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Quantum Information Revolution: Impact to Foundations? (QIRIF?),

9-13 June, 2019

This is the jubilee 20th Vxj conference devoted to quantum founda-

tions and applications of quantum theory, especially quantum informa-

tion and probability. This conference is aimed to highlight and at the

same time to question the foundational impact of the recent quantum

information revolution and to enlighten recent novel contributions to

quantum foundations, theory and experiment

google search: LNU Conferences

https://lnu.se/en/research/conferences/quantum-information-revolution-

impact-to-foundations-qirif-9-13-juni-2019/
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Quantum(-like) operational representation of the pro-

cess of decision making by cognitive systems

This talk is not about quantum brain in the spirit of Umezawa and

Vitiello or Penrose and Hameroff. We do not try to reduce information

processing by cognitive system to quantum physical effects.

The brain is a black box which information processing cannot be

described by classical probability theory. And there is a plenty of such

“nonclassical statistical data” - in cognitive psychology, game theory,

decision making, social sicne, economics, finances, and politics.

A. Khrennikov, Ubiquitous quantum structure: from psychology to

finances, Springer, Berlin-Heidelberg-New York, 2010.

E. Haven and A. Khrennikov, Quantum Social Science, Cambridge

Press, Cambridge, 2013.
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In decision theory such data was coupled to probability falla-

cies and irrational behavior of agents. We propose to apply

the most well developed non-classical theories of information and prob-

ability, namely, based on the mathematical formalism of QM.

One may think that the appeal to quantum probability (and informa-

tion) to model decision making by humans is too exotic. However, we

recall that as early as the 1970s, Tversky (one of the most cited psychol-

ogists of all time) and Kahneman (Nobel prize in economics in 2002, for

prospect theory, which he co-developed with Tversky) have been demon-

strating cases where CP prescription and human behavior

persistently diverge (Tversky and Kahneman 1973, 1983).
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Today, we are at the theoretical cross-roads, with huge divisions across

conflicting, entrenched theoretical positions.

Should we continue relying on CP as the basis for de-

scriptive and normative predictions in decision making

(and perhaps ascribe inconsistencies to methodological

idiosyncrasies)?

Should we abandon probability theory completely and

instead pursue explanations based on heuristics, as Tver-

sky and Kahneman proposed?

However, the use of the probabilistic and statistical methods is really

the cornerstone of the modern scientific methodology. Thus, although

the heuristic approach to decision making cannot be discarded com-

pletely, it seems more natural to search novel probabilistic models for

decision making.

Slogan: QP instead of heuristics of Tversky and Kahne-

man!
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The use of quantum information and probability, instead of their clas-

sical counterparts, can resolve some paradoxes of classical theory of

decision making, economics, and game theory; e.g., the Elsberg and

Machina paradoxes:

E. Haven and A. Khrennikov, Quantum mechanics and violation of

the sure-thing principle: the use of probability interference and other

concepts. J. Math. Psychology, 53, 378-388 (2009).

The number of paradoxes generated by the classical decision making

theory is really amazing. The authors of the recent review (Erev and Ert

2015) counted 35 basic paradoxes. During many years DM-theory was

developed through creation of paradoxes and resolving them through

modifications of the theory, e.g., from expected utility theory to the

prospect theory. But any modified theory suffered of new paradoxes.

The use of QP can resolve all such paradoxes, at least this

is claimed in the recent paper:
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I. Basieva, P. Khrennikova, E. M. Pothos, M. Asano, A. Khrennikov,

Quantum-like model of subjective expected utility. J. Math. Econom-

ics, (2018); https://doi.org/10.1016/j.jmateco.2018.02.001

M. Asano, I. Basieva, E. M. Pothos, and A. Khrennikov, State entropy

and differentiation phenomenon. Entropy 20 (6), 394 (2018).

F. Bagarello, I. Basieva, E. Pothos, A. Khrennikov, Quantum like mod-

eling of decision making: Quantifying uncertainty with the aid of Heisen-

bergRobertson inequality. J. Math. Psychology 84, 49-56 (2018).



D
ra
ft

BigBlueL.png

8/58

JJ
II
J
I

Back

Close

Quantum-like paradigm which was formulated in (Khrennikov

1999):

The mathematical formalism of quantum information and probability

theories can be used to model behavior not only of genuine quantum

physical systems, but all context-sensitive systems, e.g., hu-

mans. Contextual information processing cannot be based on complete

resolution of ambiguity. It is meaningless to do this for the concrete

context, if tomorrow context will be totally different. Therefore such

systems process ambiguities, process superpositions of al-

ternatives.
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Towards opening the black-box

The brain as a quantum-like processor of noisy classical random fields:

A. Khrennikov, Quantum-like model of processing of information in

the brain based on classical electromagnetic field. Biosystems 105(3),

250-262 (2011).

The brain is not ”interested” in explicit structure of random fields in-

side it and coming from the environment. It operates only with covari-

ance matrices of such fields. The classical→ quantum correspondence

is given by the simple formula:

B → ρ = B/trB.

For physics, see:

A. Khrennikov, Beyond Quantum, Pan Stanford Publ., Singapore,

2014.
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Conditional probability in CP

Bayes’ formula for conditional probabilities.

(1) p(B|A) = p(B ∩A)/p(A), p(A) > 0.

Consider two random variables a = ±1, b = ±1. The b-variable

describes decisions. So, we can make the decision b = +1, “yes”, or

b = −1, “no”. The a-variable describes possible conditions, con-

texts, preceding the decision making.

For example, a = +1 : the climate will change towards warming,

a = −1 : not; b = +1 : to buy a property near sea, b = −1 : not.

The main constraint imposed by the Bayes formula is appealing to

CONJUCNTION of events, or joint measurement of two observables.

However, for some (so-called incompatible) observables this is impos-

sible. QP-formalism was specially designed to proceed without con-

juctions. The cornerstone of the QP-modeling is a new definition of

conditional probability and the new way of probability update.
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Law of total probability (LTP) .

LTP The prior probability to obtain the result, e.g., b = +1 for

the random variable b is equal to the prior expected value of the

posterior probability of b = +1 under conditions a = +1 and

a = −1.

p(b = j) =

p(a = +1)p(b = j|a = +1) + p(a = −1)p(b = j|a = −1),

where j = +1 or j = −1.

LTP gives a possibility to predict the probabilities for the b-variable

on the basis of conditional probabilities and the a-probabilities.

The cornerstone of Kolmogorov’s approach is the postulation of a

possibility to embed all complexes of conditions (contexts) preceding

the decision making into one probability space. This embedding provides

a possibility to apply to contexts the set-theoretical algebra, Boolean

algebra, operations of intersection, union and complement.
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Feynman (The Concept of Probability in Quantum Mechanics, can be

found on Internet):

From about the beginning of the twentieth century experimental physics

amassed an impressive array of strange phenomena which demonstrated

the inadequacy of classical physics. The attempts to discover a theoret-

ical structure for the new phenomena led at first to a confusion in which

it appeared that light,and electrons, sometimes behaved like waves and

sometimes like particles. This apparent inconsistency was completely re-

solved in 1926 and 1927 in the theory called quantum mechanics. The

new theory asserts that there are experiments for which the exact out-

come is fundamentally unpredictable, and that in these cases one has

to be satisfied with computing probabilities of various outcomes. But

far more fundamental was the discovery that in nature

the laws of combining probabilities were not those of the

classical probability theory of Laplace.
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Probability structure of two slit experiment

slit0

photo-sensitive plate

slit1

Figure 1. Context
with both slits are
open, C01

https://lnu.se/en/research/conferences/quantum-information-revolution-

impact-to-foundations-qirif-9-13-juni-2019/
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slit0

photo-sensitive plate

slit1

Figure 2. Context
with one slit is open
C0.

slit0

photo-sensitive plate

slit1

Figure 3. Context
with one slit open,
C1.

Observables: a is “which slit observable”, i.e., a = 0, 1, b as the

position on the photo-sensitive plate.

Set P (i) = P (a = i), P (x) = P (b = x). Then

P (x) =

∣∣∣∣ 1
√

2
(ψ0(x) + ψ1(x))

∣∣∣∣2
=

1

2
|ψ0(x)|2 +

1

2
|ψ1(x)|2 + |ψ0(x)| |ψ1(x)| cos θ,(2)



D
ra
ft

BigBlueL.png

15/58

JJ
II
J
I

Back

Close

where ψ0 and ψ1 are two wave functions, whose squared absolute values

|ψi(x)|2 give the probability distributions P (x|i) of photons passing

through the slits. The last term represents the interference effect of two

wave functions.

Then Eq. (2) is represented as

(3) P (x) = P (0)P (x|0) + P (1)P (x|1)

+2
√
P (0)P (x|0)P (1)P (x|1) cos θ.

The violation of FTP is a consequence of the special contextual

structure of the two slit experiment (in fact, a group of exper-

iments). As Feynman pointed out, the interference formula (3) involves

three contexts: Ci, i = 0, 1, only the ith split open and C01 both

slits are open.
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Interference effects in social science

Savage Sure Thing Principle: Savage, L.J. The foundations

ofstatistics. New York: Wiley and Sons (1954).

STP If you prefer prospect b+ to prospect b− if a possible future

event A happens (a = +1), and you prefer prospect b+ still if

future event A does not happen (a = −1), then you should prefer

prospect b+ despite having no knowledge of whether or not event

A will happen.

Savage’s illustration refers to a person deciding whether or not to buy

a certain property shortly before a presidential election, the outcome of

which could radically affect the property market. “Seeing that he would

buy in either event, he decides that he should buy, even though he does

not know which event will obtain”.
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Rationality

A decision maker has to be rational. Thus the STP was used as one

of foundations of rational decision making and rationality in general.

It plays an important role in economics in the framework of Savage’s

utility theory.

Savage’s STP is a simple consequence of LTP.

LTP: Bayes conditioning + additivity of probability.

Violation of LTP implies violation of STP.

Prisoners’ Dilemma, behavioral game theory.

Real players do not select Nash equilibrium.

A. Grib, A. Khrennikov, G. Parfionov, and K. Starkov,

Quantum equilibria for macroscopic systems. J. Phys. A.:

Math. Gen., 39, 8461-8475 (2006).
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The mathematical formalism of quantum theory was

successfully applied to model the basic effects of cog-

nitive psychology: the order, conjunction, and disjunc-

tion effects (the works of Busemeyer, Pothos, Haven and

Khrennikov).

No Aumann’s theorem: Quantum agents can agree on

disagree, see:

A. Khrennikov, Quantum version of Aumanns approach

to common knowledge: Sufficient conditions of impossi-

bility to agree on disagree. J. Math. Economics 60, 89104

(2015).

Social Laser (Stimulated Amplification of Social Ac-

tions):

A. Khrennikov, “Social laser:” action amplification by

stimulated emission of social energy. Phil. Trans. Royal

Soc. 374, N 2054, 20150094 (2016).
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Order Effects

In a typical opinion-polling experiment, a group of par-

ticipants is asked one question at a time, e.g., a =“Is Bill

Clinton honest and trustworthy?” and then b =“Is Al

Gore honest and trustworthy?”

The joint probability distribution is found p(a = α, b =

β), α, β = ±1. Then these questions are asked in the

opposite order, the joint probability distribution is found

p(b = β, a = α), α, β = ±1. And these distributions do

not coincide.

Such noncommutative effect cannot be represented in

the Kolmogorov model, by representing questions by ran-

dom variables. In the quantum formalism we can easily

model this effect by using representation of observables

by non-commutative Hermitian operators - projector val-

ued measures. or more generally Positive operator valued

measures, POVMs.
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(a-a)-problem.

We remark that in fact we have to use projection valued

measures, since if, e.g., the value a = +1 was received and

the question a asked the second time, the answer a = +1

is obtained with probability 1. The same is happens for

the b-question.

Repeatable measurement implies that, in fact, POVM

is a projector valued measure! In the finite dimensional

case!

Buscemi, F., D’ Ariano, G. M. and Perinotti, P.: There

exist nonorthogonal quantum measurements that are per-

fectly repeatable. Phys. Rev. Lett. 92, 070403-1 -

070403-4 (2004).

Thus, if we want to describe the Clinton-Gore experi-

ment in the quantum-like manner we have to represent

the questions A and B by projection-type observables.
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(a-b-a)-problem.

However, the real situation is more complicated. Even

in the sequence (a-b-a), if the first result was a = +1,

then for any result b = β the result of the second a-

measurement is again a = +1 with probability 1. It is

possible to show that this is possible only if a and b are

projector valued measures and they commute. However,

commutativity is incompatible with order effect.

A. Khrennikov, Basieva, I., Dzhafarov, E.N., Busemeyer,

J.R. (2014). Quantum Models for Psychological Mea-

surements : An Unsolved Problem. PLoS ONE. 9. Arti-

cle ID: e110909.

For atomic instruments, this was proven in:

I. Basieva, A. Khrennikov, On a possibility to combine

the order effect with sequential reproducibility for quan-

tum measurements. Found. Phys. 45, N 10, 1379-1393

(2015).
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Quantum-like modeling of decision making

The mental state (belief state) of Alice is represented as

a quantum state; questions or tasks as quantum observ-

ables (Hermitian operators or POVMs). Probabilities are

determined by Born’s rule. This model was presented in

my old paper:

A. Khrennikov, Found. of Physics, 29, N. 7, 1065-1098

(1999).

This model does not describe state dynamics in the pro-

cess of decision making. This dynamics was accounted in

the work:

E. M. Pothos, J. R. Busemeyer, A quantum probability

explanation for violation of rational decision theory Proc.

Royal. Soc. B, 276, 2171-2178 (2009).
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Let observableA (Hermitian operator) represents a ques-

tion (task) to Alice. There is introduced Hamiltonian H,

considered dynamics of the initial belief state and then

Alice’s decision is represented as measurement of the ob-

servable A at some instant of time. The authors even

present some cognitive arguments to determine the in-

stance tm of measurement.

The main problem is to construct operator-representation

of questions and decision Hamiltonians.
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In contrast to quantum physics, we do not classical

Hamiltonian model of DM, i.e., we cannot use the quan-

tization procedure to transform functions on the classical

phase space into operators. However, one can use the

algebra of operators of creation and annihilation. Let a

question A is dichotomous, “no/ “yes”. Creation oper-

ator a? creates “yes” from “no, annihilation operator a

transforms “yes” to“no. Then we can compound (sim-

ilarly e.g. to quantum optics) Hamiltonian and observ-

ables of creation and annihilation operators.

This approach was actively explored by F. Bagarello:

Bagarello, F., 2012. Quantum dynamics for classical

systems: with applications of the Number operator. J.

Wiley, New York.

Type of canonical commutation relations? Bagarello

used the Fermionic commutation relations to model “no/

“yes” questions.
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However, the situation seems to be more complicated

and other types of commutation relations algebras

Who are the decision makers? Bosons? Fermions?

Qubits?

Polina Khrennikova, Modeling behavior of decision mak-

ers with the aid of algebra of qubit creation-annihilation

operators. J. Math. Psychology 78, 76-85 (2017).

All quantum physical physical systems are either bosons

or fermions, hence: (anti)-commutation relations for creation-annihilation

operators.

Quantum information is done in n-qubit space. Qubit is neither

boson nor fermion! It combines both fermionic and bosonic fea-

tures. In quantum theory qubit representation is just a math model

In the quantum-like model of decision making qubit by itself is the

basic entity of the quantum-like model.
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Measurement problem in decision making

Majority of physicists are fine with collapse of the wave function. In

cognitive community there is common opinion that the mental state dy-

namics is continuous and selection of different alternatives in the process

of decision making cannot be modeled by the collapse type process.

One of attempts to solve the measurement problem is based on consid-

eration of measurement process as the decoherence process, W. Zurek

and recently G. Lindblad. In the limit t → ∞ the state ρ(t) ap-

proaches the state ρ̄ which is diagonal in ”pointer basis”.
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Decision making as decoherence

The model is pure informational. Both a “quantum-like system” and

bath are represented by their states, ψ and φ. In the PD, the ψ repre-

sents Alice’s possible decisions and φ the information bath having some

degree of relevance to this concrete problem; in particular, Alice’s rec-

ollections about Bob. Then we apply theory of open quantum systems

and Gorini-Kossakowski-Sudarshan-Lindblad dynamics (often called sim-

ply Lindblad equation) to model experimental data.

Decision making dynamics should drive the belief state of Alice ρ(t)

to the diagonalized state ρ̄ = limt→∞ ρ(t). Its diagonal elements give

probabilities of possible decisions.

M. Asano, M. Ohya, Y. Tanaka, A. Khrennikov, and I.

Basieva, On application of Gorini-Kossakowski-Sudarshan-

Lindblad equation in cognitive psychology. Open Systems

and Information Dynamics 17, 1-15 (2010).
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Part 2:

A. Khrennikov, Towards information lasers. Entropy,

17, N 10, 6969-6994 (2015).

Purpose: To present the basic assumptions for creation of social

lasers and attract attention of other researchers (both from physics

and socio-political science) to the problem of modeling of Stimulated

Amplification of Social Actions (SASA).

Design/methodology/approach: The model of SASA and its

analysis are based on the mathematical formalism of quantum thermo-

dynamics and field theory (applied outside of physics).

Findings: The presented quantum-like model provides the consistent

operational model of such complex socio-political phenomenon as SASA.

Research limitations/implications: The model of SASA is

heavily based on the use of the notion of social energy. This notion has

not yet been formalized.
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Practical implications: Evidence of SASA (“functioning of social

lasers”) is rapidly accumulating, from color revolutions to such demo-

cratically structured protest actions as Brexit and the recent election

of Donald Trump as the president of USA. The corresponding socio-

political studies are characterized by diversity of opinions and conclu-

sions. The presented social laser model can be used to clarify these

complex socio-political events and even predict their possibility.

Social implications: SASA is the powerful source of social insta-

bility. Understanding its informational structure and origin may help to

stabilize the modern society.

Originality/value: Application of the quantum-like model of laser

technology in social and political sciences is really novel and promising

approach.
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Indistinguashability: physical versus so-
cial systems

One way to approach indistinguishability of information quanta is to

create a massive flow of information such that, for people (receivers of

information), it would be difficult to inspect its content. They would

“absorb information only to absorb information.” Here the amount of

the social energy carried by information communication is the subject

of interest and not its content. ‘ ‘They eat without to feel food’s test,

they do not like or dislike food, they just eat, eat, and eat.. ” People

absorb information from TV, newspapers, Internet, mobiles. There is

no neither time nor mental resources to analyze its content.

Information-processing by a “post-human” who is permanently con-

nected to a variety of information channels pumping huge amount of in-

formation differs from information-processing by a “human” (who lived
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at the Earth say 50 years ago). It makes a big difference: to process

information either from one letter coming with post every 2-3 weeks or

from 20-100 emails per day.
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The main feature of all channels is massive (but short, “quantized”)

presentation of the same event - excitation of the information field. This

generates a kind of shock-wave in which the real content of communi-

cation plays a subsidiary role.

For example, consider communications about wars and their victims

throughout the world. We do not more go deeply in the moral and

rational analysis of the continuous flow of brutal video.

At the same time such brutal video transfer to us “energy”; we be-

come “excited”. Do you remember the wave of video about the war in

Ukraine? about the Malaysian Boeing(s)? about the war in Syria?

The everyday homogeneity of the brutal news makes them indistin-

guishable; humans (receivers of information) treat them merely as in-

formation quanta carrying portions of the social energy.
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The problem of indistinguishability is complicated even in quantum

physics. Quantum systems are indistinguishable from observational view-

point.

And we remind that quantum mechanics is theory of observations.

Therefore it is not important whether quantum systems can be distin-

guished at the subquantum level.

By the straightforward interpretation events are distinguishable even

at the level of observations. To get a closer analogy with quantum

theory, we have to consider a kind of “meta-observations” - information

processing endowed with a kind of content-filter.

In such a meta-observation process, a person works similarly to a

photo-detector. He just absorbs the portion of the social energy car-

ried by a communication delivered by mass-media and practically ig-

nores its content. Thus a social media working in such a regime of

meta-observations can serve as gain-medium for social laser.
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Part 3: Quantum-like model of
subjective expected utility

M. Asano, I. Basieva, A. Khrennikov, M. Ohya, Y.

Tanaka, A quantum-like model of selection behavior. J.

Math. Psychology 78, 2-12 (2017).

I. Basieva, P. Khrennikova, E. M. Pothos, M. Asano, A.

Khrennikov, Quantum-like model of subjective expected

utility. J. Math. Economics, (2018); https://doi.org/10.1016/j.jmateco.2018.02.001
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Classical probability modeling

There are two lots, say A = (xi, Pi) and B = (yi, Qi), where

(xi) and (yi) are outcomes and (Pi) and (Qi) are probabilities of these

otcomes. All of the outcomes are different from each other. Which

lot do you select?

An agent, say Alice, can simulate the experience that she draws the

lot A (or B) and gets the outcome xi (or yi). Let us represent such

an event by (A, xi) (or (B, xi)).

Alice assigns the utilities u(xi) and y(xi) of (A, xi) and (B, yi),

respectively. Here, u(x) is a utility function of outcome x. By using

the utility function the agent evaluates various comparisons for making

the preference A � B or B � A.

Expected utility theory: an agent calculates the expectation values

EA =
∑
u(xi)Pi and EB =

∑
u(yi)Qi, and uses their difference

as the criterion for making the preference.
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Representation of lotteries by orthonormal bases in belief-

state space

Consider the space of belief states of an agent. Belief-states are

represented by normalized vectors of a complex Hilbert space H. These

are so-called pure states.

Lotteries A and B are mathematically realized as two orthonormal

bases in H : (|ia〉) and (|jb〉).
Any vector |ia〉 represents the event (A, xi) - “selecting of the A-

lottery which generates the outcome xi.
′′ The same can be said about

vectors of the B-basis.

These events are not real, but imaginable. Alice plays with

potential outcomes of the lotteries and compares them.

We can also represent lotteries by Hermitian operators, the lotteries

operators:

(4) A =
∑
i

xi|ia〉 , B =
∑
j

yj|jb〉.
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Representation of utilities by bases

As in the classical theory, each outcome xi has some utility ui =

u(xi) (say amount of money). Starting with two lotteries A and B

with outcomes (xi) and (yj) with corresponding utilities ui = u(xi)

and vj = u(yj),

Alice couples these utilities with two orthonormal bases in the belief-

state space H :

(5) ui ∼ |ia〉, vj →∼ jb〉.

We emphasize coupling of utilities to lotteries. Utility (derived from

some monetary amount) has not only the value, but also so to say

the “color” determined by circumstances surrounding the corresponding

lottery - lottery’s context.
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Complementary lotteries

The lotteries operators can be noncommuting, i.e., [A,B] 6= 0,

complementary lotteries In the DM-process for complementary lotter-

ies, Alice does not create the the joint image of outcomes of both of

them.

In math terms: the impossibility to determine the joint probability

distribution for the pairs of outcomes (xi, yj).
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Instead of weighting probabilistically the pairs of outcomes, Alice ana-

lyzes the possibility of realization of an outcome say xi of the A-lottery

and she accounts its utility u(xi). Then under the assumption of such

realization she imagines possible realizations (yj) of the B-lottery and

compares the utilities u(yj) and u(xi).

”Suppose I have selected the A-lottery and its outcome xi was real-

ized. What would be my earning (lost) if (instead) I were selected

the B-lottery and its outcome yj were realized?”

This kind of counterfactual reflections is mathematically de-

scribed by the Hilbert space formalism and transition from the A-basis

to the B-basis.
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Outputs of these comparisons are weighted through accounting Hilbert

space coordinates This accounting is described by the special comparison

operator D.

Since Alice cannot handle both lotteries simultaneously, she starts with

imaging one of them say A, as in the above consideration. Then she

performs similar counterfactual reasoning starting with the B-lottery.

The comparison operator D has two counterparts representing the

processes of reflections about preferences, A → B and B → A :

comparisons. In the operator terms transitions from one basis to an-

other are represented by transition operators Eia→jb, Ejb→ia. And the

comparison operator D is compounded of these operators.
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Belief-state

The state of Alice’s beliefs about the lottery A can be represented as

superposition

|ΨA〉 =
∑
i

√
Pie

iθai|ia〉.

The probability of realization of the event (A, xi) is given by the Born

rule and equals to Pi = |〈ia|ΨA〉|2. In the same way the state of

beliefs about the lottery B can be represented as superposition

|ΨB〉 =
∑
i

√
Qie

iθbi|ib〉.

Alice superposes her belief-states about the lotteries and her total

belief-state is created via superposition of her beliefs about theA-lottery

and the B-lottery. Thus the overall ψ is the superposition of the ψ’s s

for two individual lotteries.

(6) Ψ = ΨA + ΨB.
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Belief state: operator representation

In further calculations it is useful to use the operator representation

of |Ψ〉 :

(7) σ ≡ σΨ = |Ψ〉〈Ψ| = σA + σB + σB→A + σA→B,

where

σA = |ΨA〉〈ΨA| =
∑
i,j

√
PiPje

i(θai−θaj)|ia〉〈ja|

σB = |ΨB〉〈ΨB| =
∑
i,j

√
QiQje

i(θbi−θbj)|ib〉〈jb|

σB→A = |ΨA〉〈ΨB| =
∑
i,j

√
PiQje

i(θai−θbj)|ia〉〈jb|

σA→B = |ΨB〉〈ΨA| =
∑
i,j

√
PiQje

−i(θai−θbj)|jb〉〈ia|.
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Comparison operator

In the classical expected utility theory Alice calculates the averages

of the utility function. In the quantum-like model the utility function

determines the comparison operator. Invention of such an operator

is based on coupling between the eigenstates of the “lottery-operators”

and utilities (amounts of money).

We borrow the utility function from classical (objective or subjective)

utility theory. Then we use QP to model subjective probabilities.

The crucial step is operational description of the process of comparison

of lotteries with the aid of quantum states transitions which are encoded

in the comparison operator.

This process can be structured as combination of comparison of a

few SEUs and the interference type factors of the cos θ-form, where θ

represents the combination of phases of a few processes of preferring of

outcomes of the lotteries.
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Transition operators

Let us introduce the transition operators

(8) Eia→jb = |jb〉〈ia|, Ejb→ia = |ia 〉〈jb|.

We have, e.g., Eia→jb|ia〉 = |jb〉. This operator describes the pro-

cess of transition from preferring the state |ia〉 to preferring the state

|jb〉. The operator Ejb→ia = |ia〉〈jb| describes transition in the op-

posite direction. We stress that these are transitions between the belief-

states of Alice. We remark that Ejb→ia = E?
ia→jb, i.e., elementary

transitions in opposite directions are represented by adjoint operators.
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Now we introduce the two comparison operators:

DB→A =
∑
n,m

(u(xn)− u(ym))eiγmb→naEmb→na

=
∑
n,m

(u(xn)− u(ym))eiγmb→na|na〉〈mb|.

DA→B =
∑
n,m

(u(ym)− u(xn))eiγna→mbEna→mb

=
∑
n,m

(u(ym)− u(xn))eiγna→mb|mb〉〈na|.
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The operator DB→A represents the utility of selection of the lottery

A relatively to the utility of selection of the lottery B. We can say

that by transition from the potential outcome (B, ym) to the potential

outcome (A, xn) Alice earns utility u(xn) and at the same time she

loses utility u(ym). (If u(x) = x and x has the meaning of cash

amounts (say USD), then by such a transition Alice (potentially) earns

xn − ym USD.)

In the same way we interpret the transition operator DA→B. This

operator represents the utility of selection of the lottery B relatively to

the utility of selection of the lottery A. These operators represent the

process of Alice’s reflections in the process of decision making. Her mind

fluctuates between preferring outcomes of the A-lottery to outcomes of

theB-lottery (formally represented by the operatorDB→A) and inverse

preferring (formally represented by the operator DA→B). Finally, she

has to compare how much she can earn (in average) by preferring A to

B comparing with preferring B to A.
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This process is formally described by the complete comparison op-

erator:

(9) D = DB→A −DA→B.

This operator has the form:

(10) D =
∑
n,m

(u(xn)− u(ym))eiγmb→na|na〉〈mb|−

∑
n,m

(u(ym)− u(xn))eiγna→mb|mb〉〈na|

=
∑
n,m

unm(eiγmb→na|na〉〈mb|+ eiγna→mb|mb〉〈na|),

where

unm = u(xn)− u(ym).
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Since all quantum observables are represented by Hermitian operators,

the phases should be related as follows:

(11) γna→mb
= −γmb→na.

The comparison operatorD gives us the integral judgment. Only heuris-

tically can we treat theD-based judgment as the result of comparison of

two relative utilities represented by the operators DB→A and DA→B.

We remark that the operators DB→A and DA→B are not Hermit-

ian. Hence, they cannot be treated as observables. We have that

D?
A→B = −DB→A and D = DB→A +D?

B→A.
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The quantum analog of (subjective) expected utility theory is based

on the natural decision rule:

Decision rule. If the average of the comparison operator D is

non-negative, i.e., 〈D〉 = trDσ = 〈DΨ|Ψ〉 ≥ 0, then A � B.
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Using Eqs. (7) and (9) the trace can be written as the sum of four

components:

trDσ =
1

2
trDσA +

1

2
trDσB + ∆1 + ∆2,

where

∆1 =
1

2
tr(DB→AσA→B − trDA→BσB→A),

∆2 =
1

2
tr(DB→AσB→A − trDA→BσA→B).
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Classical Aumann theorem

Mutual knowledge: everybody in a group of people is aware about

some fact or event.

Common Knowledge: Alice and Bob knows about an event E and

Alice knows that Bob knows about E and so on...

The celebrated Aumann theorem states that if two agents have com-

mon priors, and their posteriors for a given event E are common knowl-

edge, then their posteriors must be equal;

Agents with the same priors and common knowledge

about posteriors cannot agree to disagree.
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Criticized assumptions:

a). common priors, but typically it is justified – as the result of

information exchange.

b). common knowledge about posteriors, but again Aumann’s state-

ment can be violated even in situations, where this assumption is valid.

This situation is disturbing and the debate about possible sources of

violation Aumann’s theorem are continued.

We point to an implicit assumption of Aumann:

Agents are rational, where rationality is understood as

the use of Bayes’ rule to update probabilities.

Agents may update probabilities with schemes different from CP. QP

update is a possible math formalism describing non-Bayesian updates.

Such agents may agree to disagree; even with common priors and com-

mon knowledge.
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Quantum state update: projection postulate

There are given a state ρ and an observable A =
∑

i aiPi. Then

(12) pρ(ai) = TrρPi.

However, if after measurement of theA-observable one plans to perform

measurement of another observable B =
∑

i biP
′
i ), then one needs

to know even the output state:

(13) ρai =
PiρPi

TrPiρPi

.

This nothing else than the quantum version of the classical

rule for probability update. But here we update not the prior

probability, but the prior state.
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For the B-measurement following the A-measurement, this state

plays the same role as the state ρ played for the A-measurement. In

particular, by applying the Born rule once again we obtain:

(14) pρai(bj) = TrρaiP
′
j =

TrPiρPiP
′
j

TrPiρPi

.

In quantum theory this probability is treated as the conditional prob-

ability pρ(P
′
j |Pi) ≡ pρ(B = bj|A = ai).
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Quantum(-like) viewpoint on the Aumann’s theorem

Disagree from quantum(-like) interference

Theorem 1. Let the assumption of common prior holds. Then:

(15)

qi−qs =
1

TrρκCq1...qN

( ∑
j 6=m

TrP
(i)
kj
ρP

(i)
km

E−
∑
j 6=m

TrP
(s)
kj
ρP

(s)
km

E
)
.
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