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Bayesian inference offers an optimal means of processing environmental
information and so an advantage in natural selection. We consider the
apparent, recent trend in increasing dysfunctional disagreement in, for
example, political debate. This is puzzling because Bayesian inference
benefits from powerful convergence theorems, precluding dysfunctional
disagreement. Information overload is a plausible factor limiting the appli-
cability of full Bayesian inference, but what is the link with dysfunctional
disagreement? Individuals striving to be Bayesian-rational, but challenged
by information overload, might simplify by using Bayesian networks or
the separation of questions into knowledge partitions, the latter formalized
with quantum probability theory. We demonstrate the massive simplifica-
tion afforded by either approach, but also show how they contribute to
dysfunctional disagreement.
1. Background

Truthiness is tearing apart our country… It used to be, everyone was entitled to their own
opinion, but not their own facts. But that’s not the case anymore

—Stephen Colbert, January 2006
Living organisms depend on the optimal processing of environmental infor-
mation, for example, regarding foraging, mate selection or the assessment of
predation risks. Environmental information is typically uncertain, and so has
to be processed probabilistically. The established standard for probabilistic
inference is Bayesian probability theory [1] (we will refer to it as just Bayesian
theory or occasionally full Bayesian theory, for emphasis). Bayesian theory
provides a set of mutually coherent principles for probabilistic reasoning
on uncertain premises. Bayesian theory benefits from powerful normative
arguments, such as the Dutch book theorem, which shows that Bayesian prob-
abilities will never lead to inconsistencies, such as certain loss in a combination
of gambles [1]. Accordingly, Bayesian reasoning is often characterized as
rational. There is an immense body of work successfully validating Bayesian
models of human cognition [2–4]; these models are not universally successful,
but they are successful enough to allow confidence that humans can be
sometimes rational in the Bayesian sense.

Moreover, for non-human animals, it has been argued that Bayesian inference
confers a natural selection advantage [5,6] and there have been simulations of
how natural selection enables the computation of Bayesian priors across gener-
ations [7] or other aspects of Bayesian behaviour [8] (the first step in
probabilistic inference is the determination of priors, that is, the assumptions
regarding the probabilities of relevant events prior to any new information).
Evidence for animal behaviour consistent with Bayesian inference has been
observed in, for example, foraging [9] or mating [10] (overview in [11]). The
requirement of optimality in animal behaviour is often grounded in Bayesian
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terms, even acknowledging that Bayesian consistency may be
focused on particular environments or circumstances [8,12].

However, for both humans and non-human animals, there
have been inconsistencies between Bayesian principles and be-
haviour. For humans, some evocative examples have been
produced by the influential work of Tversky & Kahneman.
For example, Tversky & Kahneman [13] described a hypothe-
tical person, Linda, as outgoing, concerned with equality, and
intellectually restless. Naive participants considered it more
likely that Linda is a bank teller and a feminist, than just a
bank teller. Such conjunction fallacies challenge Bayesian
intuition at a fundamental level; it is like judging that it is
more likely to rain and snow in December, than just snow.
Interestingly, analogous fallacies appear in animal behaviour
too. For example, rhesus macaques can show ambiguity aver-
sion [14] and pigeons sometimes show the less is more effect,
whereby a desirable food plus a less desirable food is
perceived less appealing than the desirable food alone [15].

As Valone [11, p. 257] noted, ‘Greater attention needs to
be devoted to understanding when and when not to expect
Bayesian updating and to determine the limits of Bayesian
updating in animals’. The exact point applies to human
behaviour too. Here, we pursue a novel perspective to the
emergence of non-Bayesian behaviour in humans, motivated
by the apparent increase in dysfunctional disagreement in,
e.g. modern political debate. We call dysfunctional disagree-
ment when it appears impossible for two parties to converge,
regardless of iterations and evidence. Our analysis is not
restricted to political debate, but it is easier to develop the
argument this way.

The evidence for increasing dysfunctional disagreement
and deterioration in the quality of political debate is strong.
For example, consider the emergence of ‘truthiness’, as in Col-
bert’s quote above (based on his satirical show), which can be
defined as ‘truth that comes from the gut, not books’ [16]; con-
sider also the increasing dissemination of ‘fake news’ [17] and
their ability to set the political agenda [18]; and the intense
polarization surrounding recent political events (e.g. the
Brexit referendum vote in the UK). Kahan [19, p. 1] offers an
evocative quote: ‘Never have human societies known so
much about mitigating the dangers they face but agreed so
little about what they collectively know’.

It is tempting to consider these points unsurprising,
because there is a staggering range of factors contributing
to disagreement, particularly when people rely on false infor-
mation [20]. Disagreement may arise due to emotional
influences. Emotion can overwhelm objective information
[21] or bias the activated information [22]. Some theorists
suggest that all reasoning is motivated [23], so that discourse
is guided just by insistence on a particular position. Differ-
ences in values can result in persistent disagreement [24].
For example, conflicts between a refutation message for a
prior position and valued self-conceptions may lead people
to become more entrenched [25]. There are several related
biases. For example, the disconfirmation bias is scepticism
for premises incongruent with one’s beliefs [26]. The
‘mybias’ is collecting information and assessing evidence in
a way biased in favour of a person’s beliefs [27]. Mybias is
especially problematic in information-rich societies, since
plurality and freedom of expression mean that one can find
supporting opinions for any position. For example, Del
Vicario et al. [28] argued that information related to distinct
narratives generates homogeneous, polarized communities
on Facebook. Such echo chambers could embody contradic-
tory perspectives between them [29] and lead to distorted
pictures regarding consensus.

We focus on individuals striving to be (i) as Bayesian as
possible, (ii) up to date with the relevant information and
(iii) willing to put aside their egos in the interest of resolving
disagreements constructively. We call such individuals well-
meaning, and also suggest that they can set aside unmovable
personal values (i.e. we need not worry about disagreement
from values [24]). Such well-meaning individuals should be
able to avoid most of the ‘standard’ sources of disagreement.
For example, in dual decision routes, analytic versus intuitive
components [30] correspond to thoughtful versus spon-
taneous cognition. Bayesian inference might be
predominantly localized in the analytic route; but the relative
balance between different routes is partly under conscious
control, depending on effort, time, etc. Or Bayesian inference
might be reflected in the intuitive route, with non-Bayesian
behaviour arising from limitations from working memory
or language when accessing the basis of intuitive judgements
[31]. But it should be possible to reduce such limitations, with
effort. Also, decision biases might be avoidable with the
adoption of behavioural rules [32]; it is known that emotions
can be monitored and their impact on behaviour limited [33],
etc.

Here is the paradox: more people are educated than ever
before in history, there is more insight regarding decision
biases, we have better understanding of the importance of
the common good, and access to information has never
been easier. All these factors should increase our capacity
for Bayesian cognition. At the very least, we can assume
that the proportion of well-meaning individuals in society
has not changed, maybe even increased (would we not like
to consider ourselves as well-meaning?). So, why does it
appear that increasingly there is dysfunctional disagreement
surrounding many current debates?

We suggest that even for well-meaning individuals, infor-
mation overload challenges our capacity for Bayesian
thought, in a way that leads to dysfunctional disagreement.
It is easiest to make our case in relation to political debate,
but the ideas are general. First, we ask whether there is
increasing information overload in political debate. The case
is straightforward. One cause of information overload is the
multiplicity of media and ways to disseminate information
in modern society. Practically every second, the Internet,
television, mobile phones, etc. pump out massive amounts
of news, comments on the news and comments on the com-
ments. Another cause is that in a technologically advanced
society, some debates are complex, for example, because
they relate to technological innovations that cannot be
easily comprehended in lay terms. Access to information
has never been easier and we enjoy unprecedented benefits
from technological advancement, yet these factors contribute
to massive information overload.

Second, we consider whether information overload might
contribute to dysfunctional disagreement. There are indi-
cations that this is the case [34]. Allenby & Sarewitz [35]
suggest that the technological complexity of modern society
is such that informed decisions are beyond the scope of com-
prehension for the majority of us. John [36] suggests that
scientists best serve society by relaxing the maxims of transpar-
ency and openness—not because openness and transparency
are undesirable, but because too much information may
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damage public trust in science, because the public’s folk
philosophy of science is at odds with the actual workings
of science. There is clearly a pessimistic view concerning
whether people can deal with the information complexity in
modern political debates [37,38].

We develop a precise link between information overload
and non-Bayesian inference and consider the implications for
dysfunctional disagreement, even for well-meaning individ-
uals. It is interesting that animal behaviour researchers have
also considered whether information overload (environmental
complexity) might challenge Bayesian processes [39].
l/rspb
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2. Outline of methods
We consider two well-meaning individuals, Alice and Bob,
debating a question and examine their capacity for avoiding
dysfunctional disagreement, under conditions of information
overload. Convergence means agreement on at least the prob-
abilities for question outcomes, noting that in complex
debates, it is rarely the case there are uncontested obser-
vations, even for good faith actors. We quantify information
overload in terms of the number of ancillary questions that
inform our decision on a key question. For example, suppose
Alice is interested in the Brexit question. She could inform her
eventual decision on Brexit by considering questions such as
‘Will Brexit be good for the economy?’, ‘Will Brexit be good
for employment rights?’, etc., noting that each of these ques-
tions could be further broken down. There is information
overload when the number of these ancillary questions
increases beyond a ‘practical’ point.

Canwell-meaning individuals agree to disagree? Bounded
rationality is the form of rationality which emerges when
the resources of the reasoning agent are insufficient for full
rationality. So, what are forms of bounded rationality under
conditions of information overload and the implications for
dysfunctional disagreement?
3. Disagreement and Bayesian rationality
Consider well-meaning Alice and Bob debating a complex
political question and assume they share their questions
and outcomes. They then use their respective information
to define a probability distribution and update their beliefs
as rational Bayesian agents. Is it possible for Alice and Bob
to dysfunctionally disagree? Suppose Alice and Bob have
different information regarding a Brexit question, but share
priors and have common knowledge of each other’s pos-
teriors (posteriors are the updated probabilities, once some
new information has been received). Then Aumann’s [40]
theorem guarantees that Alice and Bob’s posteriors will be
the same, that is, two rational agents will eventually con-
verge. Moreover, this convergence can be achieved with a
reasonable amount of effort [41]. The requirement of
common priors may appear stringent; however, it can be
replaced by milder ones [42]. Even without common priors,
Bayesian Alice and Bob willing to share information must
eventually converge. The Bernstein–von Mises theorem guar-
antees that Bayesian updating will converge posteriors (as
long as there is no ‘zero priors’ trap [43]). Finally, some of
these results depend on honest exchange of information.
For well-meaning Alice and Bob, this should be straightfor-
ward, assuming they can agree on acceptable error bounds.
Overall, well-meaning Bayesian Alice and Bob committed
to full Bayesian inference cannot agree to disagree [41,42].

How practical is it for Alice and Bob to be fully Bayesian
under conditions of information overload? The essential idea
is this (see also electronic supplementary material, S1). Con-
sider a finite set Ω of all possible elementary events (the
most specific events which can occur) and all possible sub-
sets, including the null set � and Ω itself. This set theoretic
representation of events is appropriate if each event is
either true or not true.1 We can perform logical operations
on these subsets, union, intersection and complementation,
which correspond to the familiar operations of conjunction,
disjunction and negation. The requirement that each of
these operations produces a subset of Ω enables an algebra
over the space of subsets, which is a Boolean algebra (because
the operations obey commutativity, associativity and distri-
butivity). We can then define a probability measure over
these subsets, which is a map from the space of subsets to
the real number interval [0, 1], with normalization 1 for Ω.

Consider Alice confronted with questions A, B, C, D… ,
each of which can have possible outcomes A1…An,
B1…Bm, etc. Each block of question outcomes generates its
own Boolean algebra, β(A), β(B),…Before Alice can engage
with probabilistic reasoning for a question, she first needs
to construct these individual Boolean algebras, which
involves a process of specifying conjunctions, disjunctions
and negations of outcomes. But, for a Bayesian Alice con-
fronted with questions, A, B,…F, it is insufficient to have
β(A), β(B)…β(F ). For a consistent joint probability distribution
across any combination of question outcomes, she also
needs to construct a bigger Boolean algebra β(A, B,…F ),
which integrates the algebras for the individual questions in
a consistent way. This larger algebra requires knowledge of
conjunctions and disjunctions for all the individual question
outcomes Ai,… ,Fj, belonging to the different algebras β(A),
β(B),…β(F ).

The problem of intractability of full Bayesian represen-
tations is well known, cf. the idea of magic sets in Artificial
Intelligence [44]. We illustrate it in the case of debating, for
example, Brexit and ancillary questions, such as whether
Brexit might be good for the economy, labour laws, etc. If we
had nine binary ancillary questions, then the elementary
events would be enumerated as

1. Brexityes, X1yes…X9yes
2. Brexityes, X1yes…X9no
…
1024. Brexitno, X1no…X9no

Given these 210 = 1024 elementary events, we can evaluate
any more elaborate question, for example, a conjunction
involving some question outcomes versus others, such as
Prob(X1yes& X2yes or X3yes& X5no). But, the immense expres-
sive power of Bayesian theory comes with the price of
requiring knowledge of the joint probability distribution—
here, the probabilities of all 1024 elementary events. The
more questions we have, the more complex the joint prob-
ability distribution and so any probabilistic inference. As the
number of questions n and outcomes per question k increase,
the number of terms in the joint probability distribution
increase as kn.

To quantify complexity, we adopt an information-theor-
etic coding scheme and compute information costs [45,46]
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(electronic supplementary material, S1). The coding cost of D
numbers can be specified by dividing the relevant number
range into D bins and assigning each number to one bin,
which requires log2D bits for each number for a total of
Dlog2D bits. This is intuitive because if the D numbers
were uniformly distributed, we would have enough bins to
just make them discriminable (if D = 100, these statements
are equivalent to representing the numbers with two decimal
places; electronic supplementary material, S2). Therefore, the
information cost for representing probabilistic information for
n questions with k outcomes each is (kn− 1)log2(k

n− 1) bits,
approximated as knlog2k

n.
Information overload clearly undermines full Bayesian

inference. Consider a person living in an isolated community
a hundred years ago. He would be confronted with a
fairly limited range of questions, each of which would
be affected by relatively few events. So, it would be unde-
manding to create a Boolean algebra of all questions,
including conjunctions, disjunctions, etc. Today, especially
in political debate, we are confronted with questions of
immense complexity. Consider Alice faced with the Brexit
dilemma. There are hundreds of questions relevant to resol-
ving the dilemma, across several categories, for example,
relating to finance, immigration, security, and so on. Alice
does not have the time or resources (mental or otherwise)
to create a full Boolean algebra for all questions and
their outcomes.

When confronted with a complex probability distribution,
a powerful approach is sampling algorithms, such as Markov
chain Monte Carlo (MCMC) methods [3,47,48]. An MCMC
method will approximate Bayesian computations, by employ-
ing samples from the probability distribution, instead of the
full distribution. Such samples are often selected to favour
more probable parts of the distribution and depending on
the similarity of the parts already selected. However, in the
present case, sampling approximations will not help: when
faced with problems of increasing complexity, sampling
from the full distribution will delay, but not avoid, the
exponential explosion of probability terms.
4. Bayesian networks
The first approach we consider for mitigating the problems
of complex distributions is Bayesian networks (e.g. [49]).
Suppose we recognize that in many cases, questions will
be independent of each other, so that e.g. Prob(A|B) =
Prob(A) or conditionally independent so that, for example,
Prob(A&BjX) ¼ ProbðAjXÞ � ProbðBjXÞ. Clearly, such an
approach has simplifying potential, since a complex con-
ditional probability Prob(A|X1, X2, X3, X4 … ) might be
easily computable as, for example, Prob(A|X1). The way to
formalize assumptions about conditional independence is
Bayesian networks. Bayesian networks represent (acyclic)
probabilistic relations between a set of variables, such that
each variable is a node and causal relations are represented
as directed edges. The simplifying potential of Bayesian net-
works rests with their Markov property: without causal
dependencies, there are no conditional dependencies. So,
simplification depends on the causal structure. Note, there
is extensive evidence for the psychological plausibility of
Bayesian networks [50,51], even if it is unclear whether
they suffice for a cognitive theory of causality [52]. Presently,
we are only concerned with the way the local Markov
property can simplify probabilistic information.

If Alice and Bob are overwhelmed by the complexity of
their representations, they could use Bayesian networks as
a simplifying tactic. But it is unlikely they will develop simi-
lar causal structures for their representations, as these would
depend on their experience, education, background, etc.
Bayesian networks Alice and Bob with different causal struc-
tures mean that the powerful classical convergence theorems
(Aumann’s theorem; the Bernstein–von Mises theorem) no
longer hold. Alice and Bob could now find themselves in a
state of dysfunctional disagreement, even though they
are fully rational, given their representations (which corre-
spond to different assumptions regarding causal structure).
Alice and Bob could seek convergence by communicating
their causal structure, but such knowledge is often hard
to articulate. Note, there have been attempts to explain
dysfunctional disagreement with Bayesian networks with
hidden nodes corresponding to, for example, attitudes
which prevent convergence [53,54]. The present point
is related, but instead concerns the inevitable incidental
differences in causal structures.

To estimate the complexity of probabilistic inference with
Bayesian networks, consider classical Alice contemplating six
binary questions related to the Brexit question. Without
the Markov property, the probability distribution for a par-
ticular combination of question outcomes would look
like ProbðX1yes,X2yes,X3yes,Y1yes,Y2yes,Y3yes,BrexityesÞ ¼ Prob
(X1yesjX2yes, X3yes, Y1yes, Y2yes,Y3yes,Brexityes) � Prob(X2yes
jX3yes,Y1yes,Y2yes,Y3yes,Brexityes) . . . Prob(Brexityes). The
Markov property allows us to assume certain questions to
be independent. For example, regarding Prob(A|X, Y ),
we may be able to write Prob(A|X, Y ) = Prob(A|X ). Suppose
that Alice employing a Bayesian network assumes partial
conditional independence, so that conditionalizations
depend on m variables. Then, we would write, if m = 2,
ProbðX1yes, X2yes, X3yes, Y1yes, Y2yes,Y3yes,BrexityesÞ ¼ Prob
(X1yesjAyes,Byes) � Prob(X2yesjCyes,Dyes) . . ., where A, B are
two questions on which X1 depends etc. As long as m≪ n,
each term requires km probabilities (ignoring ‘−1’), for a
total of approximately n · km probabilities [55]. The associated
coding complexity for the joint probability distribution given
a particular Bayesian network is n · kmlog2(n · k

m) bits. We
also need the information cost of specifying a Bayesian
network, and can show that overall the information cost
for probabilistic information encoded using a Bayesian net-

work is (n � km) log2 (n � km) þ n log2
n � 1
m

� �
þ log2n

� �

(electronic supplementary material, S2).
(a) Quantum probability theory: disagreement
We call quantum theory the probability rules from quantum
mechanics, without the physics. Behaviours that appear
classically erroneous can sometimes have simple explana-
tions in quantum theory, which motivates the psychological
plausibility of such models [56–58].

Informally, quantum theory is just like Bayesian theory
for subsets of questions (compatible sets, see below), but
across these subsets, apparent classical errors can arise.
These incompatible sets are like knowledge partitions, seg-
ments of knowledge such that within each segment, but not
across segments, reasoning is rational. Knowledge partitions
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Figure 1. Alice and Bob are interested in whether Brexit may increase the
price of imported cheese, C. Alice considers C with questions related to immi-
gration, while Bob considers C with finance questions. As a result, Alice and
Bob develop meanings for the C question which are different, even though
they think they are considering the same question. (Online version in colour.)
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can emerge as a simplifying strategy in complex problems
[59,60]. For example, when learning an association between
two variables based on a complex function, a natural
approach is to learn the association in smaller ranges, but
in a way that the corresponding parts are not integrated
with each other. Well-meaning Alice dealing with Brexit
might try to be rational for specific subsets of questions,
but without trying to integrate the Boolean algebra for one
theme with another. For example, if Alice works in the finan-
cial sector, she may be able to create a full Boolean structure
regarding the financial implications from Brexit and so be
rational for such questions. At the same time, Alice is so
busy with the construction of this finance Boolean algebra,
that she does not have time to do the same for other Brexit
questions, e.g. relating to security. Arguably, this is what
we are seeing in modern society: individuals highly knowl-
edgeable and rational in specific areas but who, when
asked to consider questions across other areas, may be
challenged and even produce inconsistent beliefs.

In quantum theory, instead of a set Ω of elementary
events, we have a Hilbert space H, such that each vector in
H corresponds to an elementary event (a Hilbert space is
essentially a complex vector space with a scalar product).
Question outcomes correspond to subspaces in H; each sub-
space is associated with a projector P (which ‘lays’ down a
vector onto a subspace); in psychological theory, the mental
state is represented by a normalized vector in H; probabilities
are computed by projecting the state vector onto subspaces
and squaring the length of the projections. Different
partitions in H are defined by sets of basis vectors. For
example, in a standard coordinate space, we might have
three basis vectors along the x, y, z directions. Basis sets are
not unique. If we apply the same rotation to each of our cur-
rent vectors x, y, z, we will end up with a new set of basis
vectors x0, y0, z0. Two sets of basis vectors can be related to
each other using a generalized kind of rotation.

Projectors can be compatible, in which case we have a Boo-
lean algebra exactly as in the classical case, or incompatible,
when the Boolean algebra structure breaks down. That is, con-
sidering sets A, B, C… of projectors, such that within each
set projectors are compatible, but across incompatible sets,
one cannot combine Boolean algebras β(A), β(B)… into one
large Boolean algebra. Each event in this larger structure is
no longer either true or not true (before measurement)
and distributivity is no longer obeyed. Instead, we have a par-
tial Boolean algebra, which is a collection of Boolean algebras
pasted together, so that where any two Boolean algebras over-
lap, their operations agree. Conjunctions and disjunctions
preserve their Boolean features only within the same Boolean
algebra.Conjunctions of incompatible questions have a sequen-
tial form and Prob(PA ^ then PB) = Prob(PB ^ then PA). Also,
a definite answer for a question can create uncertainty for other
incompatible ones.

Quantum theory can simplify probabilistic inference with
incompatibility, which allows Alice to squeeze information
about, say, 100 questions (which, even if binary, will require a
classical space of 2100 dimensions) into a space of, say, 10 dimen-
sions. If quantum Alice organizes her large set of Brexit
questions into incompatible themes, each theme corresponds
to a basis set in the same small dimensionality space and the
representation of new themes need only involve a change of
basis, instead of enlargement of the original space. However,
incompatibility contributes to dysfunctional disagreement.
One implication of incompatibility is that quantum Alice is
more likely to display (classical) fallacies, which may under-
mine her arguments. Incompatibility has been linked with
conjunction and disjunction fallacies [61], question order effects
[62], violations of normative constraints in causal reasoning [51]
and disjunction effects [63]. Moreover, incompatibility leads to
contextuality inmeaning. If quantumAlice andBob have differ-
ent partial Boolean algebras, they may think they are talking
about the same question, have the same data and fail to
agree, because they are talking about different questions
(figure 1). Such ideas resemble proposals in social psychology
about how earlier questions can activate thoughts or perspec-
tives for later ones [64]. Contextuality arises in quantum
theory because the meaning of question A is determined by
considering the set of questions compatible with A (and some
of these questions might be incompatible with each other)
and because the meaning of question A may be affected by
considering prior questions incompatible with A.

Contextuality contributes to dysfunctional disagreement.
First, quantum Alice and Bob are no longer aided by
Aumann’s theorem [65]. Common knowledge in the quantum
case is not equivalent to common knowledge in the classical
case, because the former lacks conjunctions. Additionally,
questions incompatible with common knowledge will pro-
duce interference terms so that Alice and Bob will not
update probabilities consistently with each other. Second, col-
lective decision-making typically benefits from communal
knowledge effects, such as the community of knowledge
effect, wisdom-of-the-crowds and Condorcet’s jury theorem.
Such effects are not specific to Bayesian inference, but they
are consistent with it. However, all three are undermined by
contextuality. Regarding community of knowledge, Sloman
& Fernbach [66] argued that in a complex world, we increas-
ingly benefit from each other’s expertise and sometimes, as a
result, overestimate our own knowledge (a knowledge
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illusion). Thewisdom-of-the-crowds effect is the proposal that
an averaged judgement across observers can be more accurate
than most individual judgements, assuming primarily inde-
pendence of observations and that individual estimates are
normally distributed around the correct outcome [67]. Finally,
the Condorcet jury theorem shows that a majority decision
(e.g. in a jury) is increasingly likely to be correct, as we add
voters whose (individual) probability that they are correct is
just over 0.5. Regarding community of knowledge and
wisdom of the crowds, if Alice and Bob are debating contex-
tual question A, then Alice may be thinking of AX and
Bob of AY, where X, Y indicate differing meanings. This
casts doubt on the rationality of putting Alice’s and Bob’s
intuitions together. Such problems are likely to be accentuated,
because employing a partial Boolean algebra may lead to
overconfidence (electronic supplementary material, S3).

(b) Quantum theory: coding costs
Within a single partition, we have a classical probability distri-
bution for the corresponding questions, encoded in the mental
state vector. We need to specify the mental state for one par-
tition and the way partitions relate to each other; the latter is
encoded in transformation operators called unitary. So, the
information cost for probabilistic inference for quantum Alice
depends on three elements, the mental state vector for one par-
tition, unitary operators and the cost of allocating questions to
partitions. The mental state vector and unitary operators are
specified in terms of parameters which are real numbers.
Regarding information costs, we follow from the above
approach to assume that F real parameters (assumed in a cer-
tain range) can be approximately specified using Flog2F bits.

Label the dimensionality of each partition as N. The
mental state vector in N dimensions has N− 1 real par-
ameters corresponding to amplitudes and N− 1 real
parameters for the phases. This is because the N amplitudes
are constrained by the normalization condition and, regard-
ing the N phases, the quantum state is the same up to an
overall phase factor. The corresponding information cost is
2 · (N− 1)log2(N− 1), which can be approximated as 2 ·
Nlog2N. What is N? Suppose c partitions are employed
and that all partitions have the same number of questions.
Then, in each partition, we have n/c questions, k out-
comes each, so that N = kn/c. The overall information cost
involves additional terms, for how information in one par-
tition relates to information in other partitions. This cost

is 2 � kn=c log2 kn=c þ (c� 1) � 4n
c
log2

4n
c
þ log2

n!
n
c

� �
!

h ic�1 þ
log2
(c� 1)!nc

cc�1 (electronic supplementary material, S2). Note,

the dimensionality of quantum Alice’s probability space
turns out to be only N = kn/c, which seems like a huge
saving compared to Bayesian Alice for whom N = kn; but
this simplification is partly offset by the complexity of
specifying partition relations.
5. Comparisons
A well-meaning Alice overwhelmed by the complexity of
her joint probability distribution might seek to simplify the
representations either by employing Bayesian networks or
dividing her questions into (incompatible) partitions. For
the latter two schemes, the critical parameters are,
respectively, m (the average number of questions each one
question depends on) and c (the number of partitions). Both
parameters concern the extent of dependence of questions
among themselves and, specifically, the length of conditional
probabilities (electronic supplementary material, S2). Regard-
ing m, this interpretation follows directly from the definition
of a Bayesian network, while in the quantum case, classical
conditionalization occurs only within knowledge partitions.
Therefore, it is natural to set n/c =m or c = n/m.

We provide indicative estimates regarding the simplification
from Bayesian networks and quantum theory relative to Baye-
sian theory, varying question numbers from 5 to 15 and
question outcomes from 2 to 4, figure 2. The vertical axis shows
the information cost for scheme A (e.g. Bayesian theory) minus
B (e.g. Bayesian networks). Recall, lower information costs are
more advantageous, so that when A−B≫ 0, then B is superior
toA. Inall cases, probabilistic reasoningwith eitherBayesiannet-
works or quantum theory affords overwhelming simplification
relative to Bayesian theory. This is a demonstration of the essen-
tialpoint that informationoverloadwilldriveevenwell-meaning
Alice to make representational approximations, putatively
employing Bayesian networks or knowledge partitions.

We also observe a marginal advantage of quantum theory
over Bayesian networks, though this conclusion is sensitive to
the complexity of the relation between partitions. Overall, the
quantum approach to simplification seems advantageous,
thus providing a strong expectation of dysfunctional
disagreement due to incompatibility and partitions.

6. Concluding comments
We considered how dysfunctional disagreement can arise for
well-meaning individuals, because of information overload.
The notion of being well-meaning is primarily underwritten
by an assumption of rational cognition, in the Bayesian
sense. There is a strong consensus that Bayesian rationality
is achievable to some extent [1–4]. Our aim has been to under-
stand how information overload can challenge full Bayesian
rationality, how Bayesian networks and quantum theory
offer flavours of limited or local Bayesian rationality, and
the implications for dysfunctional disagreement.

Regarding dysfunctional disagreement, a full Bayesian
would quickly find it impossible to build the required
Boolean algebra, for complex problems. Alice can simplify
with Bayesian networks, truncating her probability distri-
butions with assumptions about the causal structure between
her questions. Alice and Bob may find themselves failing to
converge if their Bayesian networks are different; Aumann’s
[40] and the Bernstein–von Mises theorems no longer hold.
Alternatively, Alice can simplify using knowledge partitions
[59] dividing her questions into sets, such that within each
knowledge partition, she is fully Bayesian, but across partitions
apparent errors arise. With knowledge partitions, Aumann’s
and the Bernstein–von Mises theorems also no longer hold
and, in addition, the resulting contextuality challenges the
community of knowledge effect [66], wisdom-of-the-crowds
effect [67] and Condorcet’s jury theorem.

Is it possible for Bayesian networks or quantum Alice and
Bob to converge? In the former case, they need to share their
causal structure. However, it seems unlikely this would occur,
because we are often unaware of the causal dependencies
impacting on inference. In the latter case, Alice and Bob need
to share their partitions (and information on how partitions
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relate to each other), and in addition be careful to respond to a
question in the same context (figure 1). We agree with Lissack
[68], who argued that truthiness can be reduced if Alice and
Bob ‘Try to see things from my viewpoint’. However, we think
quantum Alice and Bob will not engage with such a process,
becausecontextuality isnot recognized inprobabilistic inference.

Our focus has been dysfunctional disagreement, because
this is an under-researched topic and because the link with
information overload is intuitive. More generally, there have
been long research traditions concerning the way complexity
undermines Bayesian rationality. The present framework can
shed light into other instances of behaviour apparently proble-
matic from a full Bayesian perspective, because of complexity,
bearing inmind that therewill be behaviours outside any prob-
abilistic framework. For example, the emergence of some
conjunction fallacies, as in the Linda example [13], could be
traced to lack of familiarity with partition combinations. It is
possible that we have a local partition for professions and
one for personal characteristics, like feminism, without
making the effort to combine them together. Conversely, the
less-is-more effect in animal behaviour [15] seems harder to
understand as complexity-driven bounded rationality.

In closing, to the long list of factors contributing to
dysfunctional disagreement, we add differences in causal
structure and contextuality, from information overload.
A surprising implication is that more information or nuanced
perspectives may exacerbate disagreement by further
encouraging truncated probability distributions or incompa-
tible representations as simplifying tactics. For some
important modern debates, such as Brexit, it may seem that
we have forgotten how to evaluate arguments using easily
verifiable facts, but increasing information may not help or
may indeed be harmful [36–38]. A precise understanding of
the impact of information overload, as we have offered, will
hopefully contribute to mitigating interventions.
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Endnote
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