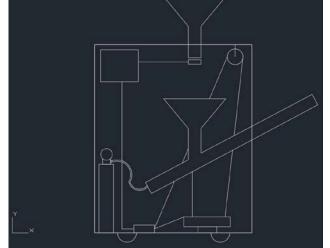
G4-ACE


G3 - Flatline



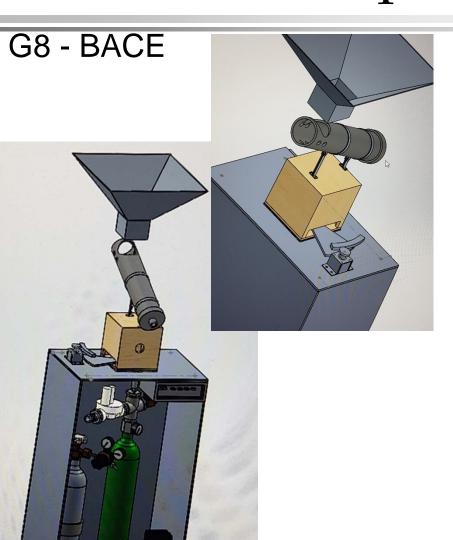

Concepts developed

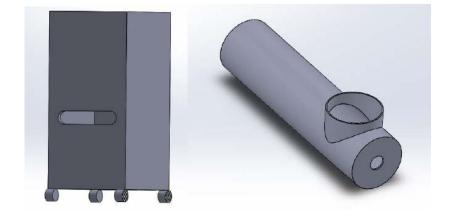
Concepts acveroped

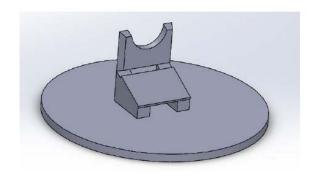




G7 - Serve




Ahmed Kovacevic, City, University of London



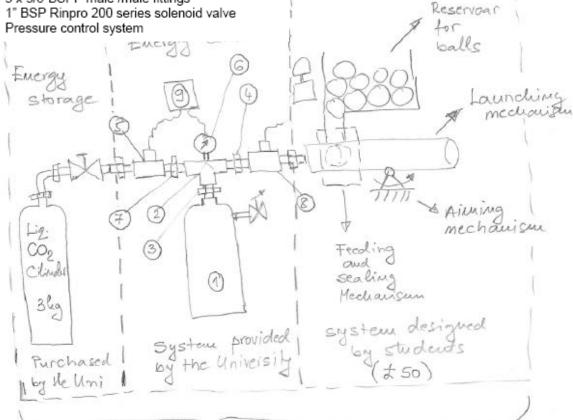
Concepts developed

G9 - ACE Mate

Ahmed Kovacevic, City, University of London

What next?

- Implement feedback from coaches on 2nd PR
- 3rd Design review 12th February 2018
 - » To include detailed calculation of all relevant elements (fluid, bearings, transmission, motors, control protocols...)
 - » Full 3D CAD model in SolidWorks
 - » Manufacturing drawings (assembly and detailed)
 - Shopping list, purchase plan and manufacturing plan
- Manufacturing starts on Monday 19th Feb 2018
- All materials to be ordered by 1st March 2018
- Testing in the Sports Centre on 26th Mar 2018
- "Dragons Den" presentation 9th April 2018


Schedule

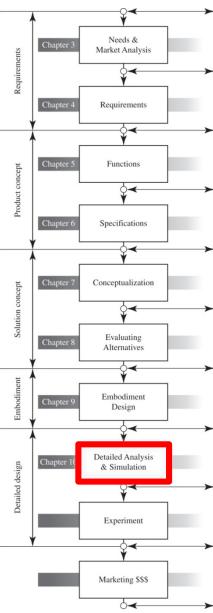
Term 2		Return to ME2104 web page	DAE4: Bar	DAE4: Banerjee							
Mook	Data	Design	Analysis								
Week	Date	ELG01 - Mondays 14,00-15,50	Ge	Geary - Thursdays 15,00-16,30							
4.4	29-Jan	Detailed design	DAE3: Dw	DAF3: Dynamics Lecture							
11		Project work - Embodyment design	Date	Week no	Tir	me	AE1 & CLG01				
12	1	Detailed design - revision	Mon 19/02/2018	Week 4	16:00	18:00	Supervised Manufact.				
			Thu 22/02/2018	(5 hrs)	15:00 18:00		Manufacturing				
13	12-Fob	3rd Project Review - Detailed Design	Mon 26/02/2018	Week 5	16:00	18:00	Supervised Manufact.				
13	16-Feb	31d Project Review - Detailed Design	Thu 01/03/2018	(5 hrs)	15:00	18:00	Manufacturing				
14	19-Feb Detailed design - revision		Mon 05/03/2018	Reading	09:00	12:00	Supervised Manufact.				
17		Project work - Detailed design	Tue 06/03/2018	week	09:00	17:00	Manufacturing				
15		Manufacturing - briefing and rules	Wed 07/03/2018	Į J	09:00	12:00	Manufacturing				
		Project - Purchasing/Manufacture		(18 hours)	09:00	12:00	Manufacturing				
RLW	W 05-Mar Reflective learning week - Manufact		Mon 12/03/2018	1	16:00	18:00	Supervised Manufact.				
	1	Work on the Main Project	Thu 15/03/2018	(5 hrs)	15:00	18:00	Manufacturing				
16		Manufacturing - Issues	Mon 19/03/2018	1 	16:00	18:00	Supervised Manufact.				
	_	Project work - Manufacturing	Thu 22/03/2018	(5 hrs)	15:00	18:00	Manufacturing				
17		Manufacturing - Refining prototypes					FOM Testing				
<u> </u>		Project work - Manufacturing	Thu 26/03/2018	Week 8	13:00	17:00	Sports Centre				
18	26-Mar	Testing of Prototypes (FOM) (26/3/2018)					"Dragon's Den"				
 '	30-Mar		Mon 09/04/2018	Week 10	14:00	18:00	200 Aldersgate				
19	02-Apr	Project work Report preparation		DAE4. Delormations are ivi - project work							
 '	06-Apr	, , , ,					•				
20	09-Apr 13-Apr	Final Presentation		DAE4: Deformations&FEM - Assesment							

To be supplied to you

- CO2 fire extinguishers to use as pressure vessel
- BSP T piece 1"
- 1" BSP male 3/8"BSP female bush
- 1" BSP male/male nipple
- 10 bar 3/8"BSP female solenoid valve
- 0 10 bar pressure gauge
 - 3 x 3/8"BSPP male /male fittings

1. OU TOOK ENDMIN : 25 GO

- Control box
- Some motors



Technical support

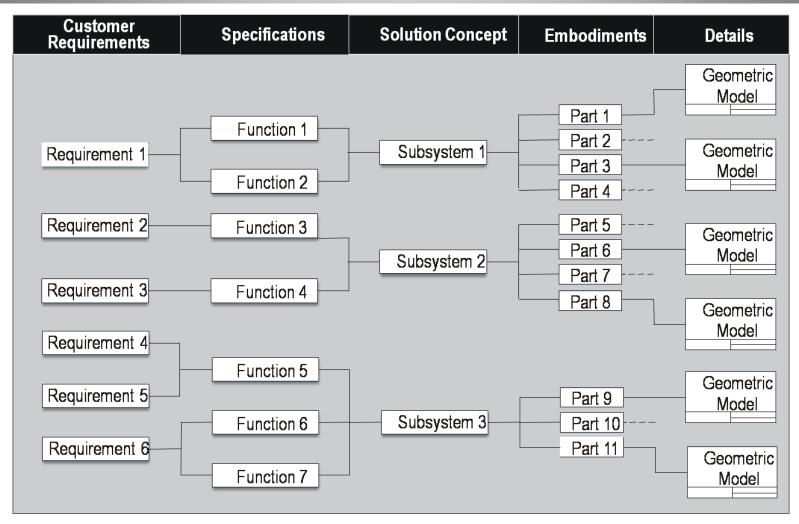
```
Mr Richard Leach – technical lead
Mr Keith Pammet – general support/
                   control systems
Mr Paolo Lo Giudice - gennral support
Mr Phil Beckwith - woodwork
Mr Rob Cherry – general support
Mr Zaheer Hashim – control systems
```


Detail design

- Engineering Design Process 2nd
 Edition, Chapter 10
 - » Understand the detailed design stage
 - » Identify and select engineering materials that suit a product
 - » Construct a bill of materials
 - » Use techniques introduced in this chapter to evaluate and analyze design cost

What is the detail design stage?

- Final step before prototyping
- Analysis and simulation
- Material selection
- Dimensions and tolerances
- 3D CAD model
- Assembly Drawings
- Manufacturing Drawings with all dimensions



Steps in detail design (analysis)

- 1. Check design safety -calculate all important components
- 2. Select materials make a list of materials that satisfy stress requirements and using decision matrix select the best
- 3. 3D CAD model & manufacturing drawings (Solid Works)
- 4. Check manufacturability with available manufacturing methods.
 - » use rapid prototyping and CNC.
 - » Use laser cutting machine (very suitable for aluminium cutting)
- 5. Cost analysis for a prototype and production unit
- 6. Aesthetics

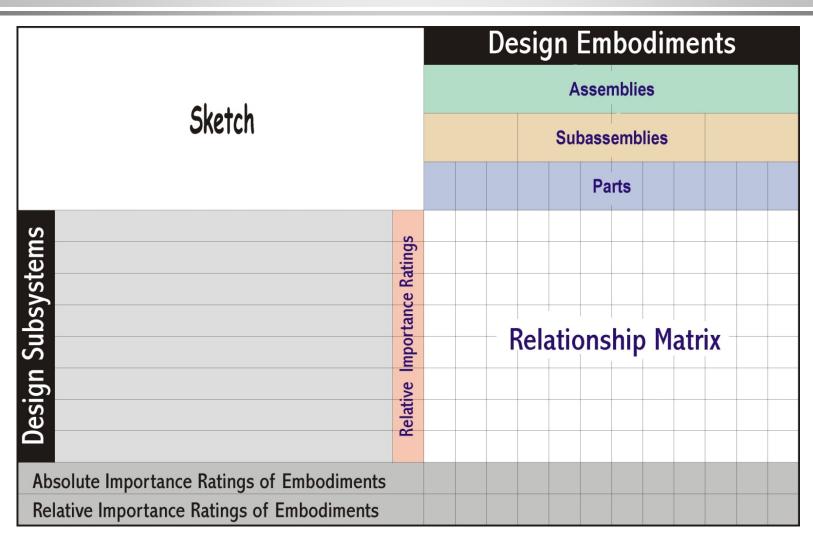
Evolution of a product within the Design Process

QFD 3

QFD 1: Objectives vs Functions

> To determine importance of each Function

QFD 2: Functions vs Engineering Characteristics


- > To determine importance of each Engineering characteristic
- What is important to calculate and design carefully

QFD 3: Subsystems vs Parts

- > Functions grouped in subsystems (storing, feeding, sealing, aiming, pressure regulation, launching, ...)
- Which parts are most important for the proper function to be properly designed, selected and manufactured.

QFD 3 (Embodiments)

Chair Example - Stage 3 Chart

		Back Cushion			Seat Cushion		Hind Leg Assembly						ont Leg sembly		LeftAR Assy		RhtAR Assy		
	Relative Importance	Cushion	Board	Cover	Cushion	Board	Cover	Back rest frame	Hind Seat Support	Hind Legs	Left Seat Support	Right Seat Support	Left Front Leg	Right Front Leg	Front Seat Support	Left Arm rest	Left A.R. Support	Right Arm rest	Right A.R. Support
Seat Cushion Assy	9				9	9	9		9		9	9			9				
4Legs	7									9			9	9					
Back rest assy.	6	9	9	9															
Back rest frame	3							9		3									
Hand rest	4															9		9	
Hand rest support	9																9		9
Good Surface 1				9			9			9			9	9		9		9	
Target Information	Target Information			LEFT VACCANT															
Absolute Importance		54	54	63	81	81	90	27	81	81	81	81	72	72	81	45	81	45	81
Relative Importance		5	5	6	8	8	9	3	8	8	8	8	7	7	8	5	8	5	8

 An essential characteristic of the finished design is its easiness and cost effectiveness for manufacture. Therefore materials and associated manufacturing process selection is an essential consideration that has to be undertaken before any decisions on the detail design can be taken.

- Material and Manufacturing process selection involves:
 - » The identification of design functions related to materials and manufacturing processes.
 - » The material and manufacturing related functions are translated into quantitative, actionable and measurable material and manufacturing process characteristics
 - » These form the basis to select the appropriate materials and manufacturing processes.
- Production Plans greatly depend on the Manufacturing facilities available and the quantity to be produced.

Cost Analysis

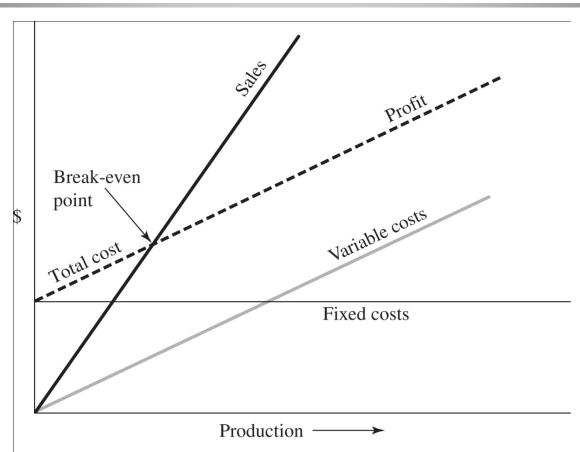
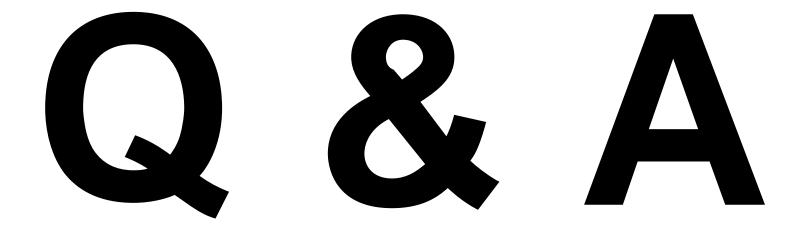



Figure 10.14 Break-even chart.

TABLE 10.3 The Make–Buy Decision							
Reason to Make	Reason to Buy						
Cheaper to make	Cheaper to buy						
Company has experience making it	Production facilities are unavailable						
Idle production capacity available	Avoid fluctuating or seasonal demand						
Compatible and fits in production line	Inexperience with making process						
Part is proprietary	Existence and availability of suppliers						
Wish to avoid dependency on supplier	Maintain existing supplier						
Part fragility requiring high packing	Higher reliability and quality						
Transportation costs are high							

Places to purchase materials

- Electrical http://onecall.farnell.com/

Electronics http://www.rapidonline.com/

- Electrical/Mech. http://uk.rs-online.com/web/

- Tubing http://www.directplastics.co.uk/

Metal http://www.smithmetal.com/

General http://www.screwfix.com/jsp/container.jsp

Tasks for this week

- Finalise function carrier analysis
- 3rd QFD
- 3D SW models
- Meeting on Thursday...

Content for 3nd Project Review

- Updated, Functional model, QFD2, Requirements list etc. from Phase 2
- QFD 3
- Calculations for all transmission systems, motors, pressure for launching
- 3D CAD Model
- Assembly & Manufacturing Drawings
- Specification on materials to by and produce
- Prototype costs

Report (max.10 Pages + Drawings in Appendix) Due: Sunday, 11th February 2018, 11:59 PM

- Introduction 5%
- Updated Objectives, Functional model, QFD, Requirements list (10%) (In appendices)
- QFD3 20%
- Calculations of function carriers* 25%
- 3D CAD model 10%
- Assembly drawings 5%
- Detailed drawings 15%
- Specifications and costs 5%
- Summary 5%

% Indicates weighting of Marks

* Function carriers are devices to perform sub-functions like motors, gears, belts, valves ...

Presentation (10 Slides, 15 mins + 10min Q's) Due: Sunday, 11th February 2016, 11:59 PM

Presentations:

Mon. 12th Feb 14,00 – 18,00, ELG01

- Introduction (Team and summary of concept) 5%
- Updated Functional model, QFD, Requirements list (10%)
- QFD3 20%
- Calculations of Function carriers 25%
- 3D CAD model 10%
- Assembly drawings 5%
- Detailed drawings 15%
- Specifications and costs 5%
- Summary 5%