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Relevance Weighting of Search Terms

This paper examines statistical techniques for exploit-
ing relevance information to weight search terms. These
techniques are presented as a natural extension of weight-
ing methods using information about the distribution of
index terms in documentsin general. A series of relevance
weighting functions is derived and is justified by theoret-

e Introduction

In this paper, we examine statistical techniques for
exploiting relevance information to weight search terms.
The object of the paper is to find a theoretical framework
which will give us some guidance as to how to make use
of relevance information in searching and to test experi-
mentally any guidance that we may find. In that event, a
general probabilistic theory of ‘relevance weighting im-
plies that ‘we' should use a specific weighted search
method ~and suggests a series of relevance weighting
functions. The experimental results confirm some im-
portant conclusions of the theory.

e Statistical Weighting

Search term weighting is an established practice. It
may be adopted simply as a means of simulating Boolean
searching [see Angione (I)]. It is also a retrieval device
in its own right. That is, term weighting may be used in a
manner not equivalent to Boolean searching because re-
trieved documents are further ranked. We are concerned
here with this more general use of weighting:

ical considerations. In particular, it is shown that specific
weighted search methods are implied by a general prob-
abilistic theory of retrieval. Different applications of
relevance weighting are illustrated by experimental re-
sults for test collections.
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Term weights may be assigned for different reasons.
One ground for weighting is user preference. The user
may be more interested in documents with term 4 than
documents with term b for reasons:not directly con-
nected with the actual use of g and b in the set of docu-
ments being searched. Request. terms may also be
weighted statistically (usually rather: trivially) by their
within-request . frequency. Such 'user-oriented request
term weights may be contrasted with document-oriented
weights, and specifically with system-oriented weights
reflecting the behavior of terms in the document col-
lection as a whole. (Term weights related to individual
documents, whether derived intuitively or statistically,
are not explicit search term weights.)

A natural source of system-oriented term values is dis-
tributional information indicating term frequencies; and
since the main problem in retrieval is to select a few rele-
vant documents: from many non-relevant ones, the
general ‘object of statistical weighting schemes is to
assign- high- values to discriminating terms. One such
scheme has been studied by Salton (2), and another
much simpler one by Sparck Jones (3, 4, 5). Comparable
improvements in retrieval performance have been
obtained with them. In both schemes terms with
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medium to low collection frequencies are assigned high
weights as good discriminators, while frequent terms
have low weights. For term ¢, given
N = the number of documents in the collection, and
n = the number of documents indexed by ¢,
Sparck Jones assigns a weight by the function:

n
w = - log v o (FO)

Salton’s weighting scheme is very much more compli-
cated. In retrieval, documents are ordered by notional
coordination level representing the sum of matching
term weights. Sparck Jones’ tests with three collections
showed material improvements in performance, mea-
sured by recall and precision, over unweighted terms.
Statistical information, however valuable, is not readily
manipulated manually, but it is well suited to automatic
systems. Sparck Jones’ function in particular is very
simply applied at search time. Apparent merit and easy
computation taken together suggest that as much dis-
tributional information as possible should be exploited
in an automatic system.

The schemes described so far use only information
about the distribution of terms in documents. Robert-
son (6) has drawn attention to the natural development,
which is to use any available information about the dis-
tribution of terms in relevant documents. In this case
term weighting becomes strictly request (and need)
specific. In the previous case, a term would have the
same weight in different requests. When relevant docu-
ments are taken into account, the same term may have
a different value for different requests. An obvious
weighting function, derived from rather different start-
ing points, has been proposed by Barkla (7) and by
Miller (8, 9). For a given term ¢ and a given query q,
if

1}

the number of relevant documents for ¢, and
the number of relevant documents indexed by ¢,
r
w = log (-)-:—-) . (F1)
(W)

For Barkla, an SDI service would provide relevance in-
formation via feedback; for Miller, it would be estimated
by the user. Barkla's test with this weighting scheme is
very -difficult to interpret (see Robertson). In Miller’s
experiments, however, it led to a better retrieval per-
formance for MEDLARS than standard Boolean search-
ing. In recent tests with several collections, Sparck Jones
(10) has shown that the function, when applied predic-
tively as originally intended, has some merit. She has
also” shown " that' the -optimal performance, which is
obtained when perfect relevance information is available,
e.g., for test collections, is good; and she has suggested

X
il

that it can be used as a general experimental yardstick. A
simpler weighting scheme with the same object, using w
= r/n, was found to be of some use by Barker, Veal and
Wyatt (11).

Yu and Salton (I2) have recently investigated a func-
tion defined by

.o )

N-n-R+r )

They use this function not directly as a weighting func-
tion, but in a rather complex way to modify the output
of a simple coordination level matching scheme. They
then prove that this modification of coordination level
matching can be expected to improve performance. The
proof involves some “independence. assumptions” about
the occurrence of terms which are discussed later.
Although their particular weighting scheme is idiosyn-
cratic, and their subsequent retrieval tests to confirm the
proof empirically were very limited, the idea of attempt-
ing a formal proof of the validity of a particular scheme
is a good one and forms a major part of the present
paper.

Taken together, these results provide some prima
facie evidence for the potential value of relevance infor-
mation in statistical weighting schemes- suited to auto-
matic post coordinate term retrieval. But there is no con-
sensus on exactly how relevance information should be
exploited. What is required is a systematic theoretical
and experimental investigation of the various possible
ways on using relevance information. for weighting
search terms. This is what this paper aims to provide.

In the next section we present a series of relevance
weighting functions. The theoretical framework within
which these functions are derived is summarized in an in-
formal way. A formal account of the theory is presented
in full in the Appendix, to which the technically-minded
reader is referred. The summary given in the text is de-
signed to bring out the main’points of the theory, justify-
ing the particular choice of weighting function adopted
and to link the theory and the experiments which are
subsequently described. Thus, the theory is essentially
concerned with probabilistic methods for ranking search
output, to maximize recall and minimize fallout, based
on assumptions:about term distributions and principles
of output ordering. In the experiments the methods are
interpreted as request term weighting schemes, both to
link the approach adopted with past work and to per-
mit the application of a standard retrieval test meth-
odology.

® Relevance Weighting

We assume binary index descriptions of documents.
(These are more frequently encountered than non-binary
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ones.) We also assume a set of relevance judgments for
each request. Documents may be judged relevant either
in relation to the request as stated or in relation to some
underlying need. In either case we hope to optimize re-
trieval of these or similar documents. Thus, if the judg-
ments are specific to an individual user, the optimal re-
trieval strategy is to be supplied for that user. Another
user, with the same verbal request but different judg-
ments, may have a different strategy. In the paper, ‘‘re-
quest” implies specific individual need.
Now given, as above, for term ¢ and request g,

N = the number of documents in the collection,

R = the number of relevant documents for g,

n = the number of documents having ¢, and

r = the number of relevant documents having ¢,
consider the contingency table of document distribution
for ¢:

Document
Relevance
+ -
+ ¥ n-r n
Document
Indexing
- R-r N-n-R+r || N-n
R N-R

Relevance weighting formulae must in some way reflect
the relative distribution of terms with respect to relevant
and other documents: Specifically, we can derive
formulae from the previous table as follows (the use of
logs in all the formulae is explained in detail later):

w = log (FD)
(%
xr
w? = log (f_r) (F2)
(¥r
77)
w? = log Rn-r (F3)
w* = log —-—-—--(I:r') (F4)
k)

Informally, for the giver request term ¢, Function F1
represents the ratio of the proportion of relevant docu-
ments in which 7 occurs to the proportion of the entire
collection in which it occurs, while F2 represents the
ratio of the proportion of relevant documents to that of

non-relevant documents. F3 represents the ratio between
the “relevance odds” for the term (i.e. the ratio between
the number of relevant documents in which it does
occur and the number in which it does not occur) and
the “collection odds” for ¢, while F4 represents the ratio
between the term’s relevance odds and its “non-relevance
odds.” Thus, the Functions F1 and F2 are related by
using proportions, while F3 and F4 use odds; but F1 and
F3 respectively are related by comparing the relevant
document distribution of a term to its entire collection
distribution, while F2 and F4 are related by comparing
relevant and non-relevant distributions.

The consequences of applying these formulae, to-
gether with simple collection frequency weighting (FO0),
are illustrated in Table 1 and Fig. 1. Five terms are
chosen: all four combinations of low and high collec-
tion frequency and low and high relevance frequency,
and a “medium” term. The relationships between the
weights given by each function to the different terms
are shown diagrammatically in the figure (since only the
ratios of the weights matter within a given scheme, all
the schemes are scaled to give the same weight to the
medium term e). All four functions separate the terms
in the obvious ways: b > ¢ and d > ¢ for relevance fre-
quency, a > ¢ and b > d for collection frequency ;in fact,
all four functions give a negative weight to ¢ (since a
document chosen at random from those containing the
term ¢ is less likely to be relevant than one chosen at
random from the whole collection). But the exact quanti-
tative relationships are somewhat different for each
function. The relationship of ¢ and e shows that the four
functions do not necessarily rank terms in the same
order.

e Foundations of Relevance Weighting

So far, the weighting functions have been characterized
in a fairly superficial way. In fact, all four functions de-
rive. from a formal probabilistic theory of relevance
weighting. This theory. is presented in full in the
Appendix to which, as indicated earlier, the reader inter-
ested in its formal development or finer pointsis referred.
This section is intended to give an informal account and
interpretation of the main ideas involved.

The object of the theory is to derive an optimal rank-
ing of the documents in a collection, on the basis of the
presence or absence in each document of the request
terms, when some information about the average per-
formance of these terms is available. The theory makes
use of two-Kinds of assumptions: independence assump-
tions and ordering principles.

The independence assumptions allow us to make in-
ferences about a document containing a given combina-
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Table 1. Ilustrative weights for items with different distributions.

N = 200 Term a n = 5 r=1
R= 5 b n= 5 r=4
4 n = 100 r=1
d n = 100 r=4
e n= 20 r=3
Contingency table Weighting
Document F1 F2 F3 F4 (FO)
Relevance
Document
Indexing + -
Term a + 1 4 5 .90 .99 .99 1.08 1.60
_ 4 191 195
S 195 200
Term b + 4 1 5 1.51 2.19 2.19 2.89 1.60
- 1 194 195
5 195 200
Term ¢ + 1 99 100 -.40 -40 -.60 -62 .30
- 4 96 100
N 195 200
Term d + 4 96 100 20 21 .60 .62 .30
- 1 99 100
5 195 200
Term e + 3 17 20 .78 .84 1.13 1.20 1.00
- 2 178 180
5 195 200

tion of request terms, from information about each term
considered independently. In general, it is assumed that
terms are distributed independently and randomly. More
specifically, we may adopt:
Independence Assumption 11: The distribution of
terms in relevant documents is independent and
their distribution in all documents is independent;

or
Independence Assumption 12: The distribution of
terms in relevant documents is independent and
their distribution in non-relevant documents is in-
dependent.

132

Assumption I1 is the basis for F1 and F3, while 12
underlies F2 and F4. It is unlikely in real life that index
terms are assigned independently; but, in the absence of
any more detailed information about co-occurrence prob-
abilities, the independence assumptions form a reason-
able starting point. It is argued in the Appendix that I2
is likely to be a better description of reality than I1; one
of the objects of the experiments reported later is to
establish whether this is the case and how much it
matters.

In retrieval, some ordering principle is required for
presenting output documents. In the absence of prior
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Fig. 1. Ilustration of Comparative Weighting Values for Terms
Using Different Formulae

knowledge, the only rational principle is that documents
should be ordered by their probable relevance to the
query. However, more specific principles are required to
interpret probable relevance. The two possible principles
are:
Ordering Principle O1: That probable relevance is
based only on the presence of search terms in
documents;
and
Ordering Principle O2: That probable relevance is
based on both the presence of search terms in
documents and their absence from documents.

In a sense, a dependence on term presence indicates
an implicit dependence on term absence. However, the
distinction between these principlés concerns explicit
recognition of term absence in the calculation of prob-
abilities. Principle Ol in fact underlies F1 and F3, 02
F2 and F4. The first principle is more obvious and
(since F1 is based on it) was implicitly assumed by
Barkla and by Miller. But we argue in the Appendix that
for optimal ranking, one should take explicit account of
term absence: that is Ol is in some sense incorrect and
02 is correct. The argument is informally illustrated by
the data given in Table 2 on the retrieval possibilities for
two terms under Assumption 12, according to Functions
F2 and F4 respectively. We retain Principle O1 and the
functions derived from it to link our experiments with
earlier work in the field.

To summarize: taking independence assumptions and
ordering principles together, the theory yields four
specific weighting functions as follows:

Independence
Assumptions
Im 12
Ordering 01 F1 1 F2
Principles

02 F3 | F4

Weighting Function F1 is based on the simplest and
most obvious choices of Assumption and Principle, while
F4 derives from more complex and less obvious ones.
However, as argued above and in the Appendix, Ordering
Principle O2 is correct and O1 incorrect, and Indepen-
dence Assumption 12 is likely to describe reality more
closely than I1. Thus, the theory predicts that F4 is the
best of the four functions.

WEIGHTS AND DOCUMENT RANKING

Traditionally, the:-assignment of weights to index
terms has been regarded as a separate issue from the
formulation of a matching coefficient which can be used
to rank retrieved- documents. However, the theory speci-
fies an explicit document ranking function: in order to
derive a term weighting function, we have to assume that
the matching - coefficient -consists of the sum of the
weights of ‘the matching terms. In other words, the
theory specifies that these particular functions should be
used with a sum of weights matching procedure. Other
possible combinations of weighting function and match-
ing coefficient would be compatible with the document
ranking function: the most obvious example would be a
non-logarithmic form of Functions F1-F4 coupled with
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Table 2. Comparative effect of weights using weighting Functions F2 and F4.

The “richness” of, or proportion of relevant documents in,
Document set 1, indexed by both a and b, is —g-
Document set 2, indexed by« alone; is

Document set 3, indexed by b alone; is

=
2 5

Document F2 F4
Relevance
Document
Indexing + -
Term a + 5 20 25 .70 95
- S 180 185
10 200 210
Term b + 8 50 58 51 1.08
- 2 150 152
10 200 210
a and b share: S5*8. =._ 4 relevant documents, and
10
20%50 - = 5 non-relevant documents
200

#

Searching should retrieve document sets in order of richness. Both F2 and F4 retrieve set 1 first; F2 retrieves set 2 next,
while F4 retrieves set 3. As set 3 is richer than set 2, F4 is preferable to F2:

44%;

6%;

8%.

a product of weights matching procedure; (Thus, it can
be seen that the reason for using logs in all of the func-
tions relates to the matching coefficient used.)

This slight latitude in the choice of weighting func-
tion and matching coefficient arises because any mono-
tonic transformation of the document ranking function
will produce the same ranking of the documents. But
such monotonic transformations aside, the theory (to-
gether with the choice of Assumption and Principle)
essentially determines both the weighting function and
the matching coefficient.

In particular, it is not necessarily possible to derive
from the theory a weighting function to go with any
particular choice of matching coefficient. Consider, for
example, Salton’s cosine correlation. The main differ-
ence between cosine correlation and sum of weights as
far as each individual question is concerned (and assum-
ing binary index descriptions) is that cosine correlation
is normalized for length of document, ie., number of

134

index terms assigned to the document. Qur theory, as
presently - developed, makes no predictions about the
possible usefulness of document length as an indicator
of relevance; it is indeed not clear whether in any more
sophisticated theory, cosine correlation would be an
appropriate way of using this information.

SOME PRACTICAL CONSIDERATIONS

Before applying the weighting functions we have de-
scribed; several minor points need to be discussed. They
are treated more adequately in the Appendix, in the
context of the theory, and are simply summarized here
to clarify the following account of our experiments.

(a) Estimation. The theory specifies the weighting
functions in terms of probabilities: the probability
of a document being posted to a term, given that it
is relevant/non-relevant. We now have to estimate
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the probabilities from the available information.

The obvious estimate of a probability is a simple

proportion; and such estimates were used for the

versions of the four functions given previously.

However, a proportion is not necessarily the best

estimate for the purpose. We distinguish here be-

tween the two kinds of experiment we will be de-
scribing:

(i) If the weights are being used retrospectively, to
determine optimal performance on a test collec-
tion, then the simple proportion estimates are
the right ones to use; but

(ii) If the weights are being used predictively, in
interactive retrieval, then other estimates are
appropriate. We have used the simplest modified
estimates, which are derived from the following
modified contingency table:

Document
Relevance
+ -
Ft+.5 n-r+.5 n+l
Document
Indexing Rr+5 | Nn-R+r+.5 {({Nn+1
R+1 N-R+1 N+2

(b) Scaling. The prime output of a search exploiting
a relevance weighting formula is an ordered set
of documents. In operational situations, a cutoff
by number of documents would presumably be
applied. Individual values of the matching co-
efficient are in principle of no utility. However,
for test purposes we need to average over a set of
requests, which implies that the matching values
should be comparable between different requests.
As they stand, Weighting Functions F1 and F2
satisfy this criterion, but F3 and F4 do not. In
the experiments we have adopted one of the two
stratagems suggested in the Appendix: that of
computing a “correction value” to be added to
the matching coefficients of all documents in re-
lation to a particular request.

(c) Limiting Cases. In the retrospective case, where
the simple formulae are used, it will be evident
that problems arise whenever any of the com-
ponents of the formulae are zero. Some of these
are, so to speak, external in that matching is im-
possible, or necessarily undiscriminating. This
applies where N, R, N-R, n or N-n = 0. The
obvious weight for a term so affected is 0. The
more important limiting cases, and their resolu-

tion, are indicated in Table 3. (Some suitable
coding of these cases is of course needed for re-
trieval programs.)

e Experiments

In previous experiments (/0), Weighting Function F1
was compared with simple collection frequency weight-
ing FO, and with unweighted term matching. As men-
tioned, relevance weighting may be applied in two differ-
ent ways: using perfect information to give optimal per-
formance or predictively. Optimal performance for F1
was enormousl‘y better than that for unweighted terms
or terms weighted by FO, for all three collections used.
Predictive performance, using F1 without the modifica-
tion to the estimates mentioned above, was not really
superior to that for weighting by FO, but was materially
better than that for simple term matching. An extended
range of comparisons for F1 to F4, for a larger test col-
lection, is described here.

The tests were carried out with the manually indexed
Cranfield 1400 collection. Collection details and results
are summarized in Table 4. Matching involves either real
or notional coordination levels; averaging over the set of
requests is by simple:summing of document numbers
retrieved; and performance is represented by recall-pre-
cision graphs with precision values obtained for standard
recall levels by interpolation. Fig. 2 illustrates perform-
ance for simple term matching and weighting using FO,
and F1 to F4. All the weighting schemes are optimal in
that the distribution of terms in documents and relevant
documents is known. Fig. 3 shows a predictive test (with
modified estimates) of the relevance weighting formulae,
with performance compared to simple term matching
and also collection frequency weighting, the latter of
course without any predictive element. This experiment
was conducted by dividing the complete set of docu-
ments into its equal odd and even-numbered subsets and
applying weights calculated from the even-numbered
subset to the odd-numbered one. In contrast, Fig. 4
shows relevance weighting based on the odd-numbered
set itself: ie., Fig. 4 gives the optimal performance for
this subset.

These results show that the performance level of
optimal relevance weighting is very much higher than
that for simple terms or terms weighted by collection
frequency*. Predictive relevance weighting as illustrated
in Fig. 3 appears much less useful, although still

*A rough and ready significance test requires a 5§ percent differ-
ence in the areas enclosed by two curves on such a graph. All
differences commented on in the text are significant in this
sense.
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Table 3. Treatment of special cases for weighting functions.

Case Definition Documents Functions Implications
in Which to Which of Case for Document
Term Occurs Case Applies When Term Is:
Present Absent
A r=0 Non-relevant F1,F2,F3 F4 Bad Indifferent
only
B nr=0 Relevant only F2,F4 Good Indifferent
C Rr=0 All relevant and F3,F4 Indifferent Bad
some others
D N-n-R+r=0 Some relevant F4 Indifferent Good
and all others
E n-r =0 All relevant F4 Good Bad
R-r =0 and no others
F r=0 No relevant F4 Bad Good
N-n-R+r =() and all others
“Bad” means that the document should never be retrieved, i.e. should be at bottom rank;
“Good” means that the document should always be retrieved, i.e. should be at toprank;
“Indifferent” means that the document should be unaffected, i.e. should be at the rank determined by its other terms.
Case E combines B and C;case F, A and D.
Cases C through F apply to functions F3 and F4, in which term absence is explicitly recognized.

Cranfield 1400

] I L 1 1 L 5 1 I ]

10 20 30 40 50 60 70 80 90 100

Fig. 2. Comparative Retrieval Performance Using Weights for
Cranfield 1400 Collection
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Table 4. Test collection properties and retrieval results.

Cranfield 1400 Keen

Number of documents 1400 797

Number of requests 225 63

Number of relevant documents 1614 936

Number of terms 2683 939

Average terms per document 29.9 7.2

Average terms per request 7.9 5.3

Average relevant documents per request 7.2 14.9
Precision
! Cranfield 1400 Cranfield Odd Numbered
Recall Terms FO F1 F2 F3 F4 Terms FO F1 F2 F3 F4
100 - - - - - - - - - - - -
! 90 1 1 2 2 - - 1 1 2 2 7
80 1 2 4 4 8 8 1 2 4 4 13 12
70 2 3 6 6 13 14 2 3 7 7 21 20
60 3 5 9 10 19 19 3 5 11 12 27 29
50 4 6 13 14 26 27 4 7 16 17 35 35
| 40 6 8 18 19 34 34 6 8 21 23 41 43
30 7 12 24 26 41 42 7 11 29 31 48 50
20 10 16 32 36 45 49 9 15 37 42 56 57
j 10 14 24 48 59 63 68 13 23 52 69 67 78
i Cranfield Odd Numbered Predictive Keen
i Terms FO F1 F2 F3 F4 Terms FO F1 F2 F3 F4
g
| 100 - - - - - - - - - - - -
i 90 1 1 1 1 - - _ _ - - _ _
| 80 1 2 2 2 4 4 - - - - - -
70 2 3 4 4 7 7 6 6 8 8 10 10
§ 4 60 3 5 6 6 10 10 6 7 10 10 17 17
; 50 4 7 9 9 14 15 7 11 12 15 23 24
f 40 6 8 12 12 19 20 10 16 22 25 31 34
? 30 7 11 14 15 24 24 15 22 34 41 45 46
P 20 9 15 20 21 27 28 20 37 46 52 57 61
; 10 13 23 32 35 35 38 37 51 70 73 69 77

materially better than either unweighted terms or collec-
tion frequency weighting. Functions F1 and F2, and F3
and F4 respectively perform the same, but the last two
are very much superior to the first two.

For comparison, results for retrospective weighting
for another collection, Keen, are illustrated in Fig. 5.
Relative performance for the different weighting schemes
is the same as for the Cranfield collection.

® Discussion of the Results
Two immediate conclusions can be drawn from the

results of our experiments. First, our argument that
Ordering Principle O2 is correct and O1 incorrect is con-

firmed by the experiments; F3 and F4 performed con-
sistently better than F1 and F2. Secondly, our assump-
tions of term independence seem not to be critical ones,
since the choice of I1 or 12 had virtually no influence on
performance. However, it could be that with larger and/
or more heterogeneous collections the choice would
affect performance.

The large difference between the retrospective and
the predictive uses of the weighting functions indicates
the importance of the estimation problem. In the predic-
tive situation, we are trying to estimate the values of the
probabilities defined in the Appendix from fairly small
samples of documents (particularly of relevant docu-
ments); it is therefore not surprising that performance is
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odd numbered

10 20 30 40 50 60 70 80 30 100

Fig. 4. Comparative Retrieval Performance Using Weights for
Cranfield 700 Odd-numbered Sub-collection

not so good as in the-retrospective: case. Indeed, the
small sample size may have the effect of improving per-
formance in the retrospective case; the weighting func-
tions in effect make use of any statistical properties of
the particular test collection; even though they may be
random properties of the sample rather than meaningful
properties of the terms and questions. If there is only
one relevant document, for example, any of the four
functions can be almost guaranteed to find a term com-
bination that retrieves that document and practically no
others.

The problem of estimation deserves further study;
some ideas on the subject are discussed in the Appendix.
The general problem is: what information can we use, and
how can we best use it to estimate the value of F4 (or
whatever weighting function we choose)? Apart: from
relevance feedback data, which is all we have used so far,
it may be helpful to make use of the questioner’s knowl-
edge of the terms (as Miller does), and/or the results of
previous tests on the system. But, in order to make use of
such. information, we need to extend the theory to in-
clude it. Further, we need to know how to use partial
relevance feedback data, such as that which is provided
when the output of a previous search is judged for rele-
vance, but not the whole collection. A possible method
of doing this is described in the Appendix.

It should, however, be stressed that our experimental
results indicate that even very crude estimation tech-
niques can provide improvements in performance over
searching without relevance weighting.

100

90 L

Keen

80

60§

40

20 L

Fig. 5. Comparative Retrieval Performance Using Weights for
Keen 797 Collection

e Other Experiments

Some comments on the relation between our results
and those obtained elsewhere are required. Two series of
tests in particular are comparable in scale and intention.

Miller’s experiments (8, 9), as mentioned earlier, were
based on Weighting Formula F1. This was applied pre-
dictively, incorporating (supposed) user estimates of the
frequency of applicability of terms to relevant references.
A MEDLARS data base containing 210,000 documents
was used, with 25 search formulations, the main test
being to compare performance for the weighted prob-
abilistic search with that of standard Boolean searching,
on MeSH indexing. Output was cutoff for the former to
give approximately the number of documents retrieved
by the latter. Relative recall can be obtained as the per-
centage of relevant . documents obtained by either
method, ie., retrieved by each.

The results show precision values of 17 and 15.5 per-
cent, and recall values of 69 and 95 percent, for Boolean
and probabilistic searching respectively. Thus, prob-
abilistic searching leads to a striking improvement in re-
call, with no real loss of precision. It is unfortunate that
so few requests were involved, and that only limited per-
formance comparisons were made. Further tests applied
probabilistic weighting to title words. This also gives
slightly better recall than Boolean searching on index
terms, but precision is somewhat reduced. The difficul-
ties of drawing general inferences from Miller’s experi-
ments are illustrated by the fact that, if relative recall is
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based on the pooled relevant documents retrieved by all
three strategies, values are much lower than in the pair-
wise comparisons. On the other hand, probabilistic
searching still comes out well, specifically with 64 per-
cent recall on indexing, compared with 46.5 percent for
Boolean search. It should be noted that these experi-
ments suggest that it is unlikely that the choice of docu-
ment cutoff for probabilistic searching would present
problems: an arbitrary low one would seem quite effec-
tive.

Miller’s investigations thus confirm the value of rele-
vance weighting, in a rather different framework.

The second set of tests has been carried out by the
SMART Project. As noted above, early SMART experi-
ments (/2) with relevance weighting, used retrospec-
tively, were trivial in scale. More ambitious tests apply-
ing the same formula predictively to two collections of
155 requests and 424 documents, and 83 requests and
425 documents, are described in a recent report (13).
The results show no useful improvement in performance,
which would seem to cast doubt on our findings. How-
ever, closer examination shows that the experiments
constituted a rather eccentric and very partial test of
relevance weighting. In particular, they involved a very
drastic form of prediction.

Instead of splitting the document set as we did, the
SMART workers split the request set, using weights
obtained from one to control searches with the other.
Further, any term occurring in more than one request in
the first set was assigned the average of its relevance
weights. One important reason for: the small overall
effect of the weights must be that relatively few terms
occurred in queries in both sets, and so could be assigned
weights. Also, only the ten highest weighted terms in a
query were selected for weighting. The net effect of
these two restrictions was that only about 10 percent of
the request termsin the search set were assigned relevance
weights at all. (The effect of the weights was additionally
obscured by the use of within-document term frequen-
cies, and of term phrases and classes as well as single
terms.)

There is, however, a more fundamental problem
about the assumption that the use of a term in one ques-
tion tells us something about its use in another. We be-
lieve that SMART workers need to assume that if term ¢
occurs in ‘questions A and B, the probability that ¢ is
assigned to a document relevant to 4 is the same as the
probability that it is assigned to a document relevant to
B. There is no evidence for such a bold assumption, and
it indeed seems somewhat unlikely to hold.

The SMART approach differs from ours in the treat-
ment of both documents and requests. An index term
may be weighted with respect to a document set or in-
dividual documents, or with respect to a request set or

individual requests. In the range of weighting formulae
we have considered, an individual term has the same
weight in different documents. Salton normally allows
terms different weights in documents, depending on
their within-document frequency, and utilizes collection-
based weights as well. On the other hand, Salton starts
with the same precision value for a term in different re-
quests (though its final weights differ due to other
factors), where we have allowed different values, ie.
weights. Further study of the most effective ways of ex-
ploiting the four sources of information about terms is
clearly desirable.

o Conclusions

In this paper (with its Appendix), we present a theory
of search term weighting exploiting relevance informa-
tion and suggest that a particular formula assuming dis-
tinct term distributions in relevant and non-relevant
documents, and ordering documents in matching by
both term presence and term absence, exploits this infor-
mation most effectively. Our experiments show that re-
trieval performance improves when information about
the occurrences of terms in relevant documents is added
to: information about their simple document incidence;
and these experiments confirm the superiority of the
preferred formula.

Morte. specifically, relevance weights, whether retro-
spective or predictive, give noticeably better performance
than simple term matching. When relevance weights are
applied retrospectively (i.e., are optimal) a strikingly
high " level of performance is achieved, which can, as
Sparck Jones suggested earlier (10), be taken as a general
experimental yardstick. Predictive relevance weights are
also effective. When used as originally suggested for SDI
or iterative searching, performance may be expected to
improve with cumulating information, hopefully to con-
verge with the ideal case.

It has been suggested that this type of statistical
weighting scheme is simply a method of improving per-
formance suited to largely automatic systems with little
user intervention; and that it is unlikely to give better
performance than retrieval based on careful user request
formulation, particularly when supported by iterative
searching of partial or full document files. None of the
experiments to date throw any light on this question,
since only raw requests were input in our tests and in the
SMART ones while the request terms in Miller's were
taken from the prior carefully formulated Boolean
search statements; no iterative experiments have been
undertaken. Further work is clearly needed to identify
especially convenient and effective combinations of sys-
tem information and user effort.
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It should be noted that term values based on relevance
information may be used for purposes other than to con-
trol matching as described here. Barker, Veal and Wyatt
(11) used them to select terms from retrieved documents
to amplify requests. This use is related to other request
modification schemes like those studied under the head-
ing of relevance feedback by the SMART Project (14).
This is another topic inviting further research. It is also
worth noting that the theory as presented in this paper
does not concern traditional index terms only: in prin-
ciple, it applies to any key that might usefully be taken
as an indicator of relevance (e.g., authors, citations, jour-
nals, etc.) as well as, of course, any kind of retrieval lan-
guage, natural or controlled. There may be more prob-
lems with the independence assumptions in~ some
specific areas (e.g., precoordinate systems); again, further
investigation is required.

There are indeed many possibilities and questions in
this area but we believe that the theory and experiments
we have presented demonstrate the value of a systematic
statistical use of relevance information.
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Appendix: A Probabilistic Theory
of Relevance Weighting

We start from the intuitively obvious proposition (the
“probability ordering principle’”) that the best rank
ordering of a set of documents for presentation to a user
is that in which the documents most likely to be relevant
to his request are nearest to the top. We are then faced
with the question: what information can we use and
how can we use it to assess the probability of relevance
of any given document?

INDEPENDENCE ASSUMPTIONS

We assume in this paper that the available informa-
tion consists of term distributional information; infor-
mation concerning the frequencies of occurrence of
terms in relevant and other documents, given binary
document descriptions. We assume that we do not have
term co-occurrence information; to make up for this
lack, we have to make some assumptions about term co-

occurrences. Specifically, we assume that the terms
occur independently; more specifically, we have two
alternative sets of assumptions: -

Ita. The occurrences of different terms are indepen-

dent within the set of relevant documents.

I1b. The occurrences of different terms are indepen-

dent within the whole collection.

12a. The occurrences of different terms are indepen-

dent within the set of relevant documents.

I2b. - The occurrences of different terms are indepen-

dent within the set of non-relevant documents.
Miller (8, 9) and Barkla (7) both make AssumptionsIla
and b; Yu and Salton (/2) make Assumptions 12a and
b.

Robertson (6) points out that Assumptions Ila and
I1b are not strictly compatible; since request terms
normally occur more frequently in relevant than in non-
relevant documents, I1a suggests (and in some cases im-
plies) that terms from the same question must co-occur
more frequently in the whole collection than would be
expected under 11b. Indeed, this appears to be the case.
Since Assumptions I2 would predict this result anyway,
we prefer those assumptions.

The use of any independence assumptions at all is
suspect, since they certainly do not hold universally. The
alternative would be to look for term co-occurrence in-
formation: Barker, Veal and Wyatt (1) consider using
term pairs. But very much more data would be required
to make adequate estimates of the parameters necessary
to define co-occurrence properties; and, as the discussion
of our results indicates, we already have problems in
finding out enough about the terms alone from the usual
test collections. In any case, our results indicate that the
independence assumptions are not really critical, per-
formance for different assumptions (with one ordering
principle) being the same.

ORDERING PRINCIPLES

Although the probability ordering principle itself is
intuitively obvious, its application in a particular situa-
tion is not so obvious. Barkla and Miller both assume im-
plicitly that the probability of relevance of a particular
document should be calculated simply on the basis of
the ‘terms in that document; that is, they ignore any re-
quest terms missing from the document. But, potentially
at Jeast, the absence of a term from a document carries
some:information about. that document and, if this in-
formation has: any bearing on the probability of rele-
vance; then:we:should make use of it. In the text we
gave an example to show the difference between the two
approaches; the example shows that we should take ab-
sence into. account. Robertson (/5) presents a more
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formal proof that the probability ordering principle,
with the probabilities calculated from a/l available infor-
mation, leads to the best possible expected performance
(in a sense to be discussed later on in this article).

We therefore consider two ordering principles as the
basis for the formal analysis which follows:

O1 The probability of relevance of a document
should be calculated from the terms present in
the document only.

02 The probability of relevance of a document
should be calculated from the terms present in
the document and from those absent.

These two principles are not alternative or potentially
equally valid assumptions about the world like I1 and 12;
on the contrary, theoretically, O2 is correct and O1 is in-
correct. But we include Ol as a possible ordering prin-
ciple in order to relate our work to earlier work, hoping
to confirm empirically our theoretical demonstration of
the superiority of O2.

In the following three sections, we use Ordering Prin-
ciple O2 and Independence Assumptions I2 to develop
the Weighting Function F4. The other three functions
described in the text are derived in exactly parallel ways
from different combinations of the principles and
assumptions; the differences of detail are described
below.

THE PROBABILITY OF RELEVANCE

We consider a request consisting of a set of (initially
unweighted) terms, which we denote by Q. Each request
term #; has two probabilities associated with it:

¥;1 = P (document contains £; | document relevant)

(that is: the probability that a document contains the
term ¢;, given that it is relevant), and

Y;2 = P (document contains #; | document non-
relevant).

“Relevant™ is taken to mean relevant to the need under-
lying the request: thus, the probabilities are need specific.
We assume that the available relevance information
allows us to estimate these probabilities; the question of
estimation is discussed below.

We consider subsets 7" of the set of request terms Q,
Le. T C Q. We define Dy as the set of documents match-
ing the request on exactly the terms T, implying that
they contain none of the terms in Q - 7, and

¢7 = P (document relevant | document is in D)

(any document is in exactly one set D). Finally,

#¢ = P (document relevant | document is in collection)

(in the notation of the text, ¢ is estimated by R/N).

In what follows, we make considerable use of the
well-known logistic (or log-odds) transformation of a
probability:

£

logitP=1o .
gl g P

This transformation is strictly monotonic. We make use
of it simply to put a complex function in a more conven-

ient linear form.
We now want to express the probability of relevance

of any document ¢, in terms of the probabilities Y,
and Y;,. This is accomplished as follows.

By successive application of Bayes’ Theorem, it can
be shown that, for any two events g, b,

P(b/a) P(a)
Pa/b) = PaiayP@) + P () P ()

(@ is “not ¢”). It follows that
. P(b/a) .
logit P (a/b) = logm + logit P (a) (1)

If ¢ is “document relevant” and b is ““document in Dy,
then

P (a/b) = ¢r and P(a) = ¢c.

From Independence Assumption 12a, we deduce that

P(p/a) = 1 11 s
¢/ t; €T Yir ti€Q-T (70)
and from I2b,
P(bfa) = 11 . Y
(b/a) D Vi2  e0-T (1-¢;2)-

Now Equation (1) becomes

; 1-U+
logit ¢7 = E log Vi + 2 log( vi) + logit ¢¢.
t; €T 2 tj€Q-T (1-¢2) @)

We can use this equation to rank the documents in order
of their probability of relevance ¢¢. The reason for the
use of the logit function is that the equation is then in a
linear form, which is convenient for use in a weighting
scheme, as we shall see below. Since logit is a monotonic
function, logit ¢, ranks the documents in the same
order as ¢.
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RETRIEVAL AS A DECISION PROBLEM

In the context of Bayesian decision theory, Equation
(2) could be used as the basis for a discriminant function,
as follows. We define a “‘loss function,” associated with
the decision as to whether or not to retrieve a document:

Loss (retrieved | not relevant) = a,

(that is, the loss associated with retrieving a non-relevant
document is @, );

Loss (not retrieved | relevant) = a,.

A document in Dy has a probability ¢ of being rele-
vant. So if we retrieve it, the expected loss will be

(1-¢7)a;.

If we do not retrieve it, the expected loss will be

dra,.

So the optimum (loss-minimizing) decision rule is to re-
trieve if

dray > (l-¢7)a,

1 a
or ._(?L > ..1.
1-¢7 ay

a
or logit ¢ > log -
as

Thus, if we define

. a1
g&p = logit ¢ - log — |
ay
then g, . is an optimum linear discriminant function [in
the terms of Nilsson (16)], with the corresponding deci-

sion rule:
Retrieve if g, > 0. 3

Our approach, however, is to simply rank the docu-
ments and allow a cutoff decision to be made by the
user. If we rank the documents by logit ¢, then a deci-
sion rule equivalent to Equation (3) could be applied by
the user:

a
Retrieve if logit ¢ > log 5‘2‘ .

But other forms of retrieval rule may be appropriate
[Cooper (17, 18) has reviewed a number of different

kinds]. It must be stressed that the ordering principle is
independent . of the particular decision rule chosen,
whether or not the decision rule can be represented by
a simple loss function such as that given previously. The
only assumption we make is that users prefer relevant to
non-relevant documents.

In an operational system, with a large document
collection,. it ‘'may be quite impracticable to rank the
whole -document collection; and a cutoff point must
therefore be specified, above which retrieved documents
only are ranked: An approach compatible with the ideas
presented in this paper would be to set the cutoff lower
than any users are likely to set it. An alternative would
be a decision theoretic approach such as that indicated
above, where a; and a, -are values which have to be pro-
vided by the user in some form.

A very much more complex decision-theoretic re-
trieval model is presented by Tague (19).

THE WEIGHTING FUNCTION

We could consider implementing a retrieval system
which made direct use of Equation (2) in order to rank
the documents. However, we prefer to achieve the same
effect by means of a simple term weighting scheme for
the following reasons:

(a) Most previous work in this area has used term

weighting schemes.

(b) Term weighting is well understood and simple to
implement; indeed many systems exist which can
perform weighted term searches,

It should be pointed out that a theory which pro-
duces a ranking equation such as (2) cannot necessarily
be translated into a term weighting scheme. The necessary
condition for such translation is that it should be possible
to put the ranking equation into a linear form. We have
already done so with Equation (2) by making use of the
logit transformation.

We now want to use Equation (2) to derive weights
for the request terms, which will have the effect of rank-
ing  the documents in the required order. We have two
possible courses of action; the first is as follows:

We assign to each term ; a weight

0 Vi
v; = log 4)

to be given to any document that contains the term; we
also-assign a weight

(1-¢1)
og
(1-¢12)

to be given to any document that does not contain the
term. Because this scheme requires one to take account

)

u;=l
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of the absence of a term as well as its presence, we will
call it a P/A-weighting scheme. Then a document in Dy
gains a total weight (matching value) of

S X 4

t;€T tjeQ-T
which by equation (2) is equal to

logit ¢ - logit¢c .

Hence, this weighting scheme does rank the documents in
order of ¢. Furthermore, this matching value has some
significance other than just as an ordering mechanism;
this can best be seen if we consider a document with
matching value zero, which would imply

logit ¢7 = logit ¢, or d7 = .

In other words, a document with matching value zero
has the same probability of relevance as a document
chosen at random from the collection.

A simple weighting scheme in the usual sense takes
account of the presence of a term only; we will call this
a P-weighting scheme. We can devise a P-weighting
scheme equivalent to the above P/A-weighting scheme
as follows. We assign to each term ¢; a single weight

Vit (1-;
Wi = Vi - U =108—ﬁ;—1%1—:\%12j)" (6)

which is given to a document that contains the term.
Then a document in D4 has a matching value of

Zv,--}: u;

;€T t;€T
which by Equation (2) is equal to

logit ¢ - logit oo - D u; . (7
1;€Q

This matching value still ranks documents in ¢p-order,
since the last sum of Equation (7) does not depend on
the particular set of matching terms 7, but rather on all
the terms in the request. However, we have now lost the
significance of the matching value itself; the only signifi-
cance is in the ordering it gives to the documents.

If we replace the probabilities in Equation (6) by the
equivalent proportions, ignoring the subscript i and using
the notation defined in the text of the paper, we find

12 2

w = log -—1_% 0,
= Jog -—/ (8)
R-r | N-n-R+r

which is the Weighting Function F4 as defined in the
text. However, before doing this, we need to consider
carefully the problem of estimating the probabilities
from the available data.

(The derivations of F1 to F3 follow exactly parallel
lines; the differences are as follows. Using O1 rather than
02, for F1 and F2, Equation (2) would lose the part re-
lating to Q-T; thus we would not have the problem later
on of getting rid of the term-absence weights. Using I1
rather than 12, for F1 and F3, we would replace ;7 by
the equivalent probability for all documents; then in-
stead of using the logistic transform, we would use a
simple log.)

ESTIMATION

How do we estimate the probabilities /;; and ¢;,? In
order to answer this question, we must distinguish (as we
have done in the text) between the two possible uses of
the weighting schemes. The first is to use the schemes
retrospectively on a test collection to give optimal per-
formance. In this case we have perfect information
about the term distributions; if there are R relevant
documents and the term occurs in 7 of them, then we
know that ;; (for this collection) is #/R. Thus, there is
no. problem about estimation and we can use the
formulae given in the. text without alteration.

The second possibility is to use the weighting scheme
predictively, .using relevance data from one search to
improve:the search strategy for the next. In this case, we
are trying to make inferences about the probabilities on
the basis of sample information. Although the simple
proportions used in the retrospective case make reason-
able estimates of the probabilities for many purposes,
there are various reasons against their use in our situa-
tion. The main problem is that the samples are often
small (the number of relevant documents in particular),
coupled with the fact that we are trying to estimate not
the probabilities themselves, but non-linear functions of
them.

The Weighting Function (6) arises fairly commonly in
a variety of contexts [see Cox (20)] and there has been
a fair amount of work on methods of estimating it. Cox
suggests a straightforward modification of the simple
proportion method of Equation (8), which. involves add-
ing % to each of the four quantities in the expression:

+4 Lp
i w = log i / prie )
R-r+s Nn-R+r+%

(This procedure may" seem somewhat arbitrary, but it
does-in fact have some statistical justification.) This is
the method we have adopted when using the schemes
predictively; its application to the other three functions
is defined by the following adjusted 2 X 2 table:
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rt+ ¥ n-r+ % ntl
Rr+% N-n-R+r+% N-n+ 1
R+1 N-R+ 1 N+2

Although Cox’s justification for this procedure applies
only to F4 directly, we have used the method for F1 to
F3 on the grounds that it is likely to provide better esti-
mates than the simple proportion method, and a statis-
tically watertight method would probably be much more
complex.

We could, indeed, take a much more sophisticated
approach to the whole estimation problem. Robertson
and Teather (21) develop an estimation method for in-
formation retrieval test data which incorporates and
provides estimates of Weighting Function (6). The
method is Bayesian and makes use of the results for all
the terms of the test questions in order to improve the
estimates for each one. They find that under a fairly
simple model of the relationship between different
terms, the estimates of Weighting Function (6) for each
term tend to converge, confirming the point made ear-
lier that we normally have rather little information on
which to base the individual estimates. With a more
general model, Robertson (/5) shows that the major
variation in the value of Function (6) appears to be re-
lated to variations in the specificity of terms; more
specific terms (i.e. less frequent in the collection as a
whole) tend to have higher values of Function (6). This
confirms Sparck Jones’ (3) results on the value of simple
collection frequency weighting.

More work is required in- this area. What is needed is
a general estimation method which will make the best
use of all available information to estimate Weighting
Function (6) (or any modified version that is found use-
ful). “All available information” might include:

— prior information, from formal tests, on the
usual behavior of terms in the system;

— the questioner’s prior expectations of, or knowl-
edge of, the terms he wants to use;

— the frequencies of the terms he wants to use in
the collection as a whole;

— any available relevance feedback data.

One particular point that may cause problems is the
form of the relevance feedback data. We have assumed
throughout this paper that it is complete, in the sense of
relating to a completely evaluated collection, in which
all relevant documents are known. Normally, however, if
the system were being used in a practical situation (itera-
tively or for SDI), only the output of a previous search
would be judged for relevance. How can we make use of
such partial information?

The independence assumptions indicate a possible
answer to this question. We consider Assumptions 12,

and the probabilities ¥;; and y;, defined earlier. Under
Assumption 12a, the probability ;;, which is defined as
P (document contains #; | document relevant),

is also equal to

P (document contains #; | document relevant and
matches search statement 4;),

where A; is gny search statement not containing ;.

The other probability y;, relates in the same way to
the non-relevant documents. So in principle, we can
estimate the probabilities, if we have a suitable search
statement A;, not c¢ontaining term f;, such that all the
documents which match it have been evaluated.

Suppose for example, that on our first run we give all
terms equal weight (one), and retrieve against a thres-
hold of two. For a particular term ¢;, we have to remove
t; from the search statement, but keep the threshold at
two. Thus, the corpus we ‘use to estimate y;; and Y;,
consists of those documents retrieved in the first search,
which are presumably all judged for relevance, less those
which would not have been retrieved had ¢; not been in
the original statement. This “corpus should (under
Assumption I2) provide unbiased estimates of probabili-
ties.

It should be pointed out that the obvious method of
estimation, using the output of the first search as it
stands (as done by Barkla for example), is likely to give
biased results according to the above analysis.

SCALING

The derivation of the weighting function assumed
that the only important result of weighting was the final
rank ordering of the documents and that the actual
matching values were not significant. As we discovered
in the derivation, the use of a P/A-weighting scheme gave
matching values which. were significant, but when we
changed to the simpler P-weighting scheme, this signifi-
cance was lost. (This problem applies to F3 and F4, but
notto Fl or F2))

There are some circumstances in which significant
matching values would be desirable. In particular, some
users might prefer a matching value which had some
direct *bearing on' the probability of relevance of a
specific document, rather than simply indicating its rela-
tion to other documents. Also, when testing such a sys-
tem; one might want values which are comparable be-
tween questions for averaging purposes. (In fact, we re-
quire comparable values for our tests, as indicated in the
text.)

The obvious way to achieve this is to reformulate F3
and F4 in a P/A-weighting form. The formulae, using
simple proportion estimates, are as follows:
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v (term presence weight) u (term absence weight)

o R-r
F3' log (.13.) log ——~_( R )

) ()

= _Rer
F4' log -(—:;;r)— log -N—B—R:)—
(v )

Alternatively, we could keep the P-weighting forms
F3 and F4, but add a constant to the matching values of
all documents for the given question to restore the scale
properties of the matching value. The appropriate con-
stant is given by the rogue sum on the right hand side of
Equation (7); it is in fact the sum of the u-values for all
the terms in the question.

LIMITING CASES

As noted in the text, the use of simple proportion
estimates can lead to problems if any of the quantities
used are zero. Considering only the “internal” cases (see
text), situations might arise in which one of the weight-
ing functions yields:

log0 = — oo,
or
logx/0 = + oo

These infinite weights should be interpreted in the
obvious way; a document given a weight of + o should
be retrieved at the highest possible level, since it is cer-
tainly relevant and one with - o should never be re-
trieved since it is certainly not relevant.

The exact application of these rules is obvious for F1
and F2, but for the other two functions we need to
examine the P/A-weighting forms F3’ and F4’, since
either extreme value may apply either to term presence
or to term absence. The various possible cases are given
in Table 3 in the text.

EXPERIMENTAL CONFIRMATION OF THE THEORY

On a superficial level, we can take the theory as a rea-
sonable justification for trying out the various weighting
functions in an experimental situation. More particularly,
we can consider testing the weighting functions against
unweighted retrieval using a standard testing methodol-
ogy. However, if we wish to consider such experiments
as direct tests of the theory itself, then we need to
examine more closely the relationship between the prob-

ability ordering principle and the measures of perform-
ance used in such a test. }

As indicated previously, Robertson (15) provides a
formal proof that the probability ordering principle
optimizes performance. In this proof, performance is
measured in terms of a curve relating two probabilities:

6, = P (document retrieved | document relevant)
6, = P(document retrieved | document non-relevant).

These probabilities are estimated by the obvious propor-
tion measures, recall and fallout; or to put it the other
way round:

; = expected recall (using “expected” in the statis-
tical sense)
0, = expected fallout.

Since recall, fallout and precision are related in a straight-
forward way, a recall method which can be expected to
optimize recall/fallout can also be expected to optimize
an experimental recall/precision curve.

The proof asit stands relates only to a single question.
But because of the small numbers of documents in-
volved, we have to average over a number of questions in
order to get reasonable estimates of recall and precision.
Thus, the standard methodology of retrieval experiments,
which involves comparing average recall and precision
curves, would seem to be a reasonable test of the theory.

This summary discussion ignores a number of statisti-
cal problems, such as the validity of averaging over ques-
tions, which are discussed in more detail elsewhere (21,
15). 1t is clear that a more rigorous test of the theory
could be designed, although the methodology for such a
test is not obviously available at present. In the mean-
time, the fact that our results using the standard
methodology agree with the predictions of the theory
provides a powerful argument for the value of the rele-
vance weighting functions.
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