	June 19	June 20	June 21	June 22
7:45 - 9:00	– breakfast –	– breakfast –	– breakfast –	– breakfast –
9:00 - 10:00	Reischuk	Gratz	Dell'Ambrogio	Klein
10:00 - 10:30	– coffee –	– coffee –	– coffee –	– coffee –
10:30 - 11:30	Yuliawan	Briggs	Cesaro	Stevenson
11:45 - 12:45	Wong	Conde	Pauwels	
13:00	- lunch $-$	- lunch $-$	- lunch $-$	
14:30 - 15:30	Stevenson	Šťovíček	Burke	
15:30 - 16:00	– coffee –	– coffee –	– coffee –	
16:00 - 17:30	exercise session	exercise session	exercise session	
18:30	- dinner -	– dinner –	- dinner -	

SCHEDULE (SUMMER SCHOOL, ISLE OF SKYE, 2015)

LIST OF TALKS

Friday June 19th (Modular representation theory).

- (1) R. Reischuk: Representations of finite groups,
- (2) F. Yuliawan: The stable module category,
- (3) W. Wong: The derived category,
- (4) G. Stevenson: Overview, part I, statement of the classification theorem.

We will finish the day by looking at examples illustrating talks 1-3; group cohomology; the language of triangulated categories.

Saturday June 20th (Commutative algebra).

- (1) S. Gratz: The spectrum of a graded commutative algebra,
- (2) B. Briggs: Support varieties,
- (3) T. Conde: The derived category of a commutative DGA,
- (4) J. Šťovíček: The Hopkins-Neeman theorem.

We will finish the day by discussing examples of Zariski spectra and supports, and constructing examples of group representations and DG modules with prescribed support.

Sunday June 21^{st} (Differential graded algebra).

- (1) I. Dell'Ambrogio: More differential graded algebra: enhancements, functors, tilting theory,
- (2) A. Cesaro: The Bernstein-Gelfand-Gelfand correspondence,
- (3) B. Pauwels: Cohomology for elementary abelian p-groups,
- (4) J. Burke: Formality of the Koszul complex.

We will finish the day by putting hands on the differential graded machinery.

Monday June 22nd (Proof of the classification theorem).

- (1) S. Klein: Carlson's generation theorem and reduction to elementary abelian groups,
- (2) G. Stevenson: Overview, part II: proof of the classification theorem.