

Mathematical model of continuum				
Conservation laws: continuity, momentum, energy, concentration and space $\frac{d}{dt} \int_{V} \rho \phi dV + \int_{S} \rho \phi (\mathbf{v} - \mathbf{v}_{s}) \cdot d\mathbf{s} = \int_{S} \Gamma_{\phi} \operatorname{grad} \phi \cdot d\mathbf{s} + \int_{S} \mathbf{q}_{\phi S} \cdot ds + \int_{V} q_{\phi V} \cdot dV$				
	f	\mathbf{G}_{f}	q _{/S}	$q_{_{fV}}$
Continuity	1	0	0	0
Fluid momentum	v _i	m _{eff}	$\left[\mu_{eff}\left(\operatorname{grad} \mathbf{v}\right)^{\mathrm{T}} - \left(\frac{2}{3}\mu_{eff}\operatorname{div} \mathbf{v} + p\right)\mathbf{I}\right] \cdot \mathbf{i}_{i}$	$f_{\mathrm{b},i}$
Solid momentum	$\frac{\partial u_i}{\partial t}$	h	$\left[\eta\left(\operatorname{grad}\mathbf{u}\right)^{\mathrm{T}}+\left(\lambda\operatorname{div}\mathbf{u}\cdot3K\alpha\Delta T\right)\mathbf{I}\right]\cdot\mathbf{i}_{i}$	$f_{\mathrm{b},i}$
Energy	е	$\frac{k}{\partial e/\partial T} + \frac{\mu_t}{\sigma_T}$	$-\frac{k}{\partial e/\partial T}\frac{\partial e}{\partial p}$ · grad p	T: grad v + <i>h</i>
Concentration	c _i	$ ho D_{i, m eff}$	0	S _{ci}
Space	$\frac{1}{\rho}$	0	0	0
Turbulent kinetic energy	к	$\mu + \frac{\mu_t}{\sigma_k}$	0	P- hoarepsilon
Dissipation	е	$\mu + \frac{\hat{\mu}_t}{\sigma_c}$	0 $C_1 P \frac{\varepsilon}{k}$	$-C_2 \rho \frac{\varepsilon^2}{k} - C_3 \rho \varepsilon \operatorname{div} \mathbf{v}$
$\rho = \rho(p,T), e = e(p,T)$ Constitutive relations, equation of state and turbulence model.				

