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Methods and Tools in Screw compressor design

» 2-D design tools - Conventional approach

- SCORPATH (Screw COmpressor Rotor Profiling and THermodynamics)
- 2-D CAD Software: AutoCad, ...

» 3-D design tools - More modern approach

- SCORPATH (Screw COmpressor Rotor Profiling and THermodynamics)
- 3-D CAD MDT, Inventor, Catia, Solid Works, Pro Engineer

- CCM (CFD) cComet, Star, CFX, Fluent ...

» 3-D design management - Concurrent approach

-D | SCO (Design Integration for Screw COmpressors)
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Mathematical model of continuum
Conservation laws: continuity, momentum, energy, concentration and space
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p=p(p.T), e=e(p.T) Constitutive relations, equation of state and turbulence model.
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Elements for successful CCM calculation

® Physically sound system
® Discretisation of PDE, space and time

® Regular numerical grid which describes a
system well

® Well defined Initial and Boundary conditions
® Reliable and robust discretisation scheme

® A lot of computational resources and time
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Computational Continuum Mechanics
in Screw Compressors

« A commercial CCM solver(s) capable for efficient calculation
 “Expert system” for application in screw machines

« METHODSs: Analytical Grid Generation & commercial numerical solver
- Finite volume method, block-structured hexahedral mesh
- Moving domains, sliding boundaries
- Automatic running and analysis of the results

e TOOLs: SCORG - Analytical grid generation & Pre-processor

COMET — Commercial CCM solver

- Hermite transfinite interpolation with multidimensional stretching functions,

- Boundary adaptation, smoothing, orthogonalisation and regularity check,

- Fast and reliable calculation of thermodynamic properties of real fluids,

- Multiphase flow, novel boundary conditions, mesh movement

- Simultaneous generation and calculation of fluid/solid interaction

- Automatic transfer to the CCM solver and Post-processing
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Problems associated with numerical solution
in screw machines

e Boundary conditions:
Usually inlet - outlet,
or pressure boundaries

* Refrigeration and other
applications with real
gasses

e Distortions in order of
magnitude of the size of
clearances

e Multiphase flows, multi-
domain solutions

@ -
Boundary conditions

- Wall boundaries with wall functions are
introduced on the housing and rotors.

- Compressor positioned between suction
and discharge receivers of small volume
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- Novel boundary conditions — boundary regions:
Inlet & outlet receivers and oil port are treated as boundary domains
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Multiphase flow

Liquid injection, Two phase expansion

-Euler-Lagrangian approach - continuous phase occupies entire domain,

other phases dispersed in the first one

Common grid; One set of equations for continuous phase; Additional concentration

equation for dispersed phase; Energy, mass & momentum sources
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Mass exchanged between phases
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Thermodynamic properties of real fluids

- Ideal fluids u= f(T)

p/p=RT

p=1(p.T) u=f(p)

-Realfluids ................
In any p-v-T equation for real fluids, only pressure is defined explicitly
All other variables are then calculated by an iterative procedure

- p-v-T equation

p/p=2-RT =2(p,T)-RT
compressibility factor z

- z is assumed to change linearly z=p-B +B,
with pressure err<2%
T = A
- Antoine equation for saturation * A —logp

temperature
dP

h =T .[L_i]._w
pv pl deat

c -[dp) L
7 {dp), RT

- Clapeyron equation for latent heat

- Coefficient in the pressure correction
equation
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Integral Parameters

- Volume flow (inlet and outlet)
- Mass flow (inlet, outlet, oil)

- Boundary forces
- Restraint Forces and Torque

- Compressor shaft power
- Specific power

- Efficiency
Volumetric and adiabatic
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Grid generation
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- structured SR
SRA
- unstructured PN
. L AT
- mixed %

* Block structured
- discontinuous
- continuous

* Grid generation methods
- Algebraic
- Differential
- Variational

IR s

- interpolation or some special functions
- based on the solution of partial differential equations
- based on optimization of the grid quality properties.
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« Grid topology strongly affects accuracy, efficiency and ease of calculation
* Fully structured block generated hexahedral 3D-O mesh
» Screw compressor sub-domains are:

- Male rotor
- Female rotor
- End clearances

These together contain all
Rotor connections
Clearances
Leakage paths
- Suction port
- Discharge port
- Suction and discharge receivers

[CU 1Y Rt

Grid generation

Rotor profiles generated from a rack
Rotors closed by a number of lobes
The rack connected to an outer circle

Numerical points generated on
boundaries y

Boundary point distribution adapted
upon compressor’'s geometrical
requirements

Inner grid points generated for 2-D
structured “O” mesh

Same procedure repeated for all
required cross sections of the grid

Same number of vertices in each
cross section
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Points on boundaries - adaptation

« Distribution of points on the rotor boundary

Equidistribution method

X.-W =const.
equidistant
XSC- grid spacing

W — weight function

minimisation of the distribution error

(@R
Points on boundaries — adaptation 1
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- tangent angle 0
- curve flatness
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- sinusoidal & cosine distribution
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Points on boundaries - distribution
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Transfinite interpolation

Multivariate interpolation procedure or a Boolean sum of univariate interpolations along
each computational coordinate
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Transfinite interpolation — Lagrange 1

Standard formula of transfinite interpolation: a(m)=r(.n) Boundary
2 b, (&)= N7 oints
rl((f,n)=2a| (&)a () (©)=ric.m) " o
1=1 ) a, (fk) _ 5“ Res;:)lftlon
r(Em=nEm+ X Amb @@ )], Al)=d,  blendng
1=1 k=1.2:1=1.2 unctions

Coordinates of internal points in 2D domain: Lagrange functions:

X(f:’?) = Xl(évﬂ)a1(§) + Xz(é:vﬂ)az(g) al(g) :1_6?1 az(f) :g
y(&.m)=Y,(&,n)Bi(n) +Y,(&, 1) B, (1) B(m)=1-7, B,(1)=n

- Fast method applicable for simple grids.

- Orthogonality is not achieved except for the most simple grids.

- Can be used only as the initial grid for further
orthogonalisation and smoothing
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Transfinite interpolation — Lagrange 2
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a) Outlet port b) Rotors
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Transfinite interpolation — Hermite 1
Ortho formula of transfinite interpolation:
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Transfinite interpolation — Hermite 3

a) Outlet port b) Rotors

- Much more complex then Lagrange interpolation. Requires user’s attention!
- Gives orthogonal and regular meshes for simpler domains (Ports)
- Overlapping and irregularities for complex domains with discontinuities
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Transfinite interpolation — Orthogonalisation 1

Generate regular, not necessarily orthogonal mesh.
Move points in the interior towards the normal to the boundary
]
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Grid smoothing
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Transfinite interpolation — Orthogonalisation 2

Lagrange Hermite Orthogonalised
Lagrange
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Moving grid

=

Numerical grid usually defined by:
- Cell definition: CellNo + 8xVertNo
- Vertex definit.: VertNo + 3Coord.
- Region defin: RegNo + 4xVertNo

To move grid — redefine vertices
Depending on the direction of rotation move all layers for
Az=L
Al nang
And assign appropriate coordinate position to each vertex in each layer.

By this means, in each time step rotors are rotated for: Sp = 27

Zl nang

FRIMERIT Chy University

Moving grid generated
by SCORG
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Examples — Profiles

Examples — Influence of the mesh size
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Commercial CFD (CCM) software. Used for virtual prototyping!

CFD - Computational Fluid Dynamics

1 - pthorized use, distributi
Different vendors: ibited. A1l rights reser] CCM — Computational Continuum Mechanics
- STAR_CD — Comet bftuare under conditions
-Fluent
Come:
- AVL-Fire Continuum Mechanics Eng
-FOAM Version 2.000.
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