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Abstract 

We analyse the effect of a change in the fare structure for bus journeys in London on 
different demand measures using a regression discontinuity design. We utilise data obtained 
from Transport for London following the implementation of a new bus price policy in 
September 2016, in which a follow-up journey made within the hour of first paying for a 
journey became free. Drawing on millions of individual paid and unpaid journeys, we 
estimate the effect of this price policy on the number of paid bus journeys, follow-up 
journeys and bus passenger numbers. We find that the policy significantly increased the 
number of bus trips by 5% and follow-up journeys by 8%. Passenger numbers increased by 
4%. We also find that the increase in demand was not only driven by new customers, but also 
by more intensive demand by existing customers.  
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1. Introduction 

To encourage the use of public transport and combat the effects of climate change transport 

policy makers invoke different transport demand management measures including hard and 

soft techniques (see Offiaeli and Yaman, 2021a). Transport providers can therefore influence 

transport decisions through their pricing policy which may have some effects on the 

generalised costs of travel. Transport for London (henceforth TfL), which oversees the 

transport network in London, implemented one such policy in 2016, namely the Bus Hopper 

Policy. A follow-up bus journey formerly paid for became free on the 12th of September as 

long as it was undertaken within the hour of paying for the first one;1 akin to a ‘buy one get 

one free within the hour’ price promotion. Most of the extant literature on the effects of 

public transport fare changes on demand are based on fare increases. Perhaps the most 

pertinent literature is the work by Brechan (2017) who performs an analysis of the results 

from a trial involving 15 projects of price reduction and 9 projects of service increase on 

some transit corridors in Norway. However, the trials included in this meta-analysis took 

place in small cities (population<150,000), where the public transit system consists almost 

exclusively of buses.  

Urban public transport offers a good laboratory to gauge the price effects on demand. Firstly, 

it is consumed at the point of purchase so that a journey purchase truly reflects demand. 

Goods, on the other hand, can be purchased when prices are low for future consumption, 

leading observers wrongly to conclude that a price decrease increased demand. Secondly, 

while changes in fares are communicated to the public, non-profit transport providers 

typically do not try to ‘lure’ customers into buying their service by combining fare changes 

 
1 In 2018 free journeys were extended to all follow-up journeys by bus or tram within the hour of the first one. 
We do not consider this extension here. 



 
3 

 

with other marketing tactics which further confound the estimation of price elasticities (see 

Offiaeli and Yaman, 2021b).   

Our research is unique in several ways. Firstly, our research is set in London with a large 

population and many modes of transport including trams, trains, subways, bicycles, cars, 

taxis, buses, cable car, etc. Unlike previously studied cases, London passengers have a choice 

of alternative modes in a highly integrated transport system. The ease with which passengers 

could switch modes means that there are available substitutes which would have some effects 

on individual choice and behaviour. Secondly the Bus Hopper policy represents a tangible 

reduction in fares. Prices are often sticky in the downward direction and doubly so in public 

transportation. Scenarios where fares become nominally cheaper are very scarce in practice. 

Our paper is set apart because we examine a rare situation in London where journeys that 

were hitherto paid for became free.  

Thirdly the policy provides a case study for an atypical change in fare policy. It is more akin 

to a ‘buy one get one free’ promotion than an actual price change. It is an economic truism 

that when prices drop more goods are demanded, but would this classical economic theory 

hold true when prices change in a rather unconventional manner?  

This paper adds to the body of literature on the effects of price policy changes on demand and 

travel behaviour by using data obtained on bus demand before and after the policy 

implementation. We have a rare situation in public transportation where the price of a mode 

of transport is reduced subject to certain conditions and we analyse how passengers respond 

to the price reduction. Our identification relies on estimating how passengers react to the 

sudden change in price after the implementation date compared to before. We thus only 

consider the immediate impact of the new fare structure. 
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We estimate the average treatment effect using a sharp regression discontinuity 

design (RDD) as it enables the exploitation of a discontinuity in the treatment 

assignment to identify a causal effect (see Angrist and Pischke, 2009). An RDD is 

appropriate when a single continuous forcing variable (in this case time) is used to 

determine whether a trip is in the control or treatment group.  

Our analyses show that the London Bus Hopper price policy had significant effects 

on the number of initial trips (by 5%) as well as follow-up journeys (by 8%). It also 

led to an increase of passenger numbers by 4%. Bus journeys per passenger also 

increased, so that the total increase in bus usage was driven both by more intensive 

use by existing customers as well as new customers choosing to use the bus. 

 

2. Literature Review 

2.1 Effects of fare changes on transport demand. 

The demand for public transport is a derived demand, which is generally driven by variables 

such as; service levels, socio economic factors, fares, quality of service, trip purpose, time of 

travel, journey time, and income, amongst others (Chen et al., 2011; Currie and Delbosc, 

2011; Paulley et al., 2006), with varying effects on an individual’s demand function (see 

Nijkamp and Pepping, 1998; Bonnel and Chausse, 2000; Bresson et al., 2003; Canavan et al., 

2018). These variables however, should not be considered in isolation from each other as 

their effects on public demand functions can be complex and intertwined (Balcombe et al., 

2004; Paulley et al., 2006).  

Fares and patronage are inversely related in that an increase in fares leads to a decrease in 

patronage and vice versa, by a proportion that is determined by the prevailing elasticity. The 
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effect of fare increases or decreases is usually measured in elasticities. The response to a fare 

increase may not be the opposite of the response to a fare decrease; that is, they may be 

asymmetrical. Fare elasticities are dynamic and may be affected by the magnitude of the fare 

change. They vary over time (peak or off-peak), across journey purpose and periods (short, 

medium, or long runs), as well as across modes and locations (Dargay and Hanly, 2002; 

Paulley et al., 2006). In the UK for example, off-peak fare elasticity values are about twice 

the peak values. Peak values for bus, metro and suburban rail are estimated to be -0.26, -0.26 

and -0.34 respectively while the off-peak counterparts are -0.48, -0.42 and -0.79 respectively 

(Balcombe et al., 2004). Monthly information on the different factors that influence public 

transport ridership, like fuel prices, unemployment rates, population and traditional bus fares, 

were used by Guzman et al. (2020) to estimate the effects of a nominal fare increase in 

Colombia’s Bogotá. They find that the elasticity’s absolute value decreases from −ௗ0.565 

(1 week) to −ௗ0.408 after a month and that low-income users, as expected, are more sensitive 

to fare changes. 

In estimating the response of transit demand to fare changes Nijkamp and Pepping (1998) 

compare 12 studies from 4 European countries (Finland, the Netherlands, Norway and the 

United Kingdom). They conclude that the range of elasticity values is quite wide, from as low 

as -0.15 in the UK to as high as -0.8 in the Netherlands. Canavan et al. (2018) estimate 

elasticities of demand for metro services with respect to fares, income, quality of service, 

population and network length using a dynamic panel data model specification. They find a 

statistically significant negative fare elasticity of -0.25 in the long run for a passenger 

kilometre specified model and -0.4 in the long run for a passenger journey specified model. 

But it should be pointed out that the study only used a proxy for metro fares estimated 

through dividing annual revenue from fares by the annual number of passengers, not actual 

fare information.  
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Anciaes et al. (2019) show that manipulating price structures by reducing the complexity 

would lead to a substantial reduction in demand (11% to 45%, depending on route segment). 

By contrast, increasing complexity by adding new flexible or advance tickets (valid on the 

services immediately before or after the chosen service) would increase demand by anything 

from 4% to 15%. In the same vein Sharaby and Shiftan (2012) use data from Israel’s city of 

Haifa’s new fare policy to evaluate travel behaviour. Haifa’s new and integrated fare policy 

changed the historically complex per-boarding system to a simple five-zone fare system with 

free transfers, reducing fares for many passengers thereby making it very similar to London’s 

Bus Hopper policy. They show a significant increase in single ticket sales of up to 25% over 

the first year following the launch of the reform, while the survey they carried out points to 

an increase of 7.7% in passenger trips and 18.6% in boarding numbers. It should be stated 

Haifa's public transportation system is 81% by bus; 17% by sherut, privately owned, fixed-

route, communal transport services; and 2% by Israel rail, with a population of about 1million 

(Sharaby and Shiftan, 2012). In contrast, London offers multiple modes of transportation has 

a population of 9million.  

Variations in elasticity also depend on location. People who live in urbanised and high 

population density areas tend to rely more on public transport while those in low populated 

areas depend more on their cars and therefore have higher fare elasticities. The effects of fare 

changes on competing modes depend on the transport network integration; the greater the 

interchange ability the lower the fare elasticity. Aside from ticket fares other pricing methods 

such as congestion charges, parking charges and emission charges could also be implemented 

to encourage public transport ridership. Chen et al., (2011) use trip and fares data for travel 

between and New Jersey and New York to conclude that a rise in transit fares leads to a 

decrease in demand while a drop in fares has no significant effect on demand. We note that 
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they consider only real prices from which they calculated price decreases using inflation 

index rather nominal or actual price changes.  

Brechan (2017) performs an analysis of the results from 15 projects involving price reduction 

and 9 projects involving increased service frequency on some transit corridors in Norway. 

The results show that both price reduction and increased service frequency generated public 

transport demand, in particular, the average effect for the price reduction projects is reported 

to be 30%. Again, all the route and fare trials included in this meta-analysis took place in 

smaller cities (population<150,000), where the public transit system consists of almost 

exclusively buses, which probably accounts for the magnitude of the elasticity obtained. Our 

research differs from Brechan (2017) in that our data is set in London where passengers have 

a choice of alternative modes in a highly integrated transport system. The ease with which 

passengers could switch modes means that there are available substitutes which would have 

some effects on individual choice and behaviour, making our research significantly different. 

Prices are generally sticky in the downward direction and particularly so in public transport. 

Our data set is unique and presents an appropriate setting to explore the responses of demand 

to an actual decrease in price rather than an inflation indexed decrease used in most, if not all, 

the existing literature.   

   

3. The Bus Hopper Policy 

Buses are by far the most used mode of transport in London, accounting for slightly over 2.2 

billion passenger journeys in 2018 compared to just over 1.5 billion mustered by London 

Underground and Light Railway combined (TfL, 2019). On the 12th of September 2016, the 

Mayor of London, through TfL, introduced the Bus Hopper Policy. The policy was 

announced by press release a week prior to its stars, on the 5th of September. The policy was 
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introduced for two broad reasons. Firstly, it enables millions of passengers to save on their 

generalised costs, in terms of fares and time, on the London transport networks. It benefits 

travellers on lower income who mostly use the bus network. The idea is that passengers could 

switch modes since travelling by bus would become cheaper. Secondly as a positive 

externality of the cheaper travel policy visitors and Londoners alike are encouraged to use 

public transport instead of cars to help reduce both congestion and pollution. By agreeing a 

'Low Emissions Bus Zone' and only buying hybrid or zero-emission double-decker buses the 

Mayor of London, working with TfL, aims to reduce vehicle emissions within London 

significantly. At its introduction the Bus Hopper Policy allowed passengers to make one 

follow-up journey on London's bus network for a nominal fare of £1.50 within one hour from 

the first paid journey. Once a passenger touches in using a valid payment method the Hopper 

fare is automatically applied to the journeys of anyone who uses the same card or mobile 

device to pay as they go. In other words, passengers could ‘hop’ from one bus to another at 

no extra cost as long as it was done within the hour. This represents real savings for millions 

of people who live, work in, or visit London. More than 450,000 bus and tram trips were 

made every day using the Hopper fare. Since its launch 160m journeys were made using the 

hopper fare (London Assembly, 2018).  

 

4. Data 

The data are from TfL’s ODX database which records every bus journey on London’s 

network. Only paid weekday journeys are considered. We obtained individual journeys made 

between the 14th of June 2016 and the 11th of December 2016, which represent data for 3 

months either side of the policy implementation date amounting to 6 months in total. To 

validate that changes in 2016 are driven by the new policy rather than other (seasonal) factors 
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we also obtained the same data for the year 2015. For each passenger-day combination, we 

have data on the number of bus trips, distinguished by ‘First trips’ (subject to payment under 

the Hopper policy) and ‘Hops’ (not subject to payment, see also below). We also obtain the 

daily total number of distinct people travelling on the buses in the study period (Passengers). 

Each passenger is identified by a unique number, the total number of distinct passenger 

numbers are then summed to get the total passengers. Since the policy was introduced on the 

12th of September, time (measured in days) presents the forcing variable. Payment for bus 

journeys are made by tapping a payment card on the on-board fares collection equipment.  

The analysis of the effect of the Hopper fare is complicated by a peculiarity in the data 

collection. Customers could tap in when entering a bus by using a so-called Oyster card. This 

card contained pre-paid credit and had to be topped up when the existing credit did not cover 

the fare. This was still the predominant payment method in 2017. Alternatively, customers 

could pay by tapping in their bank debit card. These payments were introduced in 2012 but 

started to be registered on TfL’s ODX database only in August 2016, which unfortunately is 

just before the Hopper policy became effective. We therefore restrict our analysis to bus 

journeys which were paid for by Oyster card only. As such, our analysis does not cover the 

entire demand for bus travel unless we assume Oyster card users to behave the same as 

customers paying by bank card.  

We consider the following variables:    

First Trips and Hops 

First trips are trips which would be paid for under the Bus Hopper Policy. We apply this 

terminology irrespective of whether the Hopper policy was in place or not. Every first bus 

journey on a day counts as a first trip. A bus journey which is undertaken within an hour of a 
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first trip is a hop (e.g., would be free under the Hopper policy). A bus journey that is 

undertaken after a hop is a first trip (since the Hopper policy allows for ONE free follow-up 

journey). A bus journey undertaken after a first trip which was more than an hour ago, is 

again a first trip (since the follow-up journey must be undertaken within one hour). If more 

people use the bus, then first trips should increase. If people use the bus more frequently, 

then both variables should increase. It is also possible that in response to the Hopper fare 

people time their trips such that they substitute a hop for a first trip (e.g., finishing their 

shopping quicker to take advantage of a hop). 

Passengers 

Passengers represent the daily aggregate number of distinct people using the bus network. As 

stated earlier, the data contains unique travel information of each individual passenger. A 

passenger may have one first trip and two hops or may have four first trips and nine hops 

within the day. In either case we would count this as one passenger. We expect an increase in 

the number of passengers since certain bus journeys became cheaper with Hopper fare. All 

things being equal, we expect a positive effect on passengers as more people would likely 

switch modes to enjoy the ‘free ride’.  

First trips per passenger, hops per passenger, hops per first trip 

First trips per passenger and hops per passenger are informative about the intensive margin 

of demand for bus journeys. For example, if the increase in first trips is driven entirely by 

new customers, then we would expect no or little effect on first trips per passenger. On the 

other hand, if first trips is driven by existing customers who use bus services more often, then 

the increase in first trips per passenger should be similar to the increase in first trips. A 

similar reasoning applies to hops per passenger. Finally, hops per first trip is an alternative 

measure of the intensive margin of bus journey demand. If people switch to buses in 
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anticipation of benefiting from the Hopper fare, or if people substitute hops for first trips, 

then this measure should increase.   

[Table 1 approximately here] 

Table 1 presents summary statistics on our outcome measures, divided by year and time 

period (before vs. after the 12th of September). We observe that in 2016 first trips, hops, and 

passengers increased by approximately 4%. However, compared to 2015, the most striking 

increase is in hops – this variable increased only by 0.3% in 2015, but by 3.9% in 2016 when 

the Hopper fare started. Similarly, while hops per passenger dropped in 2015 by 3.4%, it did 

so in 2016 by only 0.3%. We also observe that bus use in 2016 is lower than in 2015. This 

could be due to lower demand for public transport in general, or can perhaps be explained by 

an increasing uptake of paying by bank card which is not included in our data (see section 3). 

 

5. Model Specification 

We estimate the effect of the Hopper policy on impact, that is upon its launch, using a 

Regression Discontinuity Design (RDD). RDD has become increasingly popular in 

economics since its introduction by Thistlethwaite and Campbell (1960). RDD requires 

relatively mild assumptions compared to other non-experimental approaches to econometrics 

(Angrist and Lavy, 1999; Angrist and Pischke, 2009; Lee and Lemieux, 2010). Treatments 

are assigned to units above or below a threshold; in this case the 12th of September is the cut-

off (treatment) date. Since time perfectly sorts our observations into treatment and control 

days, the RDD is sharp. An RDD is appropriate when a single continuous forcing variable is 

used to determine whether a trip is in the control or treatment group. While the RDD 

produces an impact estimate which can confidently be interpreted as causal, it can identify 

this effect only in a narrow window around the forcing variable. In our case, we can estimate 

the impact of the Bus Hopper policy when it was introduced – and arguably no other change 
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occurred which could cause a discontinuous change in bus travel demand. However, we do 

not attempt to uncover its medium- or long-term effect on bus travel demand. 

In this analysis the forcing variable used is date while the threshold is determined by the date 

of the implementation of the Bus Hopper policy (12th September 2016). If a trip is made on or 

after the 12th of September 2016 then it is classed as treated (subject to the Hopper policy), 

while those trips made before the 12th of September are in the control group.   

Our general econometric model is of the following functional form: 

Yt = β0 + β1 Postt + β2Xt + f(t) + µt                                  

 Where 𝑃𝑜𝑠𝑡௧ =  ቄ
1, 𝑡 ≥ 𝑐
0, 𝑡 < 𝑐

 

The receipt of treatment or participation in the policy, Post, at any time t, is determined by 

the threshold c (=the 12th of September, which we set to 0). β1 is the immediate effect of the 

treatment on outcome Y. X is a vector of dummies for the day of the week, and f(t) is a 

polynomial function of time t, on either side of the threshold c, which captures the trend in 

Y over the sample period. The random error term µ is assumed to be normally distributed 

and has mean 0. The equation represents a sharp RDD because treatment assignment is 

deterministic and discontinuous at the cut-off: all observations with t < c do not receive 

treatment and all observations where t ≥ c are treated.  

[Figure 1 approximately here] 

[Figure 2 approximately here] 

[Figure 3 approximately here] 
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Figures 1-3 show the log of daily averages of first trips, hops, and passengers in 

2015 and 2016. The cut-off date of September 11 – the day before the Hopper 

policy became effective – is marked by a vertical line. On both sides of the cut-off 

date, we also fit a third-degree polynomial. All graphs indicate that bus use drops 

off towards the end of July, marking the beginning of the summer school holidays, 

and picks up again in September. Judging from the polynomial fit, there does not 

seem to be a significant change in bus usage just around the cut-off date. However, 

the polynomial is misleading. We see clearly from the scatter plot of hops in 2016 

(Figure 2, right hand panel) that hops are more frequent after September 12 than 

before. Yet, in trying to fit the unusually high number of hops just before the cut-off 

date, and the unusually low number of hops just after, the polynomial function 

increases sharply before and again after the cut-off.  

[Figure 4 approximately here] 

[Figure 5 approximately here] 

[Figure 6 approximately here] 

Figures 4-6 replicate the figures after leaving out the five days just before and just 

after the cut-off. The data series now look smoother and the upward jump in the 

polynomials around the cut-off date in 2016 now point towards the expected effect 

of the Hopper policy. In 2015 there is no sudden change around the same cut-off 

date. Thus, the changes observed in 2016 seem unlikely to be explained by seasonal 

and other factors, since we should observe these effects also in 2015.  

6. Results 

Table 2 reports the estimated ‘treatment’ effects on the dependent variable. Since the 

dependent variables are in logs, the estimated β1 translate into (100*β1)% changes in the 
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dependent variable. All our models include day-of-the-week fixed effects to control for any 

changes in daily demand within the week. Standard errors are calculated as heteroskedasticity 

robust standard errors.  

[Table 2 approximately here] 

The results indicate that the number of first trips (panel 1) increased by 5.2% after the 

introduction of the Hopper policy in 2016 – an estimate significantly different from zero at 

the 5% level. In the previous year, there is no discernible difference in first trips around the 

11th September. If the effect in 2015 constitutes a valid counterfactual scenario to what would 

have happened to demand if there had not been the Hopper policy, then the difference 

between the estimated effects for 2016 and 2015 can be given a causal interpretation. This 

difference is also 5.2%, but the difference is not as precisely estimated and thus insignificant.  

Not surprisingly, the strongest effect is found for hops (panel 2). Hops increased by 8.1% 

after the Hopper policy, and the difference to previous year’s increase was 6.3%. Passengers 

(panel 3) increased by 4.1% (4.3% compared to 2015).  

The results for our measures of the intensive margin of demand (panels 4 to 6) also suggest 

positive effects of the Hopper fare. A typical passenger undertook 1% more first trips (0.9% 

compared to 2015), and 4.1% more hops (2% compared to 2015). Finally, 2.9% more hops 

were undertaken for every first trip.  

 

7. Conclusion 

We have evaluated the performance of the London Bus Hopper policy by examining the 

effects on 6 key variables: number of first trips, number of hops, number of passengers and 

the measures of the intensive demand margin first trips per passenger, hops per passenger, 

and hops per first trip. Our results show that the London Bus Hopper price policy had 

significant effects on bus usage on all of those dimensions, with the strongest effect on the 
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number of hops. We conclude that the policy was effective and worked as intended upon its 

launch.  
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Figures and Tables 
 
 

Table 1: Summary Statistics (Daily average) 

 2015  2016 

 Before After % change  Before After % change 

First Trips (in 1,000) 3,465 3,579 3.29  3,177 3,300 3.87 
Hops (in 1,000) 1,274 1,278 0.31  1,133 1,177 3.88 
Passengers (in 1,000) 1,797 1,869 4.01  1,660 1,731 4.28 

First Trips / Passenger 1.93 1.92 -0.67  1.91 1.91 -0.42 
Hops / Passenger 0.71 0.68 -3.39  0.68 0.68 -0.29 
Hops / First Trip 0.37 0.36 -2.72  0.36 0.36 0.28 

        
Number of days 57 60     58 60   

Averages of daily outcomes by year and period. Before is the period from mid-June to September 11. After is the period 
from September 12 to mid-December. % change is the percentage change from Before to After.  
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Table 2: RDD estimates for 2015 and 2016 

            

 (1) First Trips  (2) Hops  (3) Passengers 

 2015 2016 Difference  2015 2016 Difference  2015 2016 Difference 

            
Coefficient 0.001 0.052** 0.052  0.018 0.081*** 0.063  -0.003 0.041** 0.043 
Standard error (0.028) (0.020) (0.035)  (0.050) (0.030) (0.058)  (0.021) (0.016) (0.026) 

            

            

 (4) First Trips per Passenger  (5) Hops per Passenger  (6) Hops per First Trip 

 2015 2016 Difference  2015 2016 Difference  2015 2016 Difference 

            
Coefficient 0.003 0.012** 0.009  0.021 0.041** 0.020  0.018 0.029** 0.011 
Standard error (0.009) (0.006) (0.011)  (0.033) (0.017) (0.037)  (0.026) (0.013) (0.029) 
                        

Estimated effects of the September 12 cut-off (ß1) on bus demand measures. All measures are in natural logs. Coefficients are semi-elasticities (ß1*100 percent change). The Bus Hopper was 
introduced on September 12, 2016. First trips are trips that would be paid for under the Bus Hopper fare. Hops are trips which would not be paid for under the Bus Hopper fare. Passengers are 
the number of distinct passengers on a day. All regressions include day-of-week dummies and third degree polynomials of Date on either side of the cut-off date (see also Figures 2 to 7). 
Standard errors are in parentheses. * p < 0.1 ** p < 0.05, *** p < 0.01.  
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Figure 1: Daily values of the log of first trips 

 
Scatter plot of daily first trips (in natural logs) in 2015 (left) and 2016 (right). The vertical line is 11th of September (the day 
before the Hopper fare became effective in 2016). The smooth lines are third degree polynomial fits for the periods before 
and after the 11th of September. 
 
 
 
 
 
 
 

Figure 2: Daily values of the log of hops 

 
Scatter plot of daily hops (in natural logs) in 2015 (left) and 2016 (right). The vertical line is 11th of September (the day 
before the Hopper fare became effective in 2016). The smooth lines are third degree polynomial fits for the periods before 
and after the 11th of September. 
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Figure 3: Daily values of the log of passengers 

 
Scatter plot of daily passengers (in natural logs) in 2015 (left) and 2016 (right). The vertical line is 11th of September (the 
day before the Hopper fare became effective in 2016). The smooth lines are third degree polynomial fits for the periods 
before and after the 11th of September. 
 

 

Figure 4: Daily values of the log of first trips (smaller sample) 

 
Scatter plot of daily first trips (in natural logs) in 2015 (left) and 2016 (right) after removing the five days before and after 
the cut-off date. The vertical line is 11th of September (the day before the Hopper fare became effective in 2016). The 
smooth lines are third degree polynomial fits for the periods before and after the 11th of September. 
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Figure 5: Daily values of the log of hops (smaller sample) 

 
Scatter plot of daily hops (in natural logs) in 2015 (left) and 2016 (right) after removing the five days before and after the 
cut-off date. The vertical line is 11th of September (the day before the Hopper fare became effective in 2016). The smooth 
lines are third degree polynomial fits for the periods before and after the 11th of September. 

 

Figure 6: Daily values of the log of passengers (smaller sample) 

 
Scatter plot of daily passengers (in natural logs) in 2015 (left) and 2016 (right) after removing the five days before and after 
the cut-off date. The vertical line is the 11th of September (the day before the Hopper fare became effective in 2016). The 
smooth lines are third degree polynomial fits for the periods before and after the 11th of September. 
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