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We consider the issue of evaluating information retrieval systems on the basis of a limited number

of topics. In contrast to statistically-based work on sample sizes, we hypothesise that some topics
or topic sets are better than others at predicting true system effectiveness, and that with the

right choice of topics, accurate predictions can be obtained from small topics sets. Using a variety
of effectiveness metrics and measures of goodness of prediction, a study of a set of TREC and

NTCIR results confirms this hypothesis, and provides evidence that the value of a topic set for

this purpose does generalise.

Categories and Subject Descriptors: H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

General Terms: Measurement, Experimentation

Additional Key Words and Phrases: Search effectiveness, topic selection, evaluation experiments,
test corpora

This is the authors’ version of this work. It is posted here by
permission of ACM for your personal use. Not for redistribution.
The definitive version was published in ACM Transactions on Infor-
mation Systems (TOIS) volume 27 issue 4 (November 2009) http:
//doi.acm.org/10.1145/1629096.1629099

1. INTRODUCTION

In the experimental evaluation of information retrieval (search) systems, we typ-
ically take a collection of documents and a set of queries or topics representing
information needs. Then we obtain relevance assessments from the originators of
the queries or from some substitute judges, on a pooled set of documents. All
of this is in essence a well-established methodology, defined in the Cranfield ex-
periments over 40 years ago and developed in TREC and other public research.
However, many details of this methodology are open to modification and further
development.
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One major issue with this methodology is its expense. In particular, the effort
required to make relevance assessments is a major bottleneck. Any advance that
enables us to get equally good evaluation information with fewer relevance judge-
ments can give us major benefits.

This paper addresses one issue in this general domain: in what ways is it possible
to reduce the number of topics needed for evaluation? One might treat this question,
as indeed other authors have done, purely as a statistical sampling question: What
is a minimal topic set sample size for valid results? In other terms, if one randomly
chooses a set of topics, how many topics are needed to obtain statistically reliable
results, with a certain confidence? Here, however, we consider another aspect of this
issue that, perhaps surprisingly, has been neglected so far: Are some topics (or topic
sets) more useful than others for evaluation purposes? Could we choose particular
small topic sets which nevertheless are highly informative about the effectiveness
of different systems? Can we use such small sets to predict system effectiveness on
other topics?

Some evidence presented elsewhere [Mizzaro and Robertson 2007] suggests strongly
that individual topics vary greatly in their ability to discriminate between systems;
in the present paper, we concentrate on sets of topics. However, our approach to
this question will not immediately seek a complete solution to the problem of iden-
tifying suitable topic sets. Rather we set out to explore the space: to gain some
understanding of how different topic sets might give us different amounts of infor-
mation. As the basis for this exploration, we mine a set of TREC data, representing
results on 50 topics and 129 system runs. In addition, we repeat some experiments
on a set of data from NTCIR6, consisting of 50 topics and 74 runs, a mixture of
mono- and cross-lingual runs.

This paper is structured as follows. Section 2 gives a brief review of some related
work. Section 3 gives an overview of our approach to the problem, with some
illustrative results. In Section 4 we discuss a number of methodological issues and
describe the methods used. Section 5 gives results of a series of experiments on
the TREC data, designed to address the methodological issues; in section 5.7 we
repeat some of the runs on the NTCIR data, and also use a different metric, based
on graded relevance. We conclude in Section 6.

2. REVIEW OF RELATED WORK

There has been concern over many years with how many topics might be needed
to enable reliable effectiveness comparisons between systems. Interest in this and
related questions is currently going through a major surge; we do not attempt a
comprehensive review here, but give an overview, as well as indicating those studies
that have contributed directly to the present work.

In 1976 Sparck Jones and van Rijsbergen [1976] claimed that “concerning re-
quests, under 75 are of little use, 250 are usually acceptable, and 1,000 are some-
times needed”. Zobel [1998] by contrast, while concentrating on pool depth, did
show that results on one set of 25 topics did a reasonable job of predicting relative
performance on a different set of 25. Buckley and Voorhees [2000] give evidence
that “the number of queries needed for a good experiment is at least 25, and 50
is better” (with differences between different effectiveness metrics). Voorhees and
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Buckley [2002], followed by Sanderson and Zobel [2005], give error rate curves for
different numbers of topics (similar curves are used below). While studying the sta-
tistical power in the context of retrieval evaluation, Webber et al. [2008] conclude
that 150 topics are required to distinguish TREC systems in a reliable way.

This work can also lead to conclusions about the choice of effectiveness metrics –
some metrics are better than others, in the sense that they require smaller samples
of topics for similar accuracy of prediction. Sakai [2007] uses a similar method
to Voorhees and Buckley but on metrics which use graded (rather than binary)
relevance judgements, and concludes that such measures are stable and sensitive.
In another paper [2006], he proposes a different method of evaluating metrics, based
on the bootstrap method in statistical significance testing, with some advantages
over the Voorhees/Buckley method. Webber et al. [2008] conclude that measures
such as Average Precision are better than Precision at rank 10, but go further and
argue that AP allows for a better prediction of P@10 on a new set of topics than
P@10 itself; thus reporting P@10 on an evaluation set is redundant.

There has also been much recent work (e.g. [Carterette et al. 2006; Yilmaz and
Aslam 2006]) on a related efficiency issue: can we reduce the number of relevance
judgements per topic and still get reliable results? Methods based on these ideas
are currently in use in various TREC tracks.

A more complex series of ANOVA analyses by Banks et al. [1999] reveal that,
in addition to a strong system effect, there is an even stronger topic effect. There
are also significant interactions between systems and topics, and some weak clus-
tering among topics. All these conclusions are highly relevant as background to
the present study. A recent paper [Mizzaro and Robertson 2007] shows through
network analysis that some individual topics are much better than others at pre-
dicting system effectiveness averaged over all topics. No analysis is reported there
of sets of topics, but the results on individual topics strongly suggest that similar
differences may be expected among sets also.

The object of the present paper is to conduct an exploration of the idea, not
addressed by any of the above, that some sets of topics are better than others, in
the sense of estimating or predicting the general effectiveness of different systems,
or at least their relative effectiveness. In the course of this study, we draw upon
ideas and methods used in several of the above studies. There is huge scope in
investigating this question, and we have only just begun to scratch the surface. We
do not at this stage propose any concrete new ways of selecting or devising topic
sets for experiments. Nevertheless, we believe that the results demonstrated here
provide some insight into these ideas, which may eventually yield new methods.

3. BASIC APPROACH

In this section, we give an overview of our approach to the problem. Here we will
give only an outline of the methods used and results obtained, without discussing
the various issues involved. The purpose is to present the reader with a general
picture of the work, and to avoid getting too deeply into the detail at this stage.
Subsequent sections will discuss many details and issues.

Consider Table I, representing a set of TREC (or similar) results. Each row
corresponds to a system. (Actually, each row corresponds to a run: the same
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system, with different parameters, configurations, etc., can lead to several runs.)
Each column corresponds to a topic (i.e., request). Therefore, each cell of the
matrix AP(si, tj) measures the performance of system si on topic tj ; the classical
metric used in TREC is Average Precision (AP). The performance of a system si
is usually obtained by computing the arithmetic mean of all AP(si, tj) values (one
row of the table). This is called Mean Average Precision (MAP).

APs t1 · · · tn MAP

s1 AP(s1, t1) · · · AP(s1, tn) MAP(s1)

s2 AP(s2, t1) · · · AP(s2, tn) MAP(s2)

...
. . .

...

sm AP(sm, t1) · · · AP(sm, tn) MAP(sm)

Table I. AP and MAP, for n topics and m systems

The data sets actually used in the experiments reported here are discussed below.
The basic method is as follows. We start from a set of n topics (n = 50 or 25

in the experiments below). We now consider, for any c ∈ {1, . . . , n} and for any
subset of topics of cardinality c, the corresponding values of MAP for each system
calculated on just this subset of topics: that is, we average only a selected set of c
of the n columns in Table I. For each such subset, we calculate the correlation of
these MAP values with the MAP values for the whole set of topics. This correlation
measures how well the subset predicts the performance of different systems on the
whole set.

Now for each cardinality c, we select the best subset of topics, that is the one
with the highest correlation. We also select the worst, and finally we calculate an
average correlation over all subsets of size c. The resulting graphs of correlation
against cardinality are shown in Figure 1.

From this figure, we see that the best subset of (for example) size c = 5 or 10 is
much better at predicting performance on the full 50 topics than a random set of
the same size, which in turn is very much better than the worst. To read the figure
across instead of down, if our target is 0.95 correlation with the full set, choosing
the best subset will allow us to get away with just 6 topics, while if we chose a
random subset we would have to go to 22 topics, and if the worst, 41 topics would
be required.

We note that these differences are consistent over different topic set sizes and
surprisingly large; at first glance, at least, they suggest that some topic subsets
are very much better than others at predicting effectiveness on the full set. We
will need to be a little wary of such differences, because we have also chosen these
‘best’ subsets from a very large number of candidate subsets; this might be seen
as inviting overfitting. However, this matter is discussed and investigated further
below.

Thus we have some evidence that a judicial choice of topics will allow us to
use much smaller topic sets than random choice, and still have some confidence in
the results. However, this result can be criticised in a number of ways, and gives
rise to many methodological questions. In the next section, we discuss the various
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Fig. 1. Maximum, average, and minimum correlation values over cardinalities for AP

methodological issues, before presenting the results in detail. The major issues may
be classified as follows:

—Finding the best and worst sets: exhaustive and heuristic search.
—Metrics for system effectiveness (MAP in the example above).
—The measurement of goodness of a subset (correlation in the example above).
—The issues of overfitting and generalisation.
—Computational issues.

In an attempt to reduce potential confusion, we refer below to measures of system
effectiveness as ‘metrics’ and measures of goodness of a subset as ‘measures’. We
also refer throughout to ‘good’ or ‘bad’, or ‘best’ or ‘worst’, subsets of topics,
meaning those which predict well or poorly effectiveness on some criterion set of
topics.

4. DATA AND METHODS

4.1 Datasets

The main dataset used in our experiments is from TREC 8, and consists of 50 topics
and 129 systems / runs. Following Voorhees and Buckley [2002], we eliminate from
the data the 25% worst-performing runs on the basis of MAP, keeping 96 runs.
This will allow us to compare some of our data to [Voorhees and Buckley 2002].

In order to validate (or otherwise) our results, we repeat some of the analyses on
a rather different dataset, from NTCIR. This consists of 50 topics and 74 systems
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/ runs. As for TREC, we eliminate 25% of the runs, leaving 56. The actual rules
for eliminating runs are slightly different, because the table of results by run and
topic contains quite a number of zero entries. This appears to be because some
runs failed completely on some topics, and no returns were provided. We therefore
first removed runs for which more than 2 topics had zero results, and then culled
runs with the lowest MAP scores, to a total of 25%.

4.2 Exhaustive and heuristic search

Our basic method is to do an exhaustive search on all the possible subsets of topics
of cardinality c, for each c ∈ {1, . . . , n}. For each such subset σ and each system
si, we calculate MAPσ(si), i.e., the MAP for a system si computed by averaging
the c AP(si, tj) values of the ti topics in the σ set only. Then (for each subset)
we calculate the correlation of the set of MAPσ(si) with the set of MAP(si), i.e.,
MAP for system si on all the n topics. We choose, out of all subsets of cardinality
c, the ‘best’: the one which gives the highest correlation.

The exhaustive search of the space allows us to find the ‘worst’ subset as well:
the one which gives the lowest correlation; thus, we will know the optimum (how
well we can do with c ≤ 50 topics only), the minimum (how badly we can do if we
are extremely unlucky) and the distribution and average (how good we expect to
do by random sampling).

Note that the number of subsets of cardinality c of a set of cardinality n is(
n
c

)
= n!

c!(n−c)! . This can be a very large number (for example,
(
50
15

)
≈ 2× 1012 and(

50
25

)
≈ 1×1014). Thus we do not in fact do a complete search for all c ∈ {1, . . . , 50}.

We could imagine various ways of doing heuristic searches of this space, thus
avoiding complete searches. We have used a particular heuristic method, described
in Section 4.6 and validated in Section 5, for many of our experiments, including
the one whose results are given in Figure 1.

4.3 Effectiveness metrics

As will be very familiar to people, there are many measures (metrics in our current
terminology) of retrieval effectiveness (in addition to MAP) which we might use in
this context. We consider the following:

—MAP: Mean average precision.
—RPrec: Precision at the rank equal to the number of relevant documents.
—P@10: Precision at rank 10.
—GMAP: Geometric mean average precision.
—NDCG: Normalized discounted cumulative gain.

For GMAP, what we actually use is the equivalent metric log AP, taking its (arith-
metic) mean over topics [Robertson 2006]. We consider NDCG only for the NTCIR
data, which has graded relevance judgements. The primary reason for using a va-
riety of metrics is to understand whether and to what extent results depend on the
metric chosen.

Note that we could use such metrics either to evaluate a chosen subset, or to
choose the optimal subset in the first place. Generally, in the results below, we
use the same metric for both purposes (each of the metrics in turn). Another
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series of experiments would be needed to decide whether we could use one metric
for choosing the subsets to predict a second metric. This would be valuable if we
could choose on the basis of P@10, as this is a relatively cheap metric to evaluate;
however, this possibility is rendered somewhat less likely by the results of Webber et
al. [2008], showing that P@10 is a poor predictor of other measures. This question
is left for future work.

4.4 Measuring goodness of a subset

It will be clear that for the purposes of this project, we are taking the full set of
results on the n = 50 topics / m = 96 runs as the gold standard; a subset is good
insofar as it reproduces the results on the full set. (Below we also define some
experiments with different targets.)

4.4.1 Correlation. Given that we are using the MAP effectiveness metric, we
would like the MAPσ(si) values from our subset of topics σ to predict the MAP(si)
values from the whole set. An obvious way to measure this prediction is to measure
the correlation of the two sets of values, as indicated above. However, other methods
might be appropriate. Here we consider two more.

4.4.2 Kendall’s τ . The purpose of measuring MAP(si) is to evaluate systems in
a relative sense – that is, to help us decide whether system A is better than system
B. Thus, it may be argued, we are interested in the rank order of systems as defined
by the metric, rather than the values of the metric themselves. Hence we consider
as alternative goodness measure the Kendall’s τ rank correlation coefficient.

4.4.3 Error rate. Decisions about whether one system is better than another are
however slightly more complex: we may regard small differences in a metric as not
significant by some definition. This question has been addressed in [Sanderson and
Zobel 2005; Voorhees and Buckley 2002], where an ‘error rate’ measure is defined
for this purpose. This measure, which actually takes the form of a family of curves
on a graph, is defined in Section 5.6.3 below, where we give the results of some
similar experiments.

We want to use a similar measure as a goodness criterion in our experiments, but
for this purpose we need a single-figure measure for choosing best subsets of topics.
This leads us to define a Weighted Average Error Rate as follows. Assume a set of
systems or runs {si, i = 1, . . . ,m}. As in the original error rate measure, we take
two evaluations of this set, producing two sets of scores according to the chosen
metric, {Xi} and {Yi}. We regard one of these, the Y set, as the ground truth, and
evaluate how well the X set predicts this ground truth. A discordant pair of runs
is one which X ranks in the opposite order from Y ; we define an indicator variable
for discordance as follows:

δi,j(X,Y ) =
{

1 if Xi −Xj and Yi − Yj are of opposite signs
0 otherwise

Again as in the original, we regard this as a function of the difference in performance
between the two runs according to ground truth Y . Thus the error rate counts the
number of incorrect predictions (discordant pairs), but weights each one by the
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ground truth difference: ∑
i>j δi,j(X,Y )|Yi − Yj |∑

i>j |Yi − Yj |
. (1)

Thus a discordant pair counts more if the true result has a wider margin |Yi − Yj |
– this is consistent with the intuition behind the original error rate measure. Note
that this measure looks quite similar to Kendall’s τ , but differs in respect of its
dependence on the margin |Yi−Yj |. In our case, we take the Y set to be the results
according to a full set of topics, and the X set as the results from a subset.

Again, we could use a goodness measure either retrospectively, to evaluate a
chosen subset, or to choose the optimal subset in the first place, or both. Again
we concentrate on experiments which use the same goodness measure for the two
purposes; however, we report one indicative experiment in which different measures
are used.

4.5 The overfitting issue and generalisation

When we apply the method as discussed so far, to a set S of systems / runs and a set
T of topics, some of the ground truth we use to evaluate our subsets is represented
in the data we use to choose the subsets in the first place. This presents a danger
of overfitting – of choosing some subsets which are purely accidentally correlated
with the full set, rather than because of some intrinsic property.

To put this issue another way, suppose we were to construct a relatively sophis-
ticated null hypothesis. This would be based on the notion that in principle no
subset is better than any other subset of the same cardinality at predicting full-set
performance. However, it would not actually claim that every such subset would
have the same correlation with full-set performance – rather, it would anticipate
some random variation, resulting in a distribution of values of the goodness mea-
sure. Now our combinatorial selection method would find the extreme values of
this distribution, over a very large set of candidate subsets. These extremes might
then be quite far from the distribution mean.

However, such a null hypothesis would predict that any such result would have no
generalisability. The identified extreme subsets would not have any real predictive
value beyond the average, when applied for example to held-out data. We attempt
to address this question in three ways, essentially holding out data for test according
to different schemes.

4.5.1 Splitting the runs. First, we conduct the following experiment. We ran-
domly divide the systems / runs into two equal disjoint subsets, S1 and S2 (48 runs
each). For any c ∈ {1, . . . , 50}, we then apply the analysis described above to S1 to
choose the best c topic subset. Then the S2 systems are evaluated on the chosen
topic subset, and we assess the various goodness measures on S2 only. Specifically,
we take as ground truth the set of S2 results on the full topic set, and evaluate
the set of S2 results on the chosen c topic subset. This should provide a test of
generalisation. Note that in these experiment, as in those done with the full set of
systems, at cardinality c = 50 (all topics), we are guaranteed to reach the ground
truth.

There are two issues with this method, namely that (a) the set of TREC runs we
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are using includes a number of groups of closely-related runs, essentially generated
by perhaps minor variants of the same system, and (b) these same runs were used
to generate the pool of documents for relevance assessment for each topic. Thus
we might expect some overfitting to happen here as well, insofar as similar runs
may occur in both halves. It might be possible to address the first issue by some
slightly more complex method of splitting the runs, and perhaps the second by
testing on some other set of runs not used in the original pooling. However, in
order to provide further evidence on the overfitting question, less subject to these
objections, we conduct a second series of experiments splitting the topics.

4.5.2 Splitting the topics. This time, we split the topic set randomly into two
equal disjoint parts (25 topics each). We choose the best c topic subset (for any
c ∈ {1, . . . , 25}) from set T1 – that is, best as evaluated on full T1 results only.
We then evaluate it on set T2, compared to various possible baselines. Specifically,
again, we take as ground truth the set of S results on the T2 subset, and evaluate
the set of S results on the c subset of T1. Note that in these experiments, using
all topics in T1 does not guarantee that we reach the ground truth goodness of T2;
thus the high-cardinality end of the curve remains below the optimum.

4.5.3 The Voorhees-Buckley method. The previously cited work [Sanderson and
Zobel 2005; Voorhees and Buckley 2002] takes a view of overfitting / generalisation
which is based on topics, like our second approach. They take two disjoint random
subsets of topics and consider whether one predicts performance on the other. We
present some results using a similar method. We note that this method can be
applied only up to a maximum topic subset size of half the total number of topics.
Sakai [2006] has developed a bootstrap method which can go all the way up to the
full topic set; we have not yet tried this approach.

4.6 Computational issues

As indicated, computation time is an issue for some cardinalities in the exhaustive
search scenario. Here we consider a heuristic form of search, which in fact we use
extensively.

We observe below that there is some stability in best sets. That is, if we consider
the best set at cardinality c = 8 and the best set at c = 9, it is likely that they
overlap considerably: it could be that the latter consists of the former together with
one additional topic. Thus a heuristic is to search recursively: having identified the
best set for cardinality c, to seek the best for cardinality c + 1 among sets which
differ from the best c set by not more than 3 topics (the number 3 was chosen
primarily because 4 is intractable).

We found it necessary to use such a method for cardinalities 10 < c < 41 in
the 50 topic set. For example, when using the Kendall’s τ , searching exhaustively
takes around 7 days for c = 11, and around 20 days for c = 12, even with efficient
O(n log n) calculation of τ using Knight’s algorithm [Boldi et al. 2005]. Exhaustive
search for correlation runs is much faster due to the simpler calculation, and wider
scope for optimisation of the algorithm; however, even there, computation becomes
a real issue beyond c = 15.

Below we present some evidence that the heuristic works well – even if it does
not find the absolute best topic set, it will find something very close to the best.
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The method is therefore suggested as a usable general heuristic for this problem,
and has been used (except where otherwise specified) throughout the experiments
below.

Some alternative heuristics could be considered. The simplest might be just to
sample (say) 1000 different sets of c topics and take the best from the sample;
this would also be likely to give results close to the optimum, and would avoid the
dependence on the chosen c − 1 set. A slightly more sophisticated method would
combine both these heuristics: start by sampling, choose the best in sample, and
then seek to improve that by considering small variations, as in the above heuristic.
Neither of these ideas has been tried yet.

5. RESULTS

All the results that follow are based on the TREC dataset, until Section 5.7, where
we switch to the NTCIR dataset.

5.1 Validation of the heuristic

The heuristic method defined in the previous section for discovering best or worst
subsets of different cardinality requires justification. We conducted both heuristic
and exhaustive searches for best and worst sets on each of the two subsets of topics
T1 and T2 for all cardinalities, all four effectiveness metrics, and all three goodness
measures; and on the full set T for cardinalities 1 ≤ c ≤ 10 and 41 ≤ c ≤ 50,
for AP only. For each combination from best/worst, topic set, metric, measure we
observe the average and maximum score difference between the exhaustive and the
heuristic choice, over all cardinalities, as a percentage of the score range.

In the case of average precision, the largest differences for best sets on T1 are seen
with Kendall’s τ : here the maximum score difference is 1.19% and the average is
0.077%. Mostly the heuristic best is within the best 10 sets identified exhaustively;
occasionally it drops out of the top 10. The heuristic and exhaustive worst sets
are usually even closer – for some combinations of measure and topic set no dif-
ferences at all were discovered. Results for GMAP and RPrec are broadly similar;
Precision@10 results appear slightly less stable.

We regard these results as confirming that the heuristic is good enough for our
purposes. Some additional comments on the method are given in Sections 5.4 and
5.5 below.

5.2 Linear correlation analysis

In these experiments, we continue to use the simple linear correlation analysis,
on all 50 topics and 96 systems, but apply the method with the four different
effectiveness metrics. The results are shown in Figure 2 (the first graph reproduces
Figure 1). The pattern is very similar for the four metrics: best subsets are better
than random subsets which are very much better than worst subsets, especially for
low cardinality.

We conclude that the effects we observe are essentially independent of the effec-
tiveness metric used. We note, however, that we have not yet investigated whether
the optimum set for one metric is also good for the other metrics.
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Fig. 2. Correlation: maximum, average, and minimum goodness measure values
over cardinalities, for the four effectiveness metrics, Average Precision, RPrec, Pre-
cision@10 and GMAP

5.3 Optimising other goodness measures

As discussed above, we may argue that the linear correlation measure is not the
best way to decide if a subset of topics predicts some ground truth well. Here we
try the same analysis with two alternative measures, Kendall’s τ rank correlation
and a measure based on Error rate [Voorhees and Buckley 2002].

Kendall’s τ is straightforward; we simply substitute τ for the linear correlation
used in the previous analysis. The corresponding graphs are shown in Figure 3.
The pattern is very similar indeed to the pattern seen for correlation.

For the error rate, the present purpose requires a single-figure measure that can
be used to choose a subset unambiguously. We use the Weighted Average Error
Rate defined above. Results are shown in Figure 4. The measure is the reverse of
the correlation measures (lower is better), but apart from this, the pattern is again
very similar.

We conclude that the effects we observe are essentially independent of the mea-
sure of goodness used. We note again, however, that we have not yet investigated
whether the optimum set for one measure is also good for the other measures.
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Fig. 3. Kendall’s τ : as Figure 2

5.4 Subset analysis

In these experiments, we further investigate the question relating to the heuristic
search method: How much difference is there between the best set for one cardinality
and that for the next? Using the exhaustive searches on the T1 subset of topics,
and the Average Precision metric and the correlation measure, we show a pixel-
map (Figure 5) of the occurrences of topics in best/worst subsets for different
cardinalities. Each column represents a topic and each row a cardinality. The
pattern is very similar for the other metrics and measures.

It appears that on the whole, topics are good or bad – that is, a topic will tend to
appear in the good sets or in the bad sets, but not both. However, there are rather
different patterns between best and worst: once a topic is in a worst set, it tends
to stay there, but there is considerable variation in the best sets. At one extreme,
the best at c = 9 and the best at c = 10 are completely disjoint. It follows that the
exhaustive and heuristic searches must diverge at this point – in fact the heuristic
best 10 is the second best set of 10 on the exhaustive list (with only a small drop in
correlation). The following section gives us further insight into these comparisons.

To summarise this data, for each combination of metric and measure, we measure
the stability of the best (respectively worst) sets as follows. For each topic in a set
of a given size, a counter is incremented if the topic is in the set next size up. For
the exhaustive search, this counter has a minimum and maximum possible value,
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Fig. 4. Error Rate: as Figure 2

where the minimum is greater than 0 due to the fact that as topic sets get larger
there is some inevitable overlap from one topic set to the next. The stability value
(expressed as a percentage) is given by the ratio:

counter actual− counter min
counter max− counter min

.

For worst subsets the average stability for Average Precision across the three good-
ness measures is 93%. Best subsets are somewhat less consistent, with an average
of 86%.

5.5 Neighborhood analysis

We now seek to compare the best subsets with the not-quite-best, and the worst
with the not-quite-worst. We select the ten best (respectively the 10 worst) subsets
for cardinality 12, and represent them in similar pixel maps in Figure 6. We observe
again, very clearly, that the worst sets show greater consistency than the best.

We hypothesise the following explanation of the results of this and the previous
section. While there are some topics that are just plain bad, the quality of being a
good topic for this purpose is somewhat more subtle. In particular, topics can have
some complementarity. A good set is not just a set of topics that are good individ-
ually, but topics that complement each other in predicting or explaining variations
between systems. This is consistent with the observation in [Banks et al. 1999] that
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Fig. 5. Pixel map of best/worst sets overlap, average precision / correlation / T1/S. Columns are
topics, rows are cardinalities. For example, for cardinality 2, the worst topic set is {409,446}, and

the best is {411,448}

topics cluster weakly: we might expect that, in order to get good prediction, we
need a good range of different topics covering multiple clusters. It is also consistent
with our observation that some apparently bad topics are also included in good
sets: for example, in Figure 6, the rightmost topic (450) is consistently in the bad
sets but also appears in some good sets.

Finally, and perhaps surprisingly, the variety implied by this hypothesis is con-
sistent with the success of the heuristic method. While the absolute best set may
vary significantly between cardinalities, there is likely to be another somewhat dif-
ferent set which is almost as good, and which is reachable via the heuristic. This
is despite the fact that the number of potential subsets is astronomical, and the
number explored via the heuristic is tiny by comparison.

5.6 Generalisation experiments

All the preceding analysis has been based on choosing a subset of topics and judging
how well it predicts the results from the full set, for a fixed set of systems / runs.
We expect that this process results in some overfitting, because the ‘ground truth’
against which we judge the selection includes the data used to make the selection. In
this section, we seek in different ways to separate the two. In a worst case, we might
find that the selection is no better than random when judged on an independent,
held-out set of ground truth data.

5.6.1 Hold out systems. Our first experiment involves holding out some of the
systems. As discussed above, we make a random split of the set of systems / runs
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Fig. 6. Best/worst 10 subsets cardinality 12 overlap, average precision / correlation / T/S. For
example, topic 402 occurs in 3 of the ten best cardinality 12 subsets, but also in 6 of the 10 worst

ones. 403 and 404 occur in all 10 worst sets only.

Fig. 7. Maximum, average, and minimum Kendall τ values over cardinalities for AP, all topics,
subsets chosen using S1 or S2, evaluation on S2

into two equal subsets; we now choose the best/worst cardinality n subsets of topics
according to S1, and test it on S2 (compared to the best/average/worst subsets
according to S2). The results for average precision and Kendall τ , all tested on S2,
are shown in Figure 7; results for other effectiveness metrics or goodness measures
are very similar.

We see that despite a significant amount of overfitting when the best sets are
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Fig. 8. Best, average and worst, average precision / correlation / T2/S, evaluated on random T1

subsets

chosen on their S2 results, there is still a substantial difference between the best
and worst subsets when chosen on their S1 results. In almost all cases, the best
S1 sets also outperform average subsets. This provides good confirmation that the
selected subsets of topics really do have some generalisation properties. Once we
have identified a good topic set for a set of systems / runs, this set is now much
more effective than a random set of similar size for evaluating further systems /
runs.

A possible limitation of this method of holding out systems (actually runs) has
already been noted in section 4.5: the set of TREC results used contains some
groups of related runs, essentially distinct runs based on perhaps minor variants of
a specific system. We did not control for this possibility when creating the random
split of systems, so that some overfitting may remain as a result of a group of related
runs being divided between the two halves. However, we now show the results of a
different hold-out method, not subject to this objection.

5.6.2 Hold out topics. In this experiment, we split the topics instead of the sys-
tems – we now optimise the subsets of T2 and test whether they predict system
effectiveness on the T1 topics, all using the entire S set of systems / runs. This
situation is slightly different, in that the entire T2 set (the right-hand end of the
curve) will no longer predict the T1 results perfectly. To put it another way, over-
fitting remains a strong and unavoidable factor throughout the curve. At the right
hand end, even the best T2 cannot be expected to do as well as random T1. Figure
8 shows the results for average precision and correlation; the other combinations
are very similar.

Again, despite a significant amount of overfitting by the T1 subsets, there remains
a substantial difference between best and worst T2 subsets. The best T2 subsets
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always do better than average T2 subsets, although the difference is small at higher
cardinalities. For the lowest cardinalities (up to 6), the best T2 subsets even do
better than average T1 subsets. Again, we have evidence of generalisation. Once
we have identified a good topic set for a set of systems / runs, this set is now more
effective than a random set of similar size for predicting the performance of these
same systems / runs on other topics. For example, it takes only the single best
topic from T2 to achieve a correlation above 75%, while with a random set, we
would have to go to cardinality 9.

5.6.3 Voorhees-Buckley experiments. The experiments designed by Voorhees
and Buckley [2002] work as follows. For each cardinality 1 ≤ c ≤ 25, two ran-
dom non-overlapping sets of c topics are chosen, with one being taken as ground
truth. A set of bins (20 bins of width 0.01, going from 0.0 to 0.2) is created;
these bins are keyed, for a given pair of systems, by the absolute difference between
the effectiveness metric (according to the ground truth) of the two systems. Two
counters are initialized to 0; the first is incremented each time a pair of systems
belongs to the bin, and the second counter is incremented only if, in addition, the
non-ground truth ranking of the two systems is discordant with the ground-truth
ranking. This is repeated over all system pairs for many different pairs (10,000) of
random non-overlapping sets. At the end, the ratio of the second counter to the
first counter, expressed as a percentage, gives an error rate for each bin for the
given cardinality. This is now repeated over all cardinalities (1 ≤ c ≤ 25), to give
percentage error rates for each bin and cardinality. We do the same experiment,
but based on the T1/T2 split: random sets from T2 are taken as ground truth, and
the best (according to our error rate measure) or random sets from T1 are evalu-
ated. A pseudocode version of this procedure is given as Algorithm 1; this shows
the distinction between the original Voorhees & Buckley method and the version
used here. These error rates are plotted as curves where, for each bin, percentage
error rates are plotted against cardinality.

We show in Figure 9 the family of curves for best T1; the basic pattern is the
same as for random T1 and the same as reported in [Voorhees and Buckley 2002;
Sanderson and Zobel 2005]. Comparing best/random/worst quantitatively is hard
on such a graph, so we select three bins and plot the two curves for these three bins
only, plus the average (Figure 10). Note that each set must share the same right-
hand end, because there is only one set of 25 topics. At every point the ‘best’ curve
is a little better (lower) than, or coincides with, the corresponding ‘random’ curve.
This provides additional evidence that selection of best topics really does give us
some gain over random sets, in being able to achieve good evaluations with smaller
sets of topics. The ‘worst’ curves show some discrepancies – at high cardinalities
they are sometimes slightly better than either ‘random’ or ‘best’. However, in the
low-cardinality range where the differences are much more marked, the order is
consistent and indeed the ‘worst’ curves are much worse.

5.6.4 Comparison across goodness measures. The number of experiments that
could be done in which we select according to one goodness measure and then
evaluate according to another is enormous (given also the possible choices of ef-
fectiveness metric). In general this is left for future work. However, we show one
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Algorithm 1 Voorhees-Buckley experiment
Require: 20 bins k, defined by the interval (0.01(k − 1), 0.01k]. A system pair will be assigned

to the bin corresponding to the absolute difference in ground truth effectiveness score between

the two systems.

Require: Two counters per bin, all(k) and disc(k)
for c = 1 to 25 do

for k = 1 to 20 do

Initialise all(k) and disc(k) to zero
end for

for r = 1 to 10000 do

if original Vorhees-Buckley then then
Pick a random subset X of c topics

Pick a second random subset Y of c topics, not overlapping with X
else if evaluate on random T1 then

Pick a random subset X from T1 of c topics

Pick a random subset Y from T2 of c topics
else if evaluate on best T1 then

Pick the best subset X from T1 of c topics

Pick a random subset Y from T2 of c topics
end if

for i = 1 to m do

Evaluate system/run i on X , giving Xi

Evaluate system/run i on Y, giving Yi

end for

for all i, j such that 1 ≤ i < j ≤ m do
Select bin k according to |Yi − Yj |
Increment all(k)
if δi,j(X,Y ) = 1 (i.e. if the two are discordant) then

Increment disc(k)

end if
end for

end for

for k = 1 to 20 do
Error rate e(c,k) =

disc(k)
all(k)

end for

end for

such comparison here, as an indication only. We repeat the previous experiment,
but choose the best T1 subsets according to the correlation criterion rather than
the error rate. The results are shown in Figure 11. We observe that the differences
between best, random and worst are very similar to those observed above. This
result provides at least preliminary evidence that the choice of goodness measure
may not be too critical: that a set of topics that is good according to one measure
may also be good according to the others.

5.7 NTCIR experiments

In these experiments we repeat some of the previous experiments on the second
data set, from NTCIR, and also using a different metric, NDCG.

Figures 12 and 13 contain the results for the NTCIR data, on AP (left) and
NDCG (right): in Figure 12, the first row corresponds to Figure 1, the second to
Figure 8, and the third to Figure 9. In Figure 13, the first row contains pixel maps
corresponding to Figure 5, and the second to Figure 6. The last row contains S1/S2
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Fig. 9. Best average precision / error rate / T1/S, evaluated on random T2 subsets

generalization results corresponding to Figure 7.
In general, these results are similar to those observed using TREC data. Exactly

the same comments about the consistency of the best and worst sets respectively
apply to NTCIR. The results do however appear to be somewhat noisier, particu-
larly the AP S1/S2 results in the last row of Figure 13. This is not really surprising,
for two reasons: firstly, we have fewer runs in this set; and secondly, they represent
a mixture of mono- and cross-lingual runs. Indeed it is quite surprising that we get
any generalization at all – one might expect that the usefulness of a topic set in
predicting effectiveness would be very greatly affected by language and translation
issues. To put it another way, we might guess that an ANOVA (along the lines
of Banks et al. [1999]) on NTCIR data would show a significant topic-language
interaction (quite apart from possible system-language and 3-way interactions).
However, despite this, there still seems to be some signal present, particularly in
the NDCG results.

6. DISCUSSION

6.1 Conclusions

This paper started from the hypothesis that some topics or topic sets are better
than others for evaluating systems, in terms of their ability to predict absolute or
relative system performance in other data sets. We have shown that given a larger
set of topics, it is indeed possible to discover subsets that do have better predictive
power than random subsets. We have provided extensive evidence that this is not
just a random effect: that good topic sets continue to outpredict random sets of
similar size on held-out data (either unseen systems or unseen topics).

This result may be compared to the more statistically-based work in [Voorhees
and Buckley 2002; Sanderson and Zobel 2005] and elsewhere. Our result does
depend, as the cited work does not, on the availability of a larger set of evaluated
topics to select from, together with a set of system runs. This issue is discussed
further below.
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Fig. 10. Best, random and worst, average precision / error rate / T1/S, evaluated on random T2

subsets (three bins only plus average)

We may summarise our more detailed results by saying that not all topics are
equally informative about systems. However, this statement requires qualification.
While some topics are simply bad for this purpose, in some sense the important
thing is the set rather than the individual topics – it appears that different topics
provide complementary evidence about systems.

We have provided some different selection criteria, but no evidence has emerged
as to which criterion might be best. All our work so far suggests that different
choices of goodness measure and/or effectiveness metric provide comparable results
(with the possible exception of Precision@10, which seems somewhat less stable
than the other metrics). However, we have only scratched the surface of this space.

6.2 Implications

As indicated, a direct application of the methods used in this paper requires a
large set of evaluated topics and associated system runs, and a somewhat complex
combinatorial analysis of results. This is not intended as a realistic scenario – rather,
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Fig. 11. Comparison across goodness measures: maximum, average, and minimum Error Rate
values over cardinalities, subsets chosen on the AP criterion from T2 or T1, evaluation on T1 and

S

we have sought evidence that some form of topic selection (other than random)
might be valuable. Having provided quite strong evidence for this statement, we
now need to investigate possible selection methods and scenarios.

Despite the above, the methods developed in this paper could perhaps be used
in the following scenario. An organised effort such as TREC or NTCIR could be
conducted in the usual fashion, with the usual selection of topics. Then a subset of
topics could be chosen as above, and issued as an ‘official’ condensed set of topics.
Groups could use the condensed set for a wide range of evaluations / optimisations,
and verify results on the full set.

The condensed collection would be particularly useful for subsequent experiments
requiring manual effort on a per-topic basis (such as interactive experiments, or
manual query expansion, etc.). However, for the standard automatic benchmark
evaluation, the gain from such condensation may be relatively small, for a significant
effort; we therefore discuss here both the effort and (in outline) possible scenarios.

Considering the combinatorial problem, it would be appropriate to investigate
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Fig. 12. NTCIR results, AP on left and NDCG on right. First row: correlation
goodness measure based on T and S. Second row: correlation goodness measure
based on T2 and S, evaluated on random T1 subsets. Third row: error rates, based
on T1 and S, evaluated on random T2 subsets.

per-topic selection criteria, such as for example a measure of how well each single
topic predicts average effectiveness. There are several possible ways to measure this
– a measure of topic ‘hubness’ is proposed in [Mizzaro and Robertson 2007], for
example. The inference noted earlier concerning the complementarity of topics
in the good sets might work against such a method; however, the observation
concerning the variety of good topic sets might work in its favour, just as it appears
to help the heuristic method.

An alternative, given the relative consistency of the sets of bad topics suggested
by our results, is to select topics for exclusion rather than for inclusion. It may be
easier to make reliable rejection decisions than selection decisions.

The issue of discovering other variables which might be predictive of whether
topics or topic sets are good in the present sense is a major one. We do not at
this stage, for example, know whether there is any relation between goodness for
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Fig. 13. NTCIR results continued, AP on left and NDCG on right. First row:
best and worst sets for different cardinalities, based on T1 and S. Second row:
10 best and worst sets for cardinality 12, based on T and S. Third row: S1/S2

generalization.

the present purpose and topic ‘hardness’, as investigated for example in the TREC
Robust track. We have not yet attempted to replicate the methods proposed here
on Robust Track data, as this would have introduced a new dimension to an already
complex picture, but that is clearly an investigation worth pursuing.

But the more serious issue concerns the availability of fully-evaluated results
in the first place. We can envisage scenarios in which topic selection happens
at various different stages. Firstly, there may be intrinsic topic features which are
predictive of goodness or badness, or are predictive of some kind of complementarity
that might contribute to a good set, and which are accessible before any searching
takes place. Secondly we might look at some set or sets of search results (one or
multiple systems) prior to relevance assessment. Thirdly, we might seek information
during the process of relevance assessment, which might lead to a decision to focus
assessment resources on certain topics. These are all methods which have been
proposed or used for other search-related decisions, for example, choosing between
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ranking algorithms that suit easy or hard topics or topics of different types, or
distributing limited assessment effort to optimise average precision estimates. We
note in particular recent work on reducing the number of relevance assessments
required [Carterette et al. 2006; Yilmaz and Aslam 2006], which should certainly
be tied in with the present work.

At this stage we do not know whether any such method could give us any of the
benefits of topic set selection that we have seen in this paper. In this sense, the
results shown here provide an optimum for us to aim at. But our results do suggest
strongly that it is worth investigating such methods.
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