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1. Introduction
Networked and distributed systems are becoming increasingly flexible. In

particular, it has become possible to dynamically migrate communication end-
points [2] in a self-adjusting and demand-aware manner, allowing these networks
to adapt to the ongoing traffic pattern. In particular, more frequently commu-
nicating nodes can be moved topologically closer to each other, thus, reducing
bandwidth taxes [11] and improving performance.

We consider the following problem. The network is a line and the graph built
by pairwise requests is G, i.e., the demand graph. The requests between nodes
are coming online, i.e. one by one, revealing G. Before performing a request,
we can re-adjust the line graph by performing several swaps of two neighbouring
nodes and by paying one for each swap. Please, note that it does not matter when
we perform adjustments, before or after requests, the total cost will differ by a
constant. Then, to serve a request itself, we should follow the path between the
corresponding nodes in the line network and pay each time we pass a link, i.e., in
total, we pay the distance between the nodes per request. Thus, the total cost of an
algorithm consists of two parts: the total cost of adjustments, i.e., swaps, plus the
total cost of the requests.

In the previous work [7], the demand graph is also a line. The authors
presented an algorithm that serves m = Ω(n2) requests at cost O(n2 log n + m)

and showed that this complexity is the lower bound. This problem was inspired by
Itinerant List Update Problem [14].

Contributions. In this work, we go further: we consider the same line
network topology while trying to generalize the demand graph. As a result, we
provide three separate results. At first, the generic algorithm for arbitrary demand
graphs with the best complexity per request (in a theoretical sense). Secondly,
we present an algorithm for the case when the demand graph is a cycle. And,
finally, as the main result, we present an algorithm for a generalization of a line
demand graph: a 2× n grid graph, later called the n-ladder graph. Note that this
algorithm can be applied to any demand graph that is a subgraph of the n-ladder
graph. Most importantly, both algorithms, for a cycle and a ladder graph, match
the lower bound for the line demand graph: n2 log n cost for adjustments in total
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plus O(1) per request being the lower bound.
Our work is an important improvement of the previous work. A solution for

the n-ladder grid is the first step towards amore generic problemwhere the demand
graph is a generic grid, n ×m. One of the main arising problems is that even an
embedding of a tree onto an infinite grid is NP-hard [12], while it is polynomial
in our case leading to a reasonably simple algorithm. Moreover, a ladder (and a
cycle) has a constant bandwidth, i.e., a minimum value over all embeddings onto
a target line graph of a maximal path between the ends of an edge (request). It can
be shown that given a demand graph G the best possible complexity per request
is the bandwidth. However, the calculation of the bandwidth, in general, is also
NP-hard [15].

Related work. Self-adjusting networks (SANs) have been made possible
due to novel network technologies [10]. They were introduced from an algorithmic
point of view in [5], [16]. Existing works have studied linear networks [7], bounded
degree networks [6], skip list networks [4] and skip graphs [13]. Moreover, recent
work has also focused in more advanced cost models [1], [9]. The most relevant
work to ours [7] studied linear networks with linear demand graphs. Furthermore,
[3] studied optimal network topologies, when the demand is known.

Roadmap. Section 2 contains the description of the model in which we are
working. Section 3 contains the list of our three results and their high-level proofs.
This list contains the generic result, the result for the cycle, and the results for the
ladder. In Section 4 we introduce all the necessary notions for our algorithm on the
grid. Section 5 presents an algorithm for the ladder. In Section 6, we calculate the
complexity of the presented algorithm and show that it achieves the desired cost.
Section 9 concludes the paper. Due to space constraints, some technical details are
deferred to the appendix. The pseudocode of our algorithm for the ladder appears
in Appendix 7.2 and 7.1, while proofs appear in Appendix 8.

2. Model
Let us introduce the notation that we are going to use throughout the paper.

• Let dG(u, v) be the distance between u and v in graph G.

• A configuration (or an embedding) of V in a graph N (the host network) is
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an injection of V into the vertices of N ; CV→N denotes the set of all such
configurations.

• A configuration h ∈ CV→N is said to serve a communication request (u, v) ∈
V × V at cost dN(h(u), h(v)).

• A finite communication sequence σ = (σ1, . . . , σm) is served by a sequence
of configurations h0, h1, . . . , hm ∈ CV→N .

• The cost of serving σ is the sum of serving each σi in hi plus the reconfigu-
ration cost between subsequent configurations hi and hi+1.

• The reconfiguration cost between hi and hi+1 is the number of migrations
necessary to change from hi to hi+1; a migration swaps the images of two
neighbouring nodes u and v under h in N .

• Ei = {σ1, . . . , σi} denotes the first i requests of σ interpreted as a set of
edges on V , and D(σ) = (V,Em) denotes the demand graph of σ.

In particular, we study the problem of designing an online self-adjusting
linear network: a network whose topology forms a 1-dimensional grid, i.e., a line.

Definition 2.1 (Working Model). Let V , h, and σ be as before, with
N = ({1, . . . , n}, {(1, 2), (2, 3), . . . , (n− 1, n)} representing a list graph Ln. The
cost of serving σi = (u, v) ∈ σ is given by |h(u)−h(v)|, i.e. the distance between
u and v in N . Migrations can occur before serving a request and can only occur
between nodes configured on adjacent vertices in N .

Let us talk a little bit about the previous results from [7]. In that work, the
demand graph was the line graphLn, as the network graph. It was shown that there
exists an algorithm that performs O(n2 log n) migrations in total, while serving
the requests themselves in O(1). By that, if the number of requests is Ω(n2 log n)

then each request costs O(1) amortized time. Moreover, n2 log n appears to be the
lower bound: if there areΘ(n2) requests then the total cost isΩ(n2 log n), meaning
that the static-optimality factor is log n.

Theorem 2.0.1. Consider a linear network Ln and the linear demand graphD(σ)

where σ is the sequence of requests. There is an algorithm such that the total
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time spent on migrations is O(n2 log n), while each request is performed in O(1)

omitting the migrations.

Corollary 2.0.1. If |σ| = Ω(n2 log n) then the amortized cost of serving each
request is O(1) amortized time.

The algorithms are not obliged to perform migrations at all, but the sum of
costs for Θ(n2) requests can be lower-bounded with Ω(n2 log n).

Theorem 2.0.2 (Lower Bound). For every online algorithm ON there is a se-
quence of requests σON of length Θ(n2) with D(σON) being a line such that
cost(ON(σON)) = Ω(n2 log n).

That implies Ω(log n) static-optimality factor since any offline algorithm
knowing a whole request sequence σ in advance can simply reconfigure a network
to match D(σ) paying Θ(n2) in the worst case.

3. List of results
In this work, we take into consideration demand graphs different from the

line, considered in [7]. We present the general result for arbitrary graphs and more
tight results for the generalizations of the line graph: the cycle and the ladder.
The result for the cycle follows from [7] almost directly. However the result for
the ladder is non-trivial and very technical — it is not simple to reconfigure a
subgraph on a 2 × n grid after revealing a new edge in order to get O(n2 log n)

cost of modifications in total.

3.1. Preliminaries
Definition 3.1. An embedding of a graph G into graph H is an injective mapping
φ : V (G)→ V (H). The set of all embeddings of G into H is denoted as CG→H .

Definition 3.2. A correct embedding of a graph G into graph H is an injective
mapping φ : V (G)→ V (H) that preserves edges, i.e.∀u, v ∈ V (G) with u ̸= v ⇒ φ(u) ̸= φ(v)

∀(u, v) ∈ E(G)⇒ (φ(u), φ(v)) ∈ E(H)
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Definition 3.3 (Bandwidth). Given a graph G, the Bandwidth of an embedding
h ∈ CG→Ln

is equal to the maximum over all edges (u, v) ∈ E of |h(u) − h(v)|,
i.e., the distance between u and v on Ln.

Bandwidth(G) is theminimumbandwidth over all embeddings fromCG→Ln
.

Remark 3.1.1. The computation of a Bandwidth of an arbitrary graph is an
NP-hard problem [8].

To save the space, we typically omit the proofs of lemmas and theorems in
this paper and put them in Appendix 8.

Lemma 3.1.1. Let Cn be a cycle graph on n vertices, i.e., E = {(1, 2), . . . , (n −
1, n), (n, 1)}. Then, Bandwidth(Cn) = 2.

Here we define the 2 × n grid or ladder graph for which we get the main
results of our paper.

Definition 3.4. A graphGridn = (V,E) is represented as follows. The vertices V
are the nodes of the grid 2×n—{(1, 1), (1, 2), . . . , (1, n), (2, 1), (2, 2), . . . , (2, n)}.
There is an edge between vertices (x1, y1) and (x2, y2) iff |x1−x2|+ |y1−y2| = 1.

Lemma 3.1.2. Bandwidth(Gridn) = 2.

Lemma3.1.3. For each subgraphS of a graphG,Bandwidth(S) ≤ Bandwidth(G).

3.2. General result
At first, we present a general result—when the demand graph is an arbitrary

graph G.

Theorem 3.2.1. Suppose we are given a graphG and an algorithmB, that for any
subgraph S of G outputs an embedding h ∈ CS→Ln

with the bandwidth less than
or equal to λ · Bandwidth(G) for some λ. Then, for any sequence of requests σ
with a demand graph G there is an algorithm that serves σ with a total cost of
O(|E(G)| · |V (G)|2 + λ · Bandwidth(G) · |σ|). In particular, if the number of
requests isΩ(|E(G)| · |V (G)|2) each request hasO(λ ·Bandwidth(G)) amortized
cost.
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Proof. Assume we have processed i requests so far. We get a demand graph built
on edges Ei = {σ0, . . . , σi}. It induces a subgraph Si of G.

We want to maintain the invariant that each Si is embedded via h ∈ CSi→L

such that bandwidth of h is no greater than λ · Bandwidth(G).
Suppose now the embedding hi−1 of Si−1 respects the invariant and we get

a new request σi. σi is an edge in G, say (u, v). We have two possibilities: either
σi is already in Si−1 or not.

If (u, v) ∈ E(Si−1) then Si−1 = Si and since hi−1 respects the invariant we
know that |hi−1(u)− hi−1(v)| ≤ λ ·Bandwidth(G) and hence we take hi = hi−1.

If on the opposite (u, v) /∈ E(Si−1) we take hi = B(Si), as an embedding
of Si to the line, and reconfigure the network from scratch.

Now, we analyse the cost. We perform adjustments only for a new revealed
edge and, thus, there would be no more than |E(G)| reconfigurations. For each
reconfiguration we make at most |V (G)2| migrations, meaning that the total cost
of reconfigurations is at most |E(G)| · |V (G)|2. Since we serve the request after
performing a reconfiguration and each configuration has a bandwidth of at most
λ · Bandwidth(G) we state that we pay no more than λ · Bandwidth(G) · |σ| for
serving all the requests.

Lemma 3.2.1. Given a demand graph G. For each online algorithm ON there is
a request sequence σON such that ON serves each request from σON for a cost of
at least Bandwidth(G).

Proof. Consider the resulting numeration φ of V (G) done by ON after serving
r ≥ 0 requests. By the definition of bandwidth, there are such u, v ∈ V (G) that
|φ(u)− φ(v)| ≥ Bandwidth(G). So, we let the next request σON [r + 1] be (u, v)
making ON pay at least Bandwidth(G) for that request.

Remark 3.2.2. Using the previous lemma, we can show that λ is a static-optimality
factor for the case when |σ| = Ω(|E(G)| · |V (G)|2).

3.3. Cycle
Now, we consider a problem where the demand graph is the cycle on n

vertices.
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Theorem 3.3.1. Suppose the demand graph is Cn. There is an algorithm such that
the total cost spent on the migrations is O(n2 log n) and each request is performed
in O(1). In particular, if the number of requests is Ω(n2 log n) each request has
O(1) amortized cost.

Proof. The idea of the algorithm is to act as in the algorithm described in [7] for
the list demand graph until revealed edges do not form a cycle. Once they do we
perform a total reconfiguration enumerating nodes of Cn withi→ 2i− 1, if i ≤ ⌈n2⌉

i→ 2(n− i+ 1), otherwise

so, for each pair of adjacent nodes the difference of their numbers is at most 2. The
enumeration can be seen on Figure 1.

More formally. Let Gi = (V,Ei) — the demand graph after i requests, and
G0 = (V, ∅). We want to maintain the invariant that eachGi is embedded in a way
that all adjacent nodes are at a distance of at most 2. Moreover, if there is a line
subgraph of Gi then it is embedded as a line, i.e., the embedding preserves edges.
We present an algorithm that maintains this invariant by induction.

Figure 1: Cycle enumeration with Band-
width 2

This invariant holds for G0. We as-
sume that the invariant holds for Gi−1 and
a new request σi arrives. If σi is already
present in E(Gi−1) then the invariant holds,
we do not reconfigure, and pay at most 2.

If nowGi is a cycle we perform a total
reconfiguration with the enumeration with
bandwidth 2 described above. For that we
pay O(n2) that is less than O(n2 log n), and,
thus, our complexity lies inside our bounds.
Note that once Gi becomes a cycle we need
no further reconfigurations since all the edges are known and the invariant is
maintained.

The last case is when σi is a new edge and Gi still consists of several
connectivity components. We use the algorithm presented in [7]. σi connects two
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different connectivity components, say L1 and L2 forming a new list subgraph L.
Suppose that |V (L1)| ≤ |V (L2)|. Our strategy would be to “drag” L1 towards
L2 that is if L1 = {u1, . . . , ul}, V (L2) = {v1, . . . , vk}, σi = (vk, u1). By the
invariant L2 is embedded with vp at q+p for some q and we want nodes of L1 to be
embedded with up → q + k − 1 + p. So, we bring each node of L1 to its position
performing required number of swaps. Note, that this reconfiguration brings the
embedding that supports the invariant. Now, we analyze the cost of the algorithm
processing the requests.

Due to the invariant each request is served with a cost of at most 2. As for
the reconfiguration cost: a node can move a distance Θ(n) during processing one
request and it moves no more thanO(log n) times: we either form a cycle or merge
two components. Thus, the total cost does not exceed O(n2 log n).

Remark 3.3.2. Please note that the lower bound with Ω(n2 log n) that was pre-
sented for a line graph still holds in the case of a cycle, since the cycle contains
the line as the subgraph. Thus, our algorithm is optimal.

3.4. Ladder
Finally, we consider a case where the demand graph is a ladder.

Theorem 3.4.1. Suppose a demand graph is a ladder. There is an algorithm
such that the total time spent on the migrations is O(n2 log n) and each request is
performed in O(1). In particular, if the number of requests is Ω(n2 log n) each
request has O(1) amortized cost.

We present all the necessary notion in the next Section, then, in Section 5 we
present an overview of the algorithm and, finally, we calculate its cost in Section 6.

As for the cycle, the algorithm matches a lower bound, since the ladder Gn

contains Ln as a subgraph.

4. Ladder: notation
Definition 4.1. A line-graph on n vertices is a graph with V = [1, . . . , n] and
E = {(i, i+ 1) | i ∈ [1, . . . , n− 1]}.

We refer to the i-th node of a line-graph l as l[i].
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Definition 4.2. A ladder or 2 × n grid graph consists of two line-graphs on n

vertices l1 and l2 with additional edges between the lines: {(l1[i], l2[i]) | i ∈ [n]}.
Further, we denote 2× n grid as Gridn.
We call the set of two vertices, {l1[i], l2[i]}, the i-th level of the grid and

denote it as levelGridn(i) or just level(i) if it is clear from the context. We refer to
l1[i] and l2[i] as level(i)[1] and level(i)[2], respectively.

We say that level⟨v⟩ = i for v ∈ V (Gridn) if v ∈ levelGridn(i).
We call l1 and l2 as the sides of the grid.

Before going into details, we have to note that we will embed the graph not
onto Gridn, but onto GridN , where N is large but does not exceed 2 · n. This
does not affect the bandwidth of the graph (probably, with constant difference)
and the map of a graph from the grid onto the line, but significantly simplifies the
construction of our embedding.

4.1. Tree embedding
Definition 4.3. Consider some correct embedding φ of a tree T into Gridn. Let
t = arg max

v∈V (T )
level⟨φ(v)⟩ be the “rightmost” node of the embedding and

b = arg min
v∈V (T )

level⟨φ(v)⟩ be the “leftmost” node of the embedding. The trunk of

T is a path in T connecting b and t. The trunk of a tree T for the embedding φ is
denoted with trunkφ(T ).

Definition 4.4. LetT be a tree andφ be its correct embedding intoGridn. The level
i of Gridn is called occupied if there is a vertex v ∈ V (T ) : φ(v) ∈ levelGridn(i).

Statement 4.1.1. For every occupied level i there is v ∈ trunkφ(T ) such that
v ∈ level(i).

Proof. By the definition of the trunk, an image goes from the minimal occupied
level to the maximal. It cannot skip a level since the trunk is connected and the
correct embedding preserves connectivity.

The trunk of a tree in an embedding is an useful concept to define since the
following holds for it.
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Lemma 4.1.1. Let T be a tree correctly embedded intoGridn by some embedding
φ. Then, all the connectivity components in T \ trunkφ(T ) are line-graphs.

Lemma 4.1.2. For the tree T and any correct embedding φ we know for each node
of degree three (except for maximum two of them) if trunkφ(T ) passes through it
or not.

Definition 4.5. Support nodes are the nodes of two types: either a node of degree
three without the neighbours of degree three, or a node that is located on some
path between two nodes with degree three. It can be proven that the support nodes
appear in the trunk of every correct embedding.

The path through the support nodes is called trunk core. We denote this path
for a tree T as trunkCore(T ).

To give an intuition: the trunk core consists of vertices that lie on a trunk of
any embedding.

Definition 4.6. LetT be a tree. All the connectivity components inT \ trunkCore(T )

are called simple-graphs of tree T .

Lemma 4.1.3. Simple-graphs of a tree T are line-graphs.

Definition 4.7. The edge between a simple-graph and the trunk core is called a
leg.

The end of a leg in the simple-graph is called a head of the simple-graph.
The end of a leg in the trunk core is called a foot of the simple-graph.
If you remove the head of a simple-graph and it falls apart into two connected

components, such simple-graph is called two-handed and those parts are called
its hands. Otherwise, the graph is called one-handed, and the sole remaining
component is called a hand. If there are no nodes in the simple-graph but just a
head it is called zero-handed.

Definition 4.8. A simple-graph connected to some end node of the trunk core is
called exit-graph.
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Definition 4.9. A simple-graph connected to an inner node of the trunk core is
called inner-graph.

Please note that the next definition is about a much larger ladder GridN

rather than Gridn. N should be approximately equal to 2 · n.

Definition 4.10. An embedding φ : V (G)→ V (GridN) of a graphG intoGridN

is called quasi-correct if:

• (u, v) ∈ E(G) ⇒ (φ(u), φ(v)) ∈ E(GridN), i.e., images of adjacent
vertices in G are adjacent in the grid.

• There are no more than three nodes mapped into each level of GridN , i.e.,
the two grid nodes on each level are the images of no more than three nodes.

We might think of a quasi-correct embedding as an embedding into levels
of the grid with no more than three nodes embedded to the same level. We then
can compose this embedding with an embedding of a grid into the line which is
the enumeration level by level. More formally if a node u is embedded to the level
i and a node v is embedded to the level j and i < j then the resulting number of u
on the line is smaller then the number of v, but if two nodes are embedded to the
same level, we give no guarantee.

Lemma 4.1.4. For a graph mapped into the line network with a use of its quasi-
correct embedding as described above (level by level) any pair of adjacent nodes
are embedded at the distance of at most five.

4.2. Cycles included
Definition 4.11. A maximal cycle C of a graph G is a cycle in G that cannot be
enlarged, i.e., there is no other cycle C ′ in G such that V (C) ⊊ V (C ′).

Definition 4.12. Consider a graph G and a maximal cycle C of G. The whisker
W of C is a line graph inside G such that:

• V (W ) ̸= ∅, and V (W ) ∩ V (C) = ∅.
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• There exists only one edge between the cycle and the whisker (w, c) for
w ∈ V (W ) and c ∈ V (C). Such c is called a foot of W . The nodes of W
are enumerated starting from w.

• W is maximal, i.e., there is no W ′ in G such that W ′ satisfies previous
properties and V (W ) ⊊ V (W ′).

Definition 4.13. Suppose we have a graph G that can be correctly embedded into
Gridn by φ and a cycle C in G. WhiskersW1 andW2 of C are called adjacent for
the embedding φ if

∀i ∈ [min(|V (W1)|, |V (W2)|] (φ(W1[i]), φ(W2[i])) ∈ E(Gridn)

Lemma 4.2.1. Suppose we have a graph G that can be correctly embedded into
Gridn and there exists a maximal cycle C in G with at least 6 vertices with two
neighbouring whiskersW1 andW2 ofC, i.e., (foot(W1), foot(W2)) ∈ E(G). Then,
W1 and W2 are adjacent in any correct embedding of G into GridN .

Definition 4.14. Assume we have a graph G and a maximal cycle C of length
at least 6. The frame for C is a subgraph of G induced by vertices of C and
{W1[i],W2[i] | i ∈ [min(|V (W1)|, |V (W2)|)]} for each pair of adjacent whiskers
W1 andW2. Adding all the edges {(W1[i],W2[i]) | i ∈ [min(|V (W1)|, |V (W2)|)]}
for each pair of adjacent whiskers W1 andW2 makes frame completed.

5. Ladder: algorithm
5.1. Static quasi-embedding

We start with one of the basic algorithms — how to quasi-embed on Grid
2 × N with large N any graph that can be embedded in Grid 2 × n. The whole
algorithm is presented in Appendix 7.1.
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5.1.1 Tree embedding

Assume, we are given a tree T that can be embedded into Gridn. Further-
more, there are two special nodes in the tree: one is marked as R (for right) and
another one is marked as L (left). It is known that there exists a correct embedding
of T into Gridn with R being the rightmost node, meaning no node is embedded
more to the right or to the same level, and L being the leftmost node.

We now describe how to obtain a quasi-correct embedding of T ontoGridN

with R being the rightmost node and L being the leftmost one while L is mapped
to ImageL. Moreover, our embedding obeys the following invariant.

Invariant 5.1 (Septum invariant). For each inner simple-graph, its foot and its
head are embedded to the same level and no other node is embedded to that level.

Figure 2: Example of a quasi-correct embedding

We embed a path be-
tween L andR simply horizon-
tally and then we orient line-
graphs connected to it in a way
that they do not violate our de-
sired invariant. It can be shown
that it is always possible if T
can be embedded onto Gridn.
The pseudocode is in Appendix Algorithm 1.

Suppose now that not all information, such asR,L, and ImageL, is provided.
We explain how we can embed a tree T .

We first get the trunk core of the given tree. It can be done simply by
following the definition.

Now the idea would be to first embed the trunk core and its inner line-graphs
using a tree embedding presented earlier with R and L to be the ends of the trunk
core. Then, we embed exit-graphs strictly horizontally “away” from the trunk
core. That means, that the hands of exit-graphs that are connected to the right of
the trunk core are embedded to the right, and the hands of those exit-graphs that
are connected to the left of the trunk core are embedded to the left. An example
of the quasi-correct embedding is shown in Figure 2.
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If a tree does not have a trunk core, then its structure is quite simple (in
particular it has no more than two nodes of degree three). Such a tree is really
simple (straightforwardly) to embed without conflicts.

The pseudocode appears in Appendix Algorithm 2.

5.1.2 Cycle embedding

Now, we are going to talk about how to embed a cycle into GridN .
Given a cycle C of length at least six and its special nodes L,R ∈ V (C),

we construct a correct embedding of C into GridN with level⟨L⟩ ≤ level⟨u⟩ ≤
level⟨R⟩ ∀u ∈ V (C) while L is mapped into the node ImageL.

We first check if it is possible to satisfy the given constraints of placing the
L node to the left and a R node to the right. If it is indeed possible, we place
L to the desired place ImageL and then we choose an orientation (clockwise or
counterclockwise) following which we could embed the rest of the nodes, keeping
in mind that R must stay on the rightmost level. The pseudocode appears in
Appendix Algorithm 3.

Now, suppose that not all information, such as R, L, and ImageL, is
provided. We will reduce this problem to the case when the missing variables
are known. Though the subtlety might occur since there are inner edges in the
cycle. In this case, we choose missing L/R more precisely in order to embed an
inner edge vertically. The pseudocode appears in Appendix Algorithm 4

5.1.3 Component embedding

Right now we explain how to embed onto GridN a connectivity component
S that can be embedded onto Gridn.

We start with an algorithm on how to make a cycle-tree decomposition chain
of S assuming no uncompleted frames. To obtain a cycle-tree decomposition of a
graph: 1) we find a maximal cycle; 2) we split the graph into two parts by logically
removing the cycle; 3) we proceed recursively on those parts, and, finally, 4) we
glue the results together maintaining the correct order of the chain components.
The decomposition pseudocode appears in Appendix Algorithm 5.

Now, we describe how to obtain a quasi-correct embedding of S. We
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preprocess S: 1) we remove one edge from cycles of size four; 2) we complete
uncompleted frames with vertical edges. After this preprocessing, we embed parts
of S from the cycle-tree decomposition chain one by one in the relevant order using
the corresponding algorithm (either for a cycle or for a tree embedding) making
sure parts are glued together correctly. The pseudocode appears in Appendix
Algorithm 6.

5.2. Dynamic algorithm
In the previous subsection, we presented an algorithmon how to quasi-embed

a static graph. Now, we will explain on how to operate for the requests coming in
online manner. The full version of the algorithm is presented in Appendix 7.2.

There are two cases: a known edge is requested or a new edge is revealed.
In the first case the algorithm does nothing since we already know how to quasi-
correctly embed the current graph and, thus, we already can embed into the line
network with the constant bandwidth. Thus, further, we will consider only the
second case.

We describe how one should change the embedding of the graph after the
processing of a request in an online scenario. At each moment we have some
edges of a Gridn already revealed forming connectivity components. After an
edge reveal we should reconfigure the target line graph. For that, instead of line
reconfiguration we reconfigure our embedding to GridN that is then embedded to
the line level by level and introduce some constant factor. So, we can consider the
reconfiguration only of GridN and forget about the target line graph at all. When
doing the reconfiguration of an embedding we want to maintain the following
invariants:

1. The embedding of any connectivity component is quasi-correct.

2. For each tree in the cycle-tree decomposition its embedding respects Septum
invariant 5.1.

3. There are no maximal cycles of length 4.

4. Each cycle frame is completed with all “vertical” edges even if they are not
yet revealed.
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5. There are no conflicts with cycle nodes, i.e., each cycle node is the only node
mapped to its image in the embedding to GridN .

For each newly revealed edge there are two cases: either it connects two
nodes from one connectivity component or not. We are going to discuss both of
them.

5.2.1 Edge in one component

The pseudocode appears in Appendix Algorithm 8.
If the new edge is already known or it forms a maximal cycle of length four,

we simply ignore it. Otherwise, it forms a cycle of length at least six, since two
connected nodes are already in one component.

We then perform the following steps:

1. Get the completed frame of a (possibly) new cycle.

2. Logically “extract” it from the component and embed maintaining the ori-
entation (not twisting the core that was already embedded in some way).

3. Attach two components appeared after an extraction back into the graph,
maintaining their relative order.

5.2.2 Edge between two components

The pseudocode appears in Appendix Algorithm 9.
In order to obtain an amortization in the cost, we always “move” the smaller

component to the bigger one. Thus, the main question here is how to glue a
component to the existing embedding of another component.

The idea is to consider several cases of where the smaller component will
be connected to the bigger one. There are three possibilities:

1. It connects to a cycle node. In this case there are again two possibilities.
Either it “points away” from the bigger component meaning that the cycle
to which we connect is the one of the ends in the cycle-tree decomposition
of the bigger component. Here, we just simply embed it to the end of the
cycle-tree decomposition while possibly rotating a cycle at the end.
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Or, the smaller component should be placed somewhere between two cycles
in the cycle-tree decomposition. Here, it can be shown that this small graph
should be a line-graph, and we can simply add it as a whisker, forming a
larger frame.

2. It connects to a trunk core node of a tree in the cycle-tree decomposition.
It can be shown that in this case the smaller component again must be
a line-graph. Thus, our only goal is to orient it and possibly two of its
inner simple-graphs neighbours to maintain the Septum invariant 5.1 for the
corresponding tree from the decomposition.

3. It connects to an exit graph node of an end tree of the cycle-tree decomposi-
tion. In this case, we straightforwardly apply a static embedding algorithm
of this tree and the smaller component from scratch. Please, note that only
the exit graphs of the end tree will be moved since the trunk core and its
inner graphs will remain.

6. Ladder: cost of the algorithm
Now, we calculate the cost of our dynamic algorithm: how many swaps we

should do and how much we should pay for the routing requests itself. Please,
remind that we first apply the reconfiguration and, then, the routing request.

We start with considering the routing requests. Their cost is O(1) since
they lie on the target line network pretty close, by no more than 12 nodes apart.
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This bound holds because the nodes are quasi-correctly embedded on GridN , two
adjacent nodes at G are located not more than four levels apart (in the worst case,
when we remove an edge of a cycle with length four) where each level of the
quasi-correct embedding has at most three images of nodes of G. Thus, on the
target line graph, if we enumerate level by level, the difference between any two
adjacent nodes of G is at most 12.

Then, we consider the reconfiguration. We take our dynamic algorithm and
count the total cost of each case before all the edges are revealed.

In the first case, we add an edge in one component. By that, either a new
frame is created or some frame was enlarged. In both cases, only the nodes, that
appear on some frame for the first time, are moved. Since, a node can be moved
only once to become on a frame and it is swapped at most N = O(n) times to
move to any position, the total cost of this type of reconfiguration is at mostO(n2).
Also, there are several adjustments that could be done: 1) the “old” frame can
rotate by one node, and 2) possibly, we should flip the first inner-graphs of two
components connected to the frame. In the first modification, each node at the
frame can only be “rotated” once, thus, paying O(n) cost in total. In the second
modification, inner-graph can change orientation at most once in order to satisfy
the Septum invariant 5.1, thus, paying O(n2) cost in total — each node can move
by at most O(n).

In the second case, we add an edge in between two components. At first, we
calculate the time spent on the move of the small component to the bigger one:
each node is moved at most O(log n) time since the size of the component always
grows at least two times, the number of swaps of a vertex is at most N = O(n)

to move to any place, thus, the total cost is O(n2 log n). Secondly, there are some
other modification of two types: 1) a rotation of a cycle, and 2) some simple-graphs
can be reoriented. The cycle can be rotated only once, thus, we should pay at most
O(n) there. At the same time, each simple-graph can be reoriented at most once
to satisfy the Septum invariant 5.1, thus, the total cost is O(n2) for that type of a
reconfiguration.

To summarize, the total cost of requests σ is O(n2 log n) for the whole
reconfiguration plus O(|σ|) per requests. This matches the lower bound that was
obtained for the line demand graph.
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Theorem 6.0.1. We presented an online algorithm for the demand ladder graph of
size n with total cost O(n2 log n+ |σ|) for requests σ.

Remark 6.0.2. The same result holds for any demand graph that is the subgraph
of the ladder of size n.

7. Full algorithm

7.1. Static quasi-embedding

7.1.1 Tree embedding

Assume, we are given a tree T that can be embedded into Gridn. Further-
more, there are two marked nodes in the tree: one is marked right and the left. It
is known that there is a correct embedding of T with right being the right-most
node, meaning no node is embedded higher or to the same level, and left being the
left-most node.

We now describe how to obtain a quasi-correct embedding of T with right
being the right-most node and left being the left-most one and left mapped to
leftImage. Moreover, this embedding obeys the following invariant:

Invariant 7.1 (Septum invariant). For each inner simple-graph its foot and its head
are embedded to the same level and no other node is embedded to that level.

We embed the left − right path strictly vertically and then we orient line-
graphs connected to it in the way that they do not violate septum invariant.

See Algorithm 1.
We now proceed with an embedding of a tree T where right, left and

leftImage might or might not be given. In the case the variable is not given we
denote its value with None.

The idea here would be to first embed the trunk core and its inner line-graphs
using Left-Right tree embedding and then to embed exit-graphs strictly vertically
"away" from the trunk core. That means that the hands of exit-graphs that are
connected to to the right of the trunk core are embedded increasingly and hands of
those exit-graphs which are connected to the left of the trunk core are embedded
decreasingly.
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Algorithm 1 Left-Right tree embedding
procedure RightLeftTreeEmbedding(T , left, right, leftImage)

P ← path from left to right
leftSide← side(leftImage)
leftLevel← level⟨leftImage⟩
Embed P [i]→ level(leftLevel − 1 + i)[leftSide]
L← line-graphs connected to P
Septa← {level⟨foot(l)⟩ | l ∈ L} ∪ {level⟨left⟩, level⟨right⟩}
for l ∈ L do

i← level⟨foot(l)⟩
Embed head(l)→ level(i)[other(leftSide)]
Orient l ensuring no nodes of l\{head(l)} are embedded to any of levels

from Septa

If a tree does not have a trunk core, that means that its structure is rather
simple (in particular it has no more than two nodes of degree three), so we do not
care about conflicts.

See Algorithm 2.

Algorithm 2 Tree quasi-correct embedding
procedure TreeQuasiCorrectEmbedding(T , left, right, leftImage)

if leftImage = None then
leftImage← level(1)[1]

if (left ̸= None) ∧ (right ̸= None) then
LeftRightTreeEmbedding(T , left, right, leftImage)
return

else if (left ̸= None) ∧ (right = None) then
if T has a trunk core then

u, v ← ends of a trunk core
if u between v and left then

trunkRight← v

else
trunkRight← u

et← exit-graphs connected to trunkRight

S ′ ← S \ et
LeftRightTreeEmbedding(S ′, left, trunkRight, leftImage)
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for e ∈ et do
lvl← level⟨trunkRight⟩
side← side(trunkRight)

Embed head(e)→ level(lvl + 1)[side]

for h ∈ hands(e) do
for i ∈ [length(h)] do

Embed h[j]→ level(lvl + 1 + i)[side]

else
right← arbitrary node of degree 1
LeftRightTreeEmbedding(T , left, right, leftImage)

else if (left = None) ∧ (right ̸= None) then
if T has a trunk core then

u, v ← ends of a trunk core
if u between v and right then

trunkLeft← v

else
trunkLeft← u

eb← exit-graphs connected to trunkLeft
S ′ ← S \ eb
leftImageLevel← level⟨leftImage⟩
leftImageSide← side(leftImage)

vShift← max
e∈eb

max
h∈hands(e)

length(h)

trunkLeftImage← level(leftImageLevel+vShift)[leftImageSide]

LeftRightTreeEmbedding(S ′, left, right, trunkLeftImage)
for e ∈ eb do

lvl← level⟨trunkLeft⟩
side← side(trunkLeft)

Embed head(e)→ level(lvl − 1)[side]

for h ∈ hands(e) do
for i ∈ [length(h)] do

Embed h[j]→ level(lvl − 1− i)[side]

else
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left← arbitrary node of degree 1
LeftRightTreeEmbedding(T , left, right, leftImage)

else
if T has a trunk core then

trunkRight, trunkLeft← ends of a trunk core
et← exit-graphs connected to trunkRight

eb← exit-graphs connected to trunkLeft
S ′ ← S \ et \ eb
leftImageLevel← level⟨leftImage⟩
leftImageSide← side(leftImage)

vShift← max
e∈eb

max
h∈hands(e)

length(h)

trunkLeftImage← level(leftImageLevel+vShift)[leftImageSide]

LeftRightTreeEmbedding(S ′, left, right, trunkLeftImage)
for e ∈ et do

lvl← level⟨trunkRight⟩
side← side(trunkRight)

Embed head(e)→ level(lvl + 1)[side]

for h ∈ hands(e) do
for i ∈ [length(h)] do

Embed h[j]→ level(lvl + 1 + i)[side]

for e ∈ eb do
lvl← level⟨trunkLeft⟩
side← side(trunkLeft)

Embed head(e)→ level(lvl − 1)[side]

for h ∈ hands(e) do
for i ∈ [length(h)] do

Embed h[j]→ level(lvl − 1− i)[side]

else
right, left← furthest nodes of degree 1
P ← path from left to right
Embed P strictly monotone placing left to leftImage

if there is a line-graph left then
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l← left line-graph
(u, v)← (u, v) ∈ E(T ) s.t. u ∈ P, v ∈ l

Embed v to the same level, opposite side to u.
Embed l to the opposite side to the side of P preserving connec-

tivity and correctness

7.1.2 Cycle embedding

Given a cycle C of length ≥ 6 and nodes left, right ∈ V (C) we con-
struct a correct embedding of C into Grid∞ with level⟨left⟩ ≤ level⟨u⟩ ≤
level⟨right⟩ ∀u ∈ V (C) and left placed to leftImage.

For convenience we assume that for every node v there is a local consecutive
numeration starting at v. The number of node u ∈ V (C) in this numeration is
referenced with numberv(u). The node with number i in local numeration of v is
referenced with Cv[i].

We first check if it is possible to satisfy the given constraints of placing the
left node to left and a right node to the right. If it is indeed possible, we place left
to desired place and then choose an orientation (clockwise or counterclockwise)
following which we would embed the rest of the nodes, keeping in mind that right
must stay on the highest level. See Algorithm 3.

Now, suppose that not all information, such as right, left, and LeftImage,
is provided. We will reduce this problem to the case when the missing variables
are known. Though the subtlety might occur due to the fact that there are inner
edges in the cycle. In this case we choose missing left/right more precisely in
order to embed inner edge vertically. See Algorithm 4.

7.1.3 Component embedding

Right now we explain on how to embed onto GridN a connectivity compo-
nent S that can be embedded onto Gridn.

We start with an algorithm on how to make a cycle-tree decomposition chain
of S assuming no uncompleted frames. To obtain a cycle-tree decomposition of a
graph: 1) we find a maximal cycle; 2) we split the graph into two parts by logically
removing the cycle; 3) we proceed recursively on those parts, and, finally, 4) we
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Algorithm 3 Left-Right cycle embedding
procedure LeftRightCycleEmbedding(C, left, right, leftImage)

h← length(C)
2

Ensure: numberleft(right) ∈ {h, h+ 1, h+ 2}
leftLevel← level⟨leftImage⟩
leftSide← side(leftImage)
if (numberleft(right) = h) ∨ (numberleft(right) = h+ 1) then

for i ∈ [h] do
Embed Cleft[i]→ level(leftLevel + i− 1)[leftSide]

for i ∈ [h] do
Embed Cleft[h+ i]→ level(leftLevel + h− i)[other(leftSide)]

else
Embed left→ leftImage
for i ∈ [h] do

Embed Cleft[i+ 1]→ level(leftLevel + i− 1)[other(leftSide)]

for i ∈ [h− 1] do
Embed Cleft[h+ 1 + i]→ level(leftLevel + h− i)[leftSide]

glue the results together maintaining the correct order of the chain components.
See the Algorithm 5.

Now, we describe how to obtain a quasi-correct embedding of S. We
preprocess S: 1) we remove one edge from cycles of size four; 2) we complete
uncompleted frames with vertical edges. After this preprocessing, we embed parts
of S from the cycle-tree decomposition chain one by one in the relevant order using
the corresponding algorithm (either for a cycle or for a tree embedding) making
sure parts are glued together correctly.

As before, we have additional variables left, right and leftImage which
might or might not be given.

Algorithm 6 Connectivity component quasi-correct embedding
procedure Preprocess(S)

C ← maximal cycles of length 4 in S
for c ∈ C do

remove arbitrary edge of c from S

F ← cycle frames in S
for f ∈ F do
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Algorithm 4 Cycle embedding
procedure CycleEmbedding(C, left, right, leftImage)

h← length(C)
2

if (left ̸= None) ∧ (right ̸= None) then
Ensure: numberleft(right) ∈ {h, h+ 1, h+ 2}

if leftImage = None then
leftImage← level(1)[1]

if (left = None) ∧ (right = None) then
left← arbitrary node of C
if C has an inner edge then

Choose right out of {Cleft[h], Cleft[h+2]} to respect the inner edge
else

Choose right out of {Cleft[h], Cleft[h+ 2]} arbitrary
else if (left ̸= None) ∧ (right = None) then

if C has an inner edge then
Choose right out of {Cleft[h], Cleft[h+2]} to respect the inner edge

else
Choose right out of {Cleft[h], Cleft[h+ 2]} arbitrary

else if (left = None) ∧ (right ̸= None) then
if C has an inner edge then

Choose left out of {Cleft[h], Cleft[h+ 2]} to respect the inner edge
else

Choose left out of {Cleft[h], Cleft[h+ 2]} arbitrary
LeftRightCycleEmbedding(C, left, right, leftImage)
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Algorithm 5 Cycle-Tree decomposition chain
function CycleTreeDecompositionChain(S)

Ensure: S has no uncompleted frames
if S is empty then

return []
else if S is a tree then

return [S]
else

C ← arbitrary maximal cycle in S
S1, S2 ← connectivity components of S \ C
C1 ← CycleTreeDecompositionChain(S1)
C2 ← CycleTreeDecompositionChain(S2)
if C2 is empty then

return [C] + C1

else
if ∃u ∈ V (C2[0]), v ∈ V (C), s.t. (u, v) ∈ E(S) then

return C1 + [S] + C2

else
return C2 + [S] + C1

complete F

procedure ComponentEmbeddingLeftFixed(S, left, right, leftImage)
if S is a tree then

TreeQuasiCorrectEmbedding(S, left, right, leftImage)
return

if S is a cycle then
CycleEmbedding(S, left, right, leftImage)
return

Preprocess(S)
C ← CycleTreeDecompositionChain(S)

if left ̸= None then
Reverse C in the way that left ∈ C[1]

if right ̸= None then
Reverse C in the way that right ∈ C[length(C)]

for i ∈ [length(C)] do
if i = 1 then u, v ← (u, v) ∈ E(S), s.t. (u ∈ V (C[1])) ∧ (v ∈
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V (C[i+ 1])

if C[1] is a tree then
cur ← C[1] ∪ (u, v)

TreeQuasiCorrectEmbedding(cur, left, v, leftImage)
else

CycleEmbedding(C[1], left, u, leftImage)

else if i = length(C) then
u, v ← (u, v) ∈ E(S), s.t. (u ∈ V (C[i− 1])) ∧ (v ∈ V (C[i])

leftLevel← level⟨u⟩+ 1

leftSide← side(u)

localLeftImage← level(leftLevel)[leftSide]

if C[i] is a cycle then
CycleEmbedding(C[i], v, right, localLeftImage)

else
TreeQuasiCorrcetEmbedding(C[i], v, right, localLeftImage)

else
u1, v1 ← (u, v) ∈ E(S), s.t. (u ∈ V (C[i− 1])) ∧ (v ∈ V (C[i])

leftLevel← level⟨u1⟩+ 1

leftSide← side(u1)

localLeftImage← level(leftLevel)[leftSide]

u2, v2 ← (u, v) ∈ E(S), s.t. (u ∈ V (C[i])) ∧ (v ∈ V (C[i+ 1])

if C[i] is a cycle then
CycleEmbedding(C[i], v1, u2, localLeftImage)

else
cur ← C[i] ∪ (u2, v2)

TreeQuasiCorrcetEmbedding(C[i], v1, v2, localLeftImage)

We finally notice that having a procedure to embed a component with a fixed
leftImage it is easy to obtain a procedure which embeds with rightImage fixed.
We simply apply the "left" procedure and then flip the result.
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Algorithm 7 Component embedding right fixed
procedure ComponentEmbeddingRightFixed(S, left, right, rightImage)

ComponentEmbeddingLeftFixed(S, right, left, rightImage)
Flip the image of S over horizontal axis maintaining the position of right

7.2. Dynamic algorithm

We describe how one should change the embedding of the graph after the
processing of a request in an online scenario. At each moment we have some
edges of a Gridn already revealed forming connectivity components. After an
edge reveal we should reconfigure the target line graph. For that, instead of line
reconfiguration we reconfigure our embedding to GridN that is then embedded to
the line line by line and introduce some constant factor. So, we can consider the
reconfiguration only of GridN and forget about the target line graph at all. When
doing the reconfiguration of an embedding we want to maintain the following
invariants:

1. The embedding of any connectivity component is quasi-correct.

2. For each tree in the cycle-tree decomposition its embedding respects Septum
invariant 5.1.

3. There are no maximal cycles of length 4.

4. Each cycle frame is completed with all “vertical” edges even if they are not
yet revealed.

5. There are no conflicts with cycle nodes, i.e., two nodes of a cycle do not map
to same node of GridN .

For each newly revealed edge there are two cases: either it connects two
nodes from one connectivity component or not. We are going to discuss both of
them.

7.2.1 Edge in one component

If the new edge is already known or it forms a maximal cycle of length four,
we simply ignore it. Otherwise, it forms a cycle of length at least six, since two
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connected nodes are already in one component.
We then perform the following steps:

1. Get the completed frame of a (possibly) new cycle.

2. Logically “extract” it from the component and embed maintaining the ori-
entation (not twisting the core that was already embedded in some way).

3. Attach two components appeared after an extraction back into the graph,
maintaining their relative order.

Algorithm 8 Process Edge In One Component
procedure ProcessEdgeOneComponent(S, (u, v))

if Edge (u, v) already exists then
return

if Edge (u, v) forms a maximal cycle of length 4 then
return

C ← maximal cycle containing u, v
F ← completed frame of C
S1, S2 ← connectivity components of S \ F
u1, v1 ← u, v : u ∈ V (F ), v ∈ V (S1), (u, v) ∈ E(S)

u2, v2 ← u, v : u ∈ V (F ), v ∈ V (S2), (u, v) ∈ E(S)

if level⟨u1⟩ > level⟨u2⟩ then
Swap(S1, S2), Swap(u1, u2), Swap(v1, v2)

CycleEmbedding(F , u1, u2, None)
ComponentEmbeddingTopFixed(S1, None, u1, image(u1))
ComponentEmbeddingBotFixed(S2, u2, None, image(u2))

7.2.2 Edge between two components

In order to obtain an amortization in the cost, we always “move” the smaller
component to the bigger one. Thus, the main question here is how to glue a
component to the existing embedding of another component.

The idea is to consider several cases of where the smaller component will
be connected to the bigger one. There are three possibilities:
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1. It connects to a cycle node. In this case there are again two possibilities.
Either it “points away” from the bigger component meaning that the cycle
to which we connect is the one of the ends in the cycle-tree decomposition
of the bigger component. Here, we just simply embed it to the end of the
cycle-tree decomposition while possibly rotating a cycle at the end.

Or, the smaller component should be placed somewhere between two cycles
in the cycle-tree decomposition. Here, it can be shown that this small graph
should be a line-graph, and we can simply add it as a whisker, forming a
larger frame.

2. It connects to a trunk core node of a tree in the cycle-tree decomposition.
It can be shown that in this case the smaller component again must be
a line-graph. Thus, our only goal is to orient it and possibly two of its
inner simple-graphs neighbours to maintain the Septum invariant 5.1 for the
corresponding tree from the decomposition.

3. It connects to an exit graph node of an end tree of the cycle-tree decomposi-
tion. In this case, we straightforwardly apply a static embedding algorithm
of this tree and the smaller component from scratch. Please, note that only
the exit graphs of the end tree will be moved since the trunk core and its
inner graphs will remain.
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Algorithm 9 Process edge between two components
procedure AddInnerWhisker(S, C,W , (u, v))

S ← S ∪W ∪ (u, v)

F ← completed frame of C
S1, S2 ← connectivity components of S \ F
if S1 is embedded above S2 then

Swap(S1, S2)

s1, t1 ← s, t : s ∈ V (F ), t ∈ V (S1), (s, t) ∈ E(S)

s2, t2 ← s, t : s ∈ V (F ), t ∈ V (S2), (s, t) ∈ E(S)

CycleEmbedding(F , s1, s2, None)
ComponentEmbeddingTopFixed(S1 ∪ (s1, t1), None, s1, image(s1))
ComponentEmbeddingBotFixed(S2 ∪ (s2, t2), s2, None, image(s2))

procedure ProcessEdgeTwoComponents(S1, S2, (u, v))
Ensure: u ∈ V (S1), v ∈ V (S2)

if V (S1) < V (S2) then
Swap(S1, S2), Swap(u, v)

DC1 ← CycleTreeDecomposition(S1)

Reverse DC1 in a way DC[i] is embeded under DC[i+ 1] ∀i
A, i← DC1[i], i : u ∈ V (DC1[i])

if A is a cycle then
if length(DC1) = 1 then

if A has an inner edge then
if u is a top node then

bot← arbitrary bottom node of A
ComponentEmbeddingBotFixed(S1∪S2∪ (u, v), bot, None,

None)
else

top← arbitrary top node of A
ComponentEmbeddingTopFixed(S1∪S2∪ (u, v),None, top,

None)
else
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ComponentEmbeddingBotFixed(S1 ∪ S2 ∪ (u, v), None, None,
None)

else if i = 1 then
p, q ← p, q : p ∈ V (DC1[i]), q ∈ V (DC1[i+ 1]), (p, q) ∈ E(S1)

if (u, p) ∈ E(S1) then AddInnerWhisker(S1, A, S2, (u, v))
else

if u is not a bottom node of A then
Flip A over diagonal containing p

ComponnetEmbeddingTopFixed(S2, None, u, image(u))

else if i = length(DC1) then
p, q ← p, q : p ∈ V (DC1[i]), q ∈ V (DC1[i− 1]), (p, q) ∈ E(S1)

if (u, p) ∈ E(S1) then AddInnerWhisker(S1, A, S2, (u, v))
else

if u is not a top node of A then
Flip A over diagonal containing p

ComponnetEmbeddingBotFixed(S2, u, None, image(u))

elseAddInnerWhisker(S1, A, S2, (u, v))

if A is a tree then
if u ∈ extended trunk core of A then

Embed v → opposite(u)

l1, l2 ← u neighbouring inner simple-graphs
Orient S2, l1, l2 to maintain Septum invariant in A

else if u ∈ inner simple-graph then
S1 ← S1 ∪ S2 ∪ (u, v)

l← inner simple graph containing u
Orient l to maintain Septum invariant in A

else if u ∈ exit-graph then
if i = 1 then

if length(DC1) = 1 then
p← arbitrary highest node of S1

q ← additional temporary node
else
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p, q ← p, q : p ∈ V (DC1[i]), q ∈ V (DC1[i + 1]), (p, q) ∈
E(S1)

ComponentEmbeddingTopFixed(A∪S2∪(p, q),None, q, image(q))
else if i = length(DC1) then

p, q ← p, q : p ∈ V (DC1[i]), q ∈ V (DC1[i−1]), (p, q) ∈ E(S1)

ComponentEmbeddingBotFixed(A∪S2∪(p, q), q,None, image(q))

8. Proofs and Analysis

8.1. Strategy

At the very beginning there are no requests and we don’t know any request-
edges. Requests come one at a time, possibly, revealing new edges. Known
edges form connectivity components which are all subgraphs of the request graph.
Our strategy would be to maintain such enumeration σ of vertices that for each
connectivity component S

max
(u,v)∈E(S)

|σ(u)− σ(v)| ≤ 12

We call this property of an enumeration the proximity property.
So, if we receive the request which was already known, we do nothing

since the property persists. But if the new edge comes, we might perform a
re-enumeration σ on the vertices to maintain the property.

8.2. Bandwidth of subgraphs

Observation 8.2.1. Bandwidth(Gridn) = 2

Proof. The bandwidth is greater than 1, because there are nodes of degree three.
The bandwidth of 2 can be achieved via the level-by-level enumeration.

Definition 8.1. Consider two connected graphs S and G. The correct embedding
of S into G is a mapping φ : V (S)→ V (G) such that:

• φ is injective
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• (u, v) ∈ E(S)→ (φ(u), φ(v)) ∈ E(G)

If φ is not injective, i.e. there are nodes u, v, s.t. φ(u) = φ(v), we say that
there is a conflict between u and v.

Lemma 8.2.1. If there is a correct embedding of S into G then bandwidth(S) ≤
bandwidth(G).

Proof. Let φ be a correct embedding of S into G. And let σ be the enumeration
on G with which the bandwidth(G) is achieved.

Let U be the finite set of unique natural numbers. For v ∈ U we define
ordU(v) = |{u | u ∈ U, u ≤ v}|.

We now define the enumeration σS of S as follows:

U = {σ(φ(v)) | v ∈ S}
σS(v) = ordU(σ(φ(v)))

We state that max
(u,v)∈E(S)

|σS(u)−σS(v)| ≤ bandwidth(G). This follows from

two facts:

• For every (u, v) ∈ E(S)

|σ(φ(u))− σ(φ(v))| ≤ bandwidth(G)

since (φ(u), φ(v)) ∈ E(G)

• If U is a set of unique natural numbers than for every u, v ∈ U

|ordU(u)− ordU(v)| ≤ |u− v|

Then, for each edge (u, v) ∈ E(S) we get the following inequalities:

|σS(u)− σS(v)| = |ordU(σ(φ(u)))− ordU(σ(φ(v)))| ≤ |σ(φ(u))− σ(φ(v))| ≤ bandwidth(G)
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We know that all the graphs that appear during the requests processing
(revealing the edges) are subgraphs ofGridn. Thus, by Lemma 8.2.1 we conclude
that their bandwidth ≤ 2. And we can use the embedding function from this
Lemma to enumerate each subgraph S of Gridn with σS.

Remark 8.2.1. We do not need to worry about the top and bottom bounds ofGridn

when performing an embedding. In fact, we can perform an embedding of S into
the Grid∞ and, since S is connected and the embedding preserves connectivity,
the whole image of S will be within some Gridm (for m ≥ n) which is enough to
obtain a requested bandwidth ≤ 2.

8.3. Connectivity component structure

Requests come with time possibly revealing new edges of a request graph
and forming connectivity components which are subgraphs of the request graph.

One connectivity component can be decomposed into cycles and trees. Let
us now provide some statements about tree and cycle embedding.

Tree
Definition 8.2. Consider some correct embedding φ of a tree T into Gridn. Let
t = arg max

v∈V (T )
level⟨φ(v)⟩ be the “topmost” node of the embedding and

b = arg min
v∈V (T )

level⟨φ(v)⟩ be the “bottommost” node of the embedding. The trunk

of T is a path in T connecting b and t. The trunk of a tree T for the embedding φ

is denoted with trunkφ(T ).

Definition 8.3. LetT be a tree,φ be a correct embedding ofT intoGridn. The level
i of Gridn is called occupied if there is a vertex v ∈ V (T ) : φ(v) ∈ levelGridn(i).

Statement 8.3.1. For every occupied level i there is v ∈ trunkφ(T ) such that
v ∈ level(i).

Proof. By the definition the trunk, an image goes from the minimal occupied level
to the maximal. It cannot skip a level since the trunk is connected and the correct
embedding preserves connectivity.

The trunk of a tree is an useful concept to define since the following holds
for it.
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Lemma 8.3.1. Let T be a tree correctly embedded intoGridn by some embedding
φ. Then all the connectivity components in T \ trunkφ(T ) are line-graphs.

Proof. Suppose that it is not true and then there should exist a subgraph S of T
such that V (S)∩V (trunkφ(T )) = ∅ and S contains a node of degree three. Since
there is a node of degree three in S we can state that there are two nodes of S,
say u and v with the same level (level⟨φ(v)⟩ = level⟨φ(u)⟩). But the image of
the tree trunk passes through all occupied levels of the grid by Statement 8.3.1.
Hence, either u or v ∈ trunkφ(T ) which contradicts the assumption.

The bad thing about the trunk is that it depends on the embedding. And
there can be several correct embeddings of the same tree giving different trunks.
So, we introduce the concept of a trunk core which alleviates this issue. But at
first, we prove some technical statements.

Statement 8.3.2. For the tree T , disregarding the correct embedding φ, the
trunkφ(T ) must pass through a node of degree three if it has no neighbours
of degree three. If there are two adjacent nodes with degree three, the trunk must
pass through at least one of them.

Proof. First, consider the case of a node with no neighbours of degree three. Let’s
call it a. To prove by contradiction we assume that the trunk does not pass through
a. Let’s call a-s neighbours b, c and d. W.l.o.g assume that

φ(a) = level(i)[1]

φ(b) = level(i− 1)[1]

φ(c) = level(i)[2]

φ(d) = level(i+ 1)[1]

Since the trunk does not pass through a and by Statement 8.3.1 it passes
through the level i it should pass through c. If c has degree one, the trunk
contains one node from level i, and does not contain any node from i + 1, thus,
this trunk cannot contain the topmost node. If c has degree two, we say that its
second neighbour is mapped to level(i − 1)[2]. The case when it is mapped to
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level(i+ 1)[2] is symmetric. But then trunk does not pass through the i+ 1 level
which contradicts the Statement 8.3.1.

Now, coming to the case with two adjacent nodes of degree three, we have
two adjacent nodes a and b of degree three. And let c, d be the rest neighbours of
a and e, f be the rest neighbours of b. If a and b are embedded to the same level,
then by Statement 8.3.1 the trunk passes through at least one of them. Suppose
now that a and b are on different levels, say

φ(a) = level(i)[1]

φ(b) = level(i+ 1)[1]

φ(c) = level(i)[2]

φ(d) = level(i− 1)[2]

φ(e) = level(i+ 1)[2]

φ(f) = level(i+ 2)[1]

Since the edge (a, b) is a bridge between two connected components of a tree
and the trunk contains nodes form both components the trunk should pass through
the edge (a, b), so it passes through both a and b.

Lemma 8.3.2. For the tree T and any correct embedding φ we know for each node
of degree three (except maximum two) if the trunkφ(T ) passes through it or not.

Proof. We call a pair of adjacent nodes of degree three “paired” nodes. We call
a node of degree three with no neighbours of degree three “single”.

If the tree contains not more than two nodes of degree three, the statement
is trivial. So, we suppose that there exist at least three nodes of degree three.

The trunk passes through the single nodes by Statement 8.3.2. Thus we are
interested in paired nodes. Consider such pair. Let’s call its nodes a and b. By the
Statement 8.3.2 we know that either a or b is in the trunk.

By the assumption there exist either another single node or other paired
nodes. If there is a single node, let’s call it c, we know that it is in the trunk. c

is reachable from a and b and since we have tree either a is on path from b to c

or b is on path from a to c. W.l.o.g. assume b is on a path from a to c. But this
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implies that b is in the trunk, because if not, a is, and, thus, there are two paths
from a to c— the trunk and the one containing b. Thus, we have a cycle, which is
impossible since we have a tree.

If there are no single nodes, there are paired nodes. We denote them with
u and v. u and v are reachable from a, thus, w.l.o.g. we can assume that u is on
the path from a to v. If now b is on the path from a to u, we have the following:
a → b ⇝ u → v. By Statement 8.3.2 we know that the trunk must pass through
either u or v. Denote the one the trunk passes through with c. We can reduce
this case to the previous one, if we take any c = u or c = v. Applying the same
reasoning we deduce that b must be in the trunk.

Support nodes are the nodes of two types: either it is a single node, or it
is a node that is located on the path between two other nodes with degree three.
This Lemma shows that the support nodes appear in the trunk of every correct
embedding.

We make a path P through support nodes. For any inner node of this path
which is paired there is no chance for its pair to be in a trunk if it is not in P already,
because the trunk is a path. So, the only uncertainty remains about at most one
node in the pairs of end nodes.

Definition 8.4. Path P constructed in Lemma 8.3.2 is called trunk core. We denote
this path for a tree T as trunkCore(T ). Note that it can be embedded into Gridn.

Definition 8.5. The embedding φ of a line-graph l on the grid is called monotone
if the nodes φ(l[i]) and φ(l[j]) are on the same level of the grid only when they
are adjacent on T .

Lemma 8.3.3. If a line graph is embedded preserving edges into Gridn with no
self-intersections non-monotonically then one of the end-points shares a level with
a node of a path it is not adjacent with.

Proof. Denote a line graph l. Let’s say i is the smallest index such that l[i] shares
level with some other non-adjacent node l[j], |i − j| > 1. W.l.o.g. let’s assume
that l[i] is embedded to level(k)[1]. Since i was chosen the smallest j > i. Let us
assume that l[i− 1] is embedded to level(k − 1)[1]. Then, since l[j] is embedded
to level(k)[2], l[i+1] is embedded into level(k+1)[1]. We also state that l[j− 1]
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is embedded to level(k + 1)[2], since if it is embedded into level(k − 1)[2], the
path should go from l[i + 1] to l[j − 1] (note that i + 1 < j − 1) without passing
through level k which is impossible. So we have the following embeddings:

l[i]→ level(k)[1]

l[i− 1]→ level(k − 1)[1]

l[j]→ level(k)[2]

l[j + 1]→ level(k − 1)[2]

It is easy to see that l[j + 2] has no other options but to be embedded to
level(k− 2)[2]. But then l[i− 3] should be embedded to level(k− 3)[1] and so on
l[j + t]→ level(k − t)[2] and l[i− t]→ level(k − t)[2] in general. We now take
t = min(i− 1, length(p)− j) so either l[i− t] or l[j + t] is an end nodes and they
both exist. They share level, so the lemma is proved.

Lemma 8.3.4. The trunk core of a tree T is always embedded in the monotone
manner.

Proof. Trunk core connects nodes of degree three which cannot be embedded with
any other nodes of the trunk to the same level since then either a cycle appears
or we obtain a conflict. Thus, by the Lemma 8.3.3 trunk core must be embedded
monotonically.

From now on we assume that every mentioned tree can be embedded into
the Gridn.

Definition 8.6. LetT be a tree. All the connectivity components inT \ trunkCore(T )

are called simple-graphs of tree T .

Lemma 8.3.5. Simple-graphs of a tree T are line-graphs.

Proof. Note that all the nodes of degree three in T are either in the trunk core
or they are adjacent to the trunk core. Hence after removing the nodes of the
trunk core no nodes of degree three are left and, thus, all the graphs left are
line-graphs.
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Definition 8.7. The edge via between a simple-graph and the trunk core is called
a leg.
The end of the leg in the simple-graph is called a head of the corresponding
simple-graph.
The end of the leg in the trunk core is called a foot of the corresponding simple-
graph.
If you remove the head of the simple-graph and it falls apart into two connectivity
connectivity, such simple-graph is called two-handed and those parts are called its
hands. Otherwise, one connectivity component remains and it is called a hand of
the simple-graph. The simple-graph in this case is named called one-handed. If
there are no nodes in the simple-graph but just a head it is called zero-handed.

Definition 8.8. A simple-graph connected to the end nodes of the trunk core is
called exit-graph.

Definition 8.9. A simple-graphs connected to the inner nodes of the trunk core is
called inner-graph.

Definition 8.10. An embedding φ : V (T )→ V (Gridn) of a tree T into Gridn is
called quasi-correct if:

• (u, v) ∈ E(T )→ (φ(u), φ(v)) ∈ E(Gridn)

• There are no more than three nodes mapped into each level of Gridn

Wemight think of a quasi-correct embedding as of an embedding into levels
of the grid with no more then three nodes embedded to the same level. We then can
compose this embedding with an embedding of a grid into line which is successive
on levels and arbitrary with each level. More formally if a node u is embedded
to the level i and a node v is embedded to the level j and i < j then the resulting
number of u on the line is smaller then the number of v, but if two nodes are
embedded to the same level, we give no guarantee.

Lemma 8.3.6. For a graph embedded into line with a use of its quasi-correct
embedding as described above any adjacent nodes are embedded at the distance
of at most 5.
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Proof. Since two adjacent vertices are embedded to the levels with a number
difference of at most 1, we can state that there are no more than 4 nodes between
them in the line, since there are no more than 3 nodes per level.

8.3.1 Tree embedding strategy

We start with the discussion on how to embed a tree with |V (trunkCore(T ))| ≤ 1.
Such tree can have ≤ 3 nodes of degree three, since, otherwise, there are at least
four nodes of degree three and the trunk core has at least two nodes:

• ≥ 2 single nodes. In this case, they are both in the trunk core.

• at least one single node and at least one paired nodes. In this case, one node
from a pair and a single node are in the trunk core.

• at least two disjoint paired nodes. In this case, for each pair we know for
certain the member who is in the trunk, thus we again have at least two nodes
in the trunk core.

Further, we analyse the cases depending on the number of nodes of degree
three. We need the following technical Lemma.

Lemma 8.3.7. If there is a tree with three nodes of degree three a, b, and c and
there are edges (a, b) and (b, c), then the third neighbour of b is of degree one and
for any correct embedding a, b, and c are embedded to the different levels.

Proof. Consider a correct embedding φ. Say φ(b) = level(i)[1]. If now φ(a) =

level(i)[2], both level(i+ 1)[2] and level(i− 1)[2] are occupied by neighbours of
a, so no matter where we embed c, say to level(i+ 1)[1] there would be only one
spare slot, level(i+2)[1] in this case, for two neighbours of c. Recall that we have
a tree so a and c can’t share more then one neighbour.

So the only possible embedding up to the symmetry is
φ(b) = level(i)[1]

φ(a) = level(i− 1)[1]

φ(c) = level(i+ 1)[1]
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In this case level(i ± 1)[2] are occupied by neighbours of a and c, so the
third neighbour of b cannot have any neighbours except for b since there is no place
for them.

Now, we consider the possible cases for the amount of nodes with degree
three.

• There are no nodes of degree three. In this case our tree is just a line-graph
l and we embed it the following way:

φ : V (l)→ Gridn

φ(l[i]) = level(i)[1]

Remember that right now we allow to choose any n, arbitrary large.

• There is one node of degree three. We can think of it as two line graphs l1
and l2 with additional edge (l1[i], l2[1]) for some i. We embed the tree in the
following way:

φ : V (l1) ∪ V (l2)→ Gridn

φ(l1[j]) = level(j)[1]

φ(l2[j]) = level(i+ j − 1)[2]

• There are two nodes of degree three. Since |V (trunkCore(T )| ≤ 1, we
conclude that those two nodes are paired, since otherwise they would be
single nodes and therefore be in the trunk core by Lemma 8.3.2. So, in
this case we can present T as two line-graphs l1 and l2 with additional edge
(l1[i], l2[j]) for some i and j. We embed T in the following way:

φ : V (l1) ∪ V (l2)→ Gridn

φ(l1[k]) = level(k)[1]

φ(l2[k]) = level(i+ k − j)[2]
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• There are three nodes of degree three. Since |V (trunkCore(T )| ≤ 1, we
conclude that there is no single node, otherwise, it is in the trunk core and
one of the other two is also in the trunk core, contradicting the assumption.

So, with our three nodes of degree three, say a, b and c we must have edges
(a, b) and (b, c). By the Lemma 8.3.7 none of a, b, c can be embedded into
the same level, and the third neighbour of b is of degree one. Denote the
line-graphs connected to a with l1a and l2a (they are line-graphs since we have
only three nodes of degree three) and the line-graphs connected to c with l1c
and l2c . Denote the third neighbour of b with d. We embed as follows:

φ(b) = level(2)[1]

φ(d) = level(2)[2]

φ(a) = level(1)[1]

φ(c) = level(3)[1]

φ(l1a[i]) = level(1− i)[1]

φ(l2a[i]) = level(2− i)[2]

φ(l1c [i]) = level(3 + i)[1]

φ(l2c [i]) = level(2 + i)[2]

• There are no other cases, since we showed that if there are four nodes with
degree three then the size of the trunk core should be bigger than one.

Now,wediscuss how to embed amore generic treewith |V (trunkCore(T ))| ≥
2 into the grid. We call our embedding as φ̃.

1. φ̃(trunkCore(T )[i]) = level(i)[1]

2. Suppose l is a simple-graph connected to the inner node with number i of
the trunk core by its j-th node, so the leg of l is (trunkCore[i], l[j]). We
embed l[j] to the opposite of trunkCore[i], i.e. φ̃(l[j]) = level(i)[2].

We also want to reserve nodes level(|V (trunkCore(T ))|)[2] and level(1)[2]
for exit-graphs, so we say we embed phantom nodes there for algorithm not
to use them on Step 3.
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3. We now want to embed hands of simple-graphs connected to the inner trunk
core nodes. Suppose we have such simple graph l and we’ve embedded its
head to level(i)[2] on Step 2.

If l is zero-handed, it is already embedded on Step 2.

If l is two-handed, denote its hands with h1 and h2 and choose the one of
embeddings from 

φ̃(h1[j]) = level(i+ j)[2]

φ̃(h2[j]) = level(i− j)[2]φ̃(h1[j]) = level(i− j)[2]

φ̃(h2[j]) = level(i+ j)[2]

which does not map nodes from V (h1) ∪ V (h2) to the place nodes were
mapped to on step 2.

If l is one-handed, denote its hand with h and consider two cases:

• 

trunkCore(T )[i+ 1] is an inner node and it is a foot of another
one-handed or zero-handed simple-graph l2

with hand (possibly empty) h2

m(h[j]) = level(i− j)[2] maps some nodes of h to the place
where nodes were placed on step 2

In this case we define φ̃ for l and l2 at a time the following way:φ̃(h[j]) = level(i+ j)[2]

φ̃(h2[j]) = level(i+ 1− j)[2]

47



• The symmetric case is when

trunkCore(T )[i− 1] is an inner node and it is a foot of another
one-handed or zero-handed simple-graph l2
with hand (possibly empty) h2

m(h[j]) = level(i+ j)[2] maps some nodes of h to the place
where nodes were placed on step 2

In this case we define φ̃ for l and l2 at a time the following way:φ̃(h[j]) = level(i− j)[2]

φ̃(h2[j]) = level(i− 1 + j)[2]

• If the previous two cases don’t come true we act pretty much the similar
as we did for two-handed simple-graph, namely denote hand of l with
h and choose one of the following definitions of φ̃ which doesn’t map
nodes of h to the places already used on step 2:[

φ̃(h[j]) = level(i+ j)[2]

φ̃(h[j]) = level(i− j)[2]

4. The last case is to consider an exit-graph.

Denote the end-node of the trunk core, to which the exit-graph is connected
by i. i is either |V (trunkCore(T ))| or 1.

• If i = |V (trunkCore(T ))|. There are two line-graphs connected to i,
say l1 and l2. Note that they can’t both be two-handed, since that means
we have three nodes of degree three in a row, the middle one is the end
node of the trunk core, but then the middle one by Lemma 8.3.7 must
have the third neighbour of degree one which is not the case since it is
a trunk core node and trunk core nodes are all of degree ≥ 2.
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So let’s assume that l1 is one-handed. We embed it with

φ̃(l1[j]) = level(i+ j)[1]

If l2 is one-handed we embed it with

φ̃(l2[j]) = level(i+ j − 1)[2]

If l2 instead has two hands h1 and h2 and it connects to i with the node
l2[j]. Then we define

φ̃(l2[j]) = level(i)[2]

φ̃(h1[k]) = level(i+ k)[2]

φ̃(h2[k]) = level(i+ k)[2]

• If i = 1 we do everything symmetrically. Remember we don’t care
if we go out Gridn top or bottom borders, if it happens, we can just
enlarge our grid to Gridm for some large enough m to accommodate
the image.

Definition 8.11. The definition of φ on the hand(s) of the simple-graph connected
to the inner trunk core node is called the orientation of that simple-graph.

Definition 8.12. We say that two inner simple-graphs are neighbours if there are
no other simple-graphs connected to the trunk core in between their foots.

Lemma 8.3.8. The resulting embedding of this strategy exists and it is quasi-
correct.

Before diving into prove let us discuss what does the Lemma give to us.
There are three key points about the described quasi-correct embedding.

First of all, we should emphasise that such embedding can be efficiently
computed.

Not only that, but it also can be recomputed easily while remaining quasi-
correctness when the new vertices come, which is relevant to the online scenario.
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And last but not least, recall that each two adjacent nodes are embedded at
the distance at most five (see Lemma 8.3.6) so we are not worried about serving
the same request many times.

Proof. The lemma is obvious for the trees with |V (trunkCore(T ))| ≤ 1, since
we can do a correct embedding.

Denote the resulting embedding with φ̃. We know that a correct embedding
exists, denote it φ.

• The described embedding of the trunk core meets no constraints, so it always
exists.

• Let top := |V (trunkCore(T ))|.

The described embedding of the exit-graphs does not have any constraints, so
it exists. Let us now focus on the exit-graphs connected to trunkCore(T )[top].
For each node u of those exit-graphs it is true that φ̃(u) is on the level(top)
or higher. There are no more than three nodes of exit-graphs per level.
Simple-graphs connected to the inner trunk core nodes are not allowed to
pass through level(top), so since they are connected, no nodes from simple
graphs are embedded into levels≥ top. There are no nodes of the trunk core
higher than top and on level(top) there are only one node from our exit-
graphs. The exit graphs connected to the trunkCore(T )[1] are all embedded
to the levels≤ 1, so they can’t interfere with the exit-graphs connected to the
trunkCore(T )[top]. Thus we conclude that nodes of exit-graphs connected
to the trunkCore(T )[top] do not violate quasi-correctness since there are
no more than three nodes on their levels. The same for the exit-graphs
connected to the trunkCore(T )[1].

• Now to the two-handed inner simple-graphs. The leg of each such simple-
graph for any correct embeddingmust be embedded horizontally, i.e. φ(foot)
and φ(head)must be on the same level. This is since we know that the trunk
core image is monotone by Lemma 8.3.4 and it can’t be if φ(foot) and
φ(head) are on the different levels:
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Say φ(foot) = level(i)[1] and φ(head) = level(i + 1)[1]. Then level(i +

1)[2] and level(i+2)[1] are occupied by head neighbours since it is of degree
three. The foot is also of degree three because it is an inner trunk core node
with a simple-graph connected to it. Thus level(i − 1)[1] and level(i)[2]

are occupied with its neighbours, trunk core nodes. But the node mapped
to level(i)[2] can’t be the end node of the trunk core since then it is of
degree three and the node mapped to level(i+1)[2] is its neighbour thus we
obtain a cycle φ−1({level(i)[1], level(i+1)[1], level(i+1)[2], level(i)[2]}).
So there is another trunk core node after it and it is inevitably mapped to
level(i− 1)[2] violating monotone property of the trunk core embedding.

Now denote the hands of our two-handed graph with h1 and h2 and let’s
say that φ(foot) = level(i)[1], φ(head) = level(i)[2] and φ(h1[1]) =

level(i+1)[2]. Then φ(h1[2])must be level(i+2)[2] since level(i+1)[1] is
occupied by the foot trunk core neighbour next (remember foot is inner).
If now next is of degree three we obtain a conflict or a cycle, since next′s
neighbour occupies level(i+ 2)[2]. If not, next is an inner trunk core node
and we continue with the level(i+ 3)[2] for the h1[3] and level(i+ 3)[1] for
the next trunk core node of next. So we do until we ran out of h1 nodes. We
now say that there are no nodes of degree three in

{trunkCore(T )[i+ j] | j ∈ [|V (h1)|]}

since if there is j such that trunkCore(T )[i+j] is of degree three, we obtain
a conflict between the third neighbour of trunkCore(T )[i + j] and h1[j].
That means that φ̃(h1[j]) = level(i + j) will not place a node to the slot
already occupied on step 2 of the strategy. The same for h2. We call this
line of reasoning the inductive argument.

So we proved that for each two-handed simple-graph connected to the inner
node of a trunk core one of its orientations will not face conflicts with a
neighbours of a trunk core nodes of degree three. Or in other words two-
handed inner graphs can’t violate the existence of the described embedding.

• We’ve shown that the quasi-correctness can’t be violated on the levels≥ top
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and ≤ 1. So now we need to proof that it is not violated in between.

To violate the quasi-correctness we need to obtain at least four nodes per
level. Since on each level between top and 1 there is a node from the trunk
core and there are no nodes from exit-graphs we conclude that there must be
at least three nodes of an inner-simple graphs. And note also that they must
be from the different simple-graphs since we don’t embed more than one
node from one inner simple-graph per level. Denote those simple-graphs
with a, b, c. Their foots are somehow ordered in the trunk core, say foot(b)

is between foot(a) and foot(c). Since simple-graphs hands conflict at some
node, we conclude that either hand of a crosses the head(b) or a hand of c
crosses the head(b), otherwise a and c just don’t share nodes. W.l.o.g. hand
of a crosses head(b). But this is only possible when b and a are one-handed
graphs with adjacent foots and in this case their hands are oriented contrary
and they only have two conflicts: hand(a)[1] is embedded to the same node
as head(b) and hand(b)[1] is embedded to the same node as head(a). So c

can possibly participate in that conflict only if c is a one-handed graph with a
foot adjacent to foot(b). That is because by our strategy two-handed simple-
graphs do not cross other simple-graphs heads at all and the one-handed do
only if their foots are adjacent. Our goal now is to show that in such setting
c can be oriented the other direction to avoid conflict with b.

Note that we have three nodes of degree three and edges
(foot(a), foot(b)), (foot(b), foot(c)). This is exactly the statement of
Lemma 8.3.7, so we conclude that we have the following structure up to
symmetry:

φ(foot(b)) = level(i)[1]

φ(foot(a)) = level(i− 1)[1]

φ(foot(c)) = level(i+ 1)[1]

φ(head(b)) = level(i)[2]

and we know that b in fact consists of one node.
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We still have two possibilities for head(c), namely level(i+1)[2] or level(i+
2)[1].

If φ(head(c)) = level(i + 1)[2], then φ(c[2]) = level(i + 2)[2] and by the
inductive argument applied to the hand(c) there are no nodes of degree three
in

{trunkCore(T )[i+ 1 + j] | j ∈ [|V (hand(c))|]}

so

φ̃(hand(c)[j]) = level(i+ 1 + j)[2]

won’t place nodes of c to the slots already occupied on step 2 of the strategy.

If on the other hand φ(head(c)) = level(i+ 2)[1] then
φ(trunkCore(i+2))must be level(i+1)[2]. Thus trunkCore(i+2) can’t
be the end of the trunk core since then it is of degree three but level(i)[2]
is occupied by head(b). So we say that trunkCore(i + 3) exists and
φ(trunkCore(i + 3)) = level(i + 2)[2] and it is also not the end node
since it can’t be of degree three since level(i + 2)[1] is occupied by the
assumption by the head(c). We now apply the inductive argument obtaining
that there are no nodes of degree three in

{trunkCore(T )[i+ 2 + j] | j ∈ [|V (c)|]}

We also showed that trunkCore(T )[i+2] is not of degree three, so we state
that φ̃(hand(c)[j]) = level(i + 1 + j) won’t place nodes of c to the slots
already occupied on step 2 of the strategy.

This completes the proof of quasi-correctness of the embedding.

• So the last thing to show is that the described embedding exists for one-
handed inner graphs.

Supposewe have a one-handed inner graph lwith handh connected to the i-th
node of the trunk core. Suppose also that w.l.o.g. φ(foot(l)) = level(i)[1].
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The only constrainted case in our strategy is when the following doesn’t hold:





trunkCore(T )[i+ 1] is an inner node and it is a foot
of another one-handed or zero-
handed simple-graph l2 with
hand (possibly empty) h2

m(h[j]) = level(i− j)[2] maps some nodes of h to the
place where nodes were placed
on step 2

(1)



trunkCore(T )[i− 1] is an inner node and it is a foot
of another one-handed or zero-
handed simple-graph l2 with
hand (possibly empty) h2

m(h[j]) = level(i+ j)[2] maps some nodes of h to the
place where nodes were placed
on step 2

(2)

For the proof by contradiction assume now that both φ̃(h[j]) = level(i+j)[2]

and φ̃(h[j]) = level(i − j)[2] map the nodes of h to the places already
used on step 2. By the inductive argument that means that there exist such
j1, j2 ≤ |V (h)| that trunkCore(i+j1) and trunkCore(i−j2) are of degree
three. But that means that φ(head(l)) ̸= level(i)[2] since in that case by the
inductive argumentφ(h[j])must be either level(i−j)[2] or level(i+j)[2] but
in the first case we obtain a conflict with a neighbour of trunkCore(i+ j1)

and in the second case we obtain a conflict with trunkCore(i− j2).

So, φ(head(l)) is either level(i+1)[1] or level(i− 1)[1]. Let’s consider the
case level(i+ 1)[1], the second is totally symmetric.

The trunk core nodes adjacent to foot(l) are trunkCore(T )[i − 1] and
trunkCore(T )[i+1] they are mapped byφ to level(i−1)[1] and level(i)[2].
We consider the case where φ(trunkCore(T )[i− 1]) = level(i− 1)[1] and
φ(trunkCore(T )[i + 1]) = level(i)[2] and we show that in this case (1)
holds. Symmetricallyφ(trunkCore(T )[i−1]) = level(i)[2] andφ(trunkCore(T )[i+
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1]) = level(i− 1)[1] will lead to (2).

We now prove that trunkCore(T )[i+ 1] can’t be the end node of the trunk
core.

In Lemma 8.3.2 we make a path through the support nodes. If
trunkCore(T )[i + 1] is not a support node, it can’t be the end node of
the trunk core since the trunk core connects to support nodes. It is nei-
ther a single node, since it a has a neighbour trunkCore(T )[i] of degree
three. So, since it is in the trunk core, we deduce that it is of degree
three and there are nodes a and c of degree three s.t. there is a path
a→ trunkCore(T )[i+1]⇝ c. If a is different from trunkCore(T )[i] then
we have three consecutive nodes trunkCore(T )[i], trunkCore(T )[i + 1]

and a of degree three, so by the Lemma 8.3.7 φ(trunkCore(T )[i]) is
on the same side as φ(trunkCore(T )[i + 1]), which contradicts the as-
sumption of φ(trunkCore(T )[i]) = level(i)[1] and φ(trunkCore(T )[i +

1]) = level(i)[2]. So there is a node c of degree three which is not ad-
jacent to trunkCore(T )[i + 1] and there is a path trunkCore(T )[i] →
trunkCore(T )[i+1]⇝ c. But then either c or its pair (if it is paired) is in the
trunk core meaning that the trunk core passes through trunkCore(T )[i+1]

so it is inner.

Thus the trunkCore(T )[i + 2] exists and it has no other options but to be
embedded to level(i + 1)[2] since if it is embedded to level(i − 1)[2] it
is embedded to the same level as trunkCore(T )[i − 1] and it violates the
trunk core monotone property stated by Lemma 8.3.4. So we are now able
to apply the inductive argument deducing that there are no nodes of degree
three in {trunkCore(T )[i+1+j] | j ∈ [|V (l)|]}. Recall that by our proof by
contradiction assumptionwehave thatmappingm :m(h[j]) = level(i+j)[2]

maps some nodes of h to the place where nodes were placed on step 2
meaning that there is a node of degree three in {trunkCore(T )[i + j] |
j ∈ [|V (h)|]}. But this implies that the node trunkCore(T )[i + 1] is of
degree three, it is inner, so we have an inner simple-graph connected to it,
moreover this simple graph is a one-handed graph since otherwise we have
three nodes of degree three: trunkCore(T )[i], trunkCore(T )[i + 1] and
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head of that simple-graph, implying by Lemma 8.3.7 that trunkCore(T )[i]

and trunkCore(T )[i+ 1] are mapped to the same side of the grid which as
we know is not the case.

So we have that m : m(h[j]) = level(i + j)[2] maps some nodes of h to
the place where nodes were placed on step 2 and that there is a one-handed
inner simple-graph connected tot he trunkCore(T )[i + 1] which is exactly
the case (1).

8.3.2 Cycle embedding strategy

Definition 8.13. A maximal cycle C of a graph G is a cycle in G which cannot be
enlarged, i.e., there is no other cycle C ′ in G such that V (C) ⊊ V (C ′).

Definition 8.14. Consider a graph G and a maximal cycle C of G. The whisker
W of C is a path in G such that:

• V (W ) ̸= ∅

• V (W ) ∩ V (C) = ∅

• There exists only one edge between the cycle and the whisker (w, c) inG for
w ∈ V (W ) and c ∈ V (C). Such c is called a foot of W . The nodes of W
are enumerated starting from w.

• There are no nodes of degree three in V (W )

• W is maximal, i.e., there is no W ′ in G such that W ′ satisfies previous
properties and V (W ) ⊊ V (W ′)

Definition 8.15. Suppose we have a graph G that can be correctly embedded into
Gridn by φ and a cycle C in G. WhiskersW1 andW2 of C are called adjacent for
the embedding φ if

∀i ∈ [min(|V (W1)|, |V (W2)|] (φ(W1[i]), φ(W2[i])) ∈ E(Gridn)
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Statement 8.3.3. For any correct embedding of a cycle C intoGridn each level of
Gridn is either occupied with two nodes of C or not occupied at all.

Proof. Suppose the contradictory, and there exists a correct embeddingφ ofC such
that there is only one node of C, say a, on some level i, i.e., level(i)[1]. a has two
neighbours inC, which we call b and c. W.l.o.g. we say that φ(b) = level(i−1)[1]

and φ(c) = level(i+1). We define nextab(x) for the node x ∈ V (C) \ {a} as the
next node inC for x in the direction ab. It is easy to see that if level⟨φ(x)⟩ > i then
level⟨φ(nextab(x))⟩ > i since it cannot be less than i and due to the connectivity
of the cycle image and it cannot be equal to i since then nextab(x) = a and then
x = c but level⟨φ(c)⟩ = i − 1. level⟨φ(b)⟩ = i + 1 → level⟨φ(nextab(b))⟩ >
i → level⟨φ(nextab(nextab(b)))⟩ > i → . . . → level⟨φ(c)⟩ > i which is a
contradiction.

Lemma 8.3.9. Suppose we have a graph G which can be embedded into Gridn.
Suppose there exist a maximal cycle C inG with V (C) ≥ 6 with two neighbouring
whiskersW1 andW2 of C, i.e., (foot(W1), foot(W2)) ∈ E(G). ThenW1 andW2

are adjacent in any correct embedding of G into Gridn.

Proof. At first, we show that for every correct embedding foot(W1) and foot(W2)

are embedded to the same level of the grid. Suppose not. So there exists a
correct embedding φ of G s.t. φ(foot(W1)) = level(i)[1] and φ(foot(W2)) =

level(i − 1)[1]. By the Statement 8.3.3 level(i)[2] and level(i − 1)[2] are also
occupied with nodes from cycle. So we deduce that φ(W1[1]) = level(i + 1)[1]

and φ(W2[1]) = level(i − 2)[1]. But by Statement 8.3.3 it means that there are
no nodes of C mapped to the levels i + 1 and i − 2 and so due to connectivity of
the cycle image there are no more nodes of the cycle, but then there are only four
nodes in C.

Now we want to show thatW1[1] andW2[1] are embedded to the same level
of the grid for any correct embedding of G. Suppose not. So there exists a correct
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embedding φ of G s.t.

φ(foot(W1)) = level(i)[1]

φ(foot(W2)) = level(i)[2]

φ(W1[1]) = level(i+ 1)[1]

φ(W2[1]) = level(i− 1)[2]

But this by Statement 8.3.3 implies that there are no nodes of C mapped
to levels i + 1 and i − 1 and thus there are no more nodes of C at all due to the
connectivity of the cycle image. Contradiction, since there are at least 6 nodes in
C, not 2.

So for every correct mapping φ of G we know that up to symmetry it does
the following:

φ(foot(W1)) = level(i)[1]

φ(foot(W2)) = level(i)[2]

φ(W1[1]) = level(i+ 1)[1]

φ(W2[1]) = level(i+ 1)[2]

So there is no other option for W1[2] and W2[2] but to be embedded to
level(i + 2)[1] and level(i + 2)[2] respectively and so until we reach the end of
eitherW1 or W2. In other words for any correct embedding φ

∀i ∈ [min(|V (W1)|, |V (W2)|] (φ(W1[i]), φ(W2[i])) ∈ E(Gridn)

Remark 8.3.1. Due to Lemma 8.3.9 if the cycle is of length ≥ 6 we can forget
about an embedding while talking about adjacent whiskers.

Definition 8.16. Assume we have a graph G and a maximal cycle C in G of
length ≥ 6. The frame for C is a subgraph of G induced by vertices of C and
{W1[i],W2[i] | i ∈ [min(|V (W1)|, |V (W2)|)]} for each pair of adjacent whiskers
W1 and W2.
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Nodes W1[min(|V (W1)|, |V (W2)|)] and W2[min(|V (W1)|, |V (W2)|)] are
called end nodes of the frame.

Lemma 8.3.10. If we have a cycle of length at least 6 in a graphwhich is a subgraph
of the request graph then its end nodes of the frame are adjacent in the request
graph.

Proof. This is because by Lemma 8.3.9 they are adjacent for every embedding and
in particular for the original embedding of the cycle into the request graph.

Remark 8.3.2. Due to Lemma 8.3.10 we can “extend” each maximal cycle to the
ends of its frame, so, we we do not have any adjacent whiskers, i.e., one whisker is
embedded fully.

Lemma 8.3.11. Assume we have a graph G which can be embedded into Gridn

and a maximal cycle C of length at least 6 of G has no adjacent whiskers. Then,
there are at most two nodes connected to C (i.e. (v, c) ∈ E(G) , such that v ∈
V (G) \ V (C) ∧ c ∈ V (C)).

Moreover, these two connecting nodes are not adjacent.

Proof. Consider a correct embedding φ ofG intoGridn. The cycle occupies level
from i to j, i < j (it can’t make a gap due to the connectivity of the image and
by the Lemma 8.3.3 it occupies the whole level). So the possible places for v are
level(i− 1) ∪ level(j + 1).

For the proof by contradiction assume that there are at least three nodes
connected to C. Then by the pigeon hole principle there are two of them on the
same level, say v1 and v2. There can’t be an edge between v1 and v2 since then the
cycle can be extended by adding v1 and v2 and thus is not maximal. But if there
is no edge between v1 and v2 they form whiskers and those whiskers are adjacent.
Contradiction.

Trees and cycles

Definition 8.17. By the cycle-tree decomposition of a graph G we mean a set of
maximal cycles {C1, . . . Cn} of G and a set of trees {T1, . . . , Tm} of G such that

•
⋃
i∈[n]

V (Ci) ∪
⋃

i∈[m]

V (Ti) = V (G)
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• V (Ci) ∩ V (Cj) = ∅ ∀i ̸= j

• V (Ti) ∩ V (Tj) = ∅ ∀i ̸= j

• V (Ti) ∩ V (Cj) = ∅ ∀i ∈ [m], j ∈ [n]

• ∀i ̸= j ∀u ∈ V (Ti) ∀v ∈ V (Tj) (u, v) /∈ E(G)

Lemma 8.3.12. Assume we have a graph G which can be embedded into Gridn.
Suppose that there is a cycle C and a tree T from cycle-tree decomposition of G,
such that C and T are connected by an edge (c, t) ∈ E(G), where t ∈ V (T ) and
c ∈ V (C). Then, for any correct embedding φ t ∈ trunkφ(T ).

Proof. By Lemma 8.3.3 there is another node of C on the level⟨φ(c)⟩. Let’s say
this level has number i. If φ(t) ∈ level(i + 1) then we know that no nodes of T
can be embedded to the level(i) (and thus, due to the connectivity of T -s image,
below it) so t is the bottom most node and thus it is in the trunk. Symmetrically, it
is the top most node of T if φ(t) ∈ level(i− 1).

Definition 8.18. We call a node t from Lemma 8.3.12 an end-node of a tree T , and
a node c a foot of a T .

Remark 8.3.3. If the tree T is connected to a cycle, then trunkCore(T ) can be
extended to an end-node of T .

We call the path connecting the end-node of the trunk core and an end-node
of a tree an extension of the trunk core.

We call a trunk core with two of its possible extensions an extended trunk
core.

The exit-graphs are now simple-graphs connected to the end-nodes of an
extended trunk core.

Note that the end-nodes of the tree might not exist while the end-nodes of the
trunk core are just the end-nodes of the path.

We now define how to embed a tree T from a cycle-tree decomposition.
We include possible foots of a tree with their neighbours in that tree, making

them the end-nodes of the trunk core. We then apply strategy 8.3.1 to the obtained
tree.

Definition 8.19. Wesay that such an embedding of a tree respects the strategy 8.3.1.
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8.4. Dynamic algorithm

Now, we talk about how we update the embedding with respect to new
requests.

In our strategy of edge processing, if an already known edge is requested
we do nothing since the requested nodes are already at the distance at most 12,
because by the assumption the enumeration preserves the proximity property (see
the strategy plan 8.1).

But if we obtain a new edge, our enumeration may no longer maintain the
proximity property , so we perform a re-enumeration.

There are two possible cases for the new edge. It may be within the con-
nectivity component or it may connect two different connectivity components. We
analyse these cases separately.

We want to maintain the following five invariants:

1. The embedding of any connectivity component is quasi-correct.

2. For each tree in the cycle-tree decomposition the embedding of that tree
matches the strategy 8.3.1

3. We do not have maximal cycles of length 4

4. Each maximal cycle does not have adjacent whiskers

5. There are no conflicts with cycle nodes

8.4.1 New edge within one connectivity component

Assume we have a connectivity component S with at least one cycle (call it
CS) and a quasi-correct embedding φ′ of S preserving all the invariants from 8.4.

Assume the new edge connects nodes u and v. Since u and v are already in
a one connectivity component we conclude that there is now a cycle C ′ containing
u and v. We consider a maximal cycle C containing C ′.

We call a graph S with an edge (u, v) as S+.
If C is of length 4, for every two nodes a and b of C |level⟨φ′(a)⟩ −

level⟨φ′(b)⟩| ≤ 3 since the distance in S between a and b is at most 3 and φ′
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preserves connectivity. Thus, since there are no more than 3 nodes per level, we
conclude that the difference between numbers of a and b is at most 12, so, the
proximity property is maintained and we do nothing.

If C is now of length at least 6 (note that if a cycle can be embedded into
Gridn its length must be even) we consider its frame F stating that it is in fact
a cycle by Lemma 8.3.10 and that it has at most two nodes connected to it by
Lemma 8.3.11.

Lemma 8.4.1. Consider a graph G embedded into Gridn with some embedding φ
that respects invariants 8.4. Consider a frame of amaximal cycleC inG embedded
by φ into levels from i to j (i < j). Then {v | v ∈ V (G), level⟨φ(v)⟩ > j} form
a connectivity component.

Proof. By the invariant 4 8.4 and Lemma 8.3.11 there is only one node u connected
to C with level⟨φ(u)⟩ > j. So, if some path from a to b (level⟨φ(a)⟩ > j,
level⟨φ(b)⟩ > j) goes through a node v with level⟨φ(v)⟩ ≤ j it must pass through
u twice, meaning we can replace a⇝ u⇝ v ⇝ u⇝ b with a⇝ u⇝ b.

We say that a group of nodes is on the same side from a cycle if they are in
a one connectivity component when the cycle is removed.

Lemma 8.4.2. If after the removal of F , a connectivity component Si i ∈ {1, 2}
is a line-graph and it connects to F via its end-node then all of its nodes belong to
an exit-graph in S.

Proof. Since by our assumption S has a cycle, we state that each tree has a non-
empty extended trunk core and, thus, each node of the component has only four
options where to belong. It is either in a cycle, an extended trunk core, an inner-
graph, or an exit-graph. So, we now prove that the first three do not happen
here:

• The node remains on a cycle when adding a new edge and the nodes from
Si are not on the cycle in S+, thus, they were not in S.

• Each node in the extended trunk core is either of degree three or has two
edge-disjoint paths to nodes of degree three. Those properties can’t disappear
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when adding a new edge and none of them hold in S+ for nodes in l thus did
not them in S. So the nodes from l were not in the extended trunk core.

• As shown in 8.3.1 for every correct embedding nodes of a simple-graphs
always have a node embedded to the same level, namely a node from the
trunk core. But S+ has an embedding with all the nodes from Si being single
on their level, and since every embedding for S+ induces an embedding for
S the same holds for them in S thus none of them is a node of an inner-graph
in S.

Lemma 8.4.3. If a connectivity component l left when removing F is a line-graph
and it connects toF via its inner node u then all of its nodes belong to an exit-graph
in S except possibly u.

Proof. The proof is almost the same as in 8.4.2 but with to adjustments:

• The second bullet does not hold for u

• l has an embedding where a node from l is single on its level or with another
node of l and since nodes of l are not the inner trunk core nodes that means
that they are not nodes of inner simple-graphs.

By Lemma 8.4.1 there are at most two connectivity components left when
removing F . Let’s call them S1 and S2. We now describe how we embed F , S1

and S2.
So, imagine that we formed F and it has node f of degree three. We first

discuss the case of S1 being a line-graph connected with f with its end-node. By
Lemma 8.4.2 we deduce that S1 was a part of an exit-graph in S and thus it was
embedded strictly monotonically. In other words, (let’s set an enumeration of S1

such that (S1[1], f) ∈ E(S+)) level⟨φ(S1[1])⟩ < level⟨φ(l[2])⟩ < . . .. We then
embed F in the way that f is embedded higher then any other node of F , say to
level(i)[1]. And we embed S1[j] to level(i + j)[1]. If the levels of nodes of S1
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were decreasing we act the same way but embedding f lower then other nodes of
F and embedding S1 in decreasing order.

What if now S1 is a line-graph connected to F via its inner node. By the
Lemma 8.4.3 we know that its hands (call them h1 and h2) were exit-graphs and
thus were embedded monotonically, assume increasingly numerating from head.
Assume head of S1 was connected to f ∈ V (F ). We then embed F in a way that
f is embedded higher then any other node of F say to level(i)[1]. We then embed

head(S1)→ level(i+ 1)[1]

h1[j]→ level(i+ 1 + j)[1]

h2[j]→ level(i+ j)[2]

We act symmetrically if the order on hi was decreasing.
We now want to show that we cannot face incompatibility namely that we

have two line-graphs connected (no matter via their inner or end nodes) to F both
having increasing (decreasing) order on their hands in S. By Lemma 8.4.2 those
line-graphs were both whiskers in S, so we denote them W1 and W2. If they both
had the same order that means they were in the same tree. To see this we first
prove that there are at most two trees from the cycle-tree decomposition of the
component can have exit-graphs. Consider the embedding satisfying invariants
8.4. It induces an order on the maximal cycle of the component, since maximal
cycles do not intersect and there for can be enumerated from bottom to top for
example. If the tree is embedded between two consecutive cycles (say, C1 and C2)
it must be connected to both of them. This is because they are connected with some
path connecting nodes c1 and c2 of cycles. We consider such path that contains just
two nodes from cycles, it is straightforward to see that such path can be obtained
if we have an arbitrary one. This path (except c1 and c2) belongs to some tree T
in a cycle-tree decomposition. If now some tree different from T (say, T2) from
a cycle-tree decomposition is embedded between cycles, since the component is
connected it has two options: either to be connected to T or to one of the cycles. It
can’t be connected to T by the definition of the cycle-tree decomposition. Neither
it can be connected to C1 or C2 since by the Lemma 8.4.1 if that cycle is removed
since T and T2 are on the one side of that cycle they are in the one connectivity
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component. But this implies that T2 is connected to other cycle which is impossible
due to the Lemma 8.4.1.

The only way for a tree to have exit-graphs is to be embedded below the
lowest cycle or above the highest. But exit-graphs in the highest tree are embedded
increasingly and the whiskers in the lowest tree are embedded decreasingly.

This means thatW1 andW2 are in the same tree in S, or in other words, they
are both on the same side from CS. But now this cycle is contained in F (since
we only have F,W1,W2) and since W1 and W2 by Lemma 8.3.11 are now on the
opposite sides of F they are on the opposite sides to the CS, which is impossible
since then removingCS leavesW1 andW2 in the different connectivity components
which was not the case in S.

Lemma 8.4.4. Assume that Si i ∈ {1, 2} connects to F via a node u, u ∈ V (T )

where T is a tree from the cycle-tree decomposition of Si and Si has a node of
degree three. Then all the nodes from an extended trunk core of T are embedded
monotonically in φ′.

Proof. All the nodes from a trunk core of T belong to a trunk core in S. This is
because T is contained in some tree TS from a cycle-tree decomposition of S and
thus a trunk core of T is contained in a trunk core of TS since all the support nodes
remain support nodes when extending a tree.

So we consider two extensions of T -s trunk core ext1 and ext2. Let’s say
ext1 is the one which extends to F . Note that ext2 was an extension in S and thus
we already have that trunkCore(T ) ∪ ext2 is embedded monotonically by φ′.

The ext1 was either a part of an extended trunk core of TS or an exit-graph in
TS. This is because it is obviously couldn’t have been a part of a cycle, since nodes
on cycle remain on cycle when the new edge is added. Neither could it have been
a part of the inner simple-graph since then the end-node of the trunkCore(T ) to
which ext1 is connected was an inner node of the trunk core meaning that there was
two edge-disjoint paths from it to two support nodes. If those support nodes are in
T now the end-node of trunkCore(T ) is an inner trunk core node of T which is
nonsense. Otherwise it is not in Si meaning the path to it goes through ext1 since
it is the only path connecting T and F . But then ext1 belongs to a trunk core in S.
So ext1 was either a part of an exit-graph or a part of the trunkCore(TS). In both
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cases it is embedded monotonically with trunkCore(T ) ∪ ext2.

So assume we have Si i ∈ {1, 2} which connects to f ∈ V (F ) via a node
u, u ∈ V (T ) where T is a tree from the cycle-tree decomposition of Si and Si

has a node of degree three. Lemma 8.4.4 tells us that T -s extended trunk core
was embedded monotonically, say, increasingly starting from u. In this case we
embed F the way that f is embedded higher then every other node from F , say,
to level(i)[1], and we embed j-th node of an extended trunk core of T to the
level(i + j)[1]. All the other nodes from Si we embed the same as they were
embedded by φ′ relatively to the nodes of the extended trunk core of T .

We now analyze if we obtained a conflict of nodes from Si and F and if T
is embedded respecting strategy 8.3.1.

Consider inner simple-graphs of T in order they are connected to the ex-
tended trunk core of T going through the extended trunk core from u. We state
that all of them except possibly the first two were inner simple-graphs in S. This
is because for a foot of such simple-graph there is a support node before it (one
of the foots of first two simple-graphs) and a support node or an end-node after
it (because it is inner in S+). So those simple-graphs can not conflict with nodes
of F since they did not pass through the levels of foots of first two simple-graphs.
They also respect the strategy 8.3.1.

So we only need to orient first two simple-graphs in the way they don’t
conflict with nodes of F and they respect the embedding strategy. This can be
done, since the strategy can be applied to T ∪ {f and its neighbours}.

Our last goal in analyzing an embedding of a component with a node of
degree three which starts with a tree is to show that we can’t face incompatibility.
If say, S1 is starting with a tree T with increasing order on its extended trunk
core in S then the order on S2 (if one exists) is decreasing (meaning that S2 has
a decreasing order in S on an extended trunk core of a tree it starts with or a
decreasing order in S on its hands if S2 is just a line-graph). Let’s say S1 and S2

are connected to F with nodes c1 ∈ V (S1) and c2 ∈ V (S2) respectively.
First assume we have S1 starting with a tree T1 and S2 starting with a tree

T2. Both S1 and S2 have a node of degree three. For Ti take a node ui which is a
foot of Ti other then the one in F if such exists or the end of the extended trunk
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core other then the one connected to F . Since Si has a node of degree three, one
of those must exist. A shortest path connecting u1 and u2 contain both extended
trunk cores of T1 and T2. Since no path in φ′(S) is self-crossing the path u1 − u2

must be monotone by Lemma 8.3.3 since no nodes of the path can be embedded
to the same level with u1 and u2 (the neighbour of ui is either a cycle node or an
exit-graph node). Thus paths u1 − c1 and c2 − u2 have the same order in φ′(S) so
the extended trunk cores of T1 and T2 which are contained in c1 − u1 and c2 − u2

have opposite order.
Now consider the case when S1 has a node of degree three and starts with a

tree T and S2 is just a line-graph. Let’s say that S1 connects to f1 ∈ V (F ) and S2

connects to f2 ∈ V (F ). For T take a node u1 which is a foot of T other then the
one in F if such exists or the end of the extended trunk core other then the one con-
nected to F . Since S1 has a node of degree three, one of those must exist. And let’s
say we have an increasing order on the hands of S2. Consider the top-most node of
a hand of S2 in φ′(S), let’s call it u2. Note that u2 is the top-most node among all
S and can share level only with nodes from exit-graphs. Now consider the shortest
path u1−u2. It contains an extended trunk core of T . Our goal now is to proof that
this path is monotone, that would imply as in the previous case that T -s extended
trunk core and S2-s hands have different order. To see that it is monotone recall that
φ′ produces no self-crossing paths and thus, if the path is not monotone, by Lemma
8.3.3 we either have u1 sharing level with some other node from path which is
impossible since it is either a cycle node or a trunk-core end-node. Or u2 shares
level with some other node from path which is also impossible since u2 is the top-
most node with only nodes from other exit-graphs hands possibly being on its level.

So we discussed what to do if Si connects to the F with a node from tree
from its cycle-tree decomposition. The last case is when it connects to F with a
node of a cycle from its cycle-tree decomposition.

So assume S1 connects to a node f1 ∈ V (F ) with a cycle C-s node, say u1.
And let’s assume was the top-most node in C the case when it is the bottom-most
is totally symmetric. We embed F the way f1 becomes a bottom-most node we
embed C the way u1 is the top most node and it is under f1. We embed the rest of
S1 relatively to C as it was embedded by φ′.
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Nothing changed in S1, so the invariants maintain for it. Therefor our only
goal is to show that we don’t face incompatibility with S2.

If S2 starts with a cycle C2 which connects to F via a node u2 then we
conclude that u2 was the bottom-most node of C2 since there is a path in which
connects u1 and u2 without passing through other nodes of C1 and C2.

If S2 starts with a tree we act similarly as we did in previous cases take such
node u2 that the path u1−u2 contains tree-s trunk core/extended trunk core/hand of
an exit graph and we chow that by Lemma 8.3.3 path u1−u2 should be monotone,
since no nodes of it can be embedded to the same level as u2 for the same reasons
as before and neither can they be embedded to the same level with u1 since there
is a cycle node embedded to the same level as u1. So if, say, u1 was the top-most
node of C in φ′(S) then the path is increasing and thus the trunk core/extended
trunk core/hand of an exit graph is also increasing in φ′(S) which is consistent to
the fact that it connects to the top-most node of F .

All the actions described above assume that there was a cycle in S already.
If there wasn’t we act as described below.

The new edge (u, v) is in one connectivity component so there is a maximal
cycle containing u and v. Let’s take a frame F of that cycle. There are possibly two
connectivity components left when removing F from S+, denote them S1 and S2.
Let’s say that S1 connects to f1 ∈ V (F ) and S2 connects to f2 ∈ V (F ). Moreover
we know that S1 and S2 are trees.

We embed F the way that f1 is the top-most node and f2 is the bottom-most
node. We then embed S1 and S2 the way they match strategy 8.3.1 orienting the
trunk not to conflict with cycle nodes.

We now want to analyze the cost of actions performed when serving a new
edge within one component. Note that since the resulting embedding is quasi-
correct the cost of serving the request is O(1).

To make an amortized analysis we introduce the concept of scenarios. The
scenario is a reason for node to move in the embedding and thus change its number.
Each scenario has two main properties: the number of times it can happen to a
certain node (denoted with SCN ) and a cost payed for that node movement in this
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scenario (denoted with SCC). So the total cost payed for node movements in this
terms is bounded with

2n ·
∑

SC∈SCENARIOS

SCN · SCC

Where the first factor 2n arises due to the fact that SCN and SCC are defined for
one particular node, but we want the total cost.

We propose that we only need to focus on the relative order changes.

Lemma 8.4.5. If we have two enumerations h1 and h2 of graph G then the cost of
obtaining h2 from h1 via swaps is no more than

|{(u, v) | u, v ∈ V (G), h1(u) < h1(v) ∧ h2(u) > h2(v)}|

Proof. We can order nodes ofG by h2. h1 can then be viewed as a permutation so
the statement of the Lemma can be reformulated as "the swap distance between a
permutation p and an identity permutation is less or equal the number of inversions
in p".

We proof this by induction. The induction would be among the number of
elements in permutations and among the number of inversions in permutations.

The induction base is 0 inversions for each number of elements which is
trivial. We also notice that if there is just one element in the permutation then this
permutation can’t have inversions.

We now assume that our permutation p has n elements and k inversions,
with k > 0 and n > 1.

If now p[1] = 1 then the distance between p and identityn is the distance
between p′ and identityn−1 where p′[i] = p[i+ 1]− 1. And since p′ has the same
number of inversions as p then by the inductive assumption it is less or equal to k

which is what we desire.
If p[1] = i, i ̸= 1 then we first spend i − 1 swaps to bring i to the position

1 reducing the number of inversions by i− 1. And then apply the same idea with
p′ obtaining that the distance from p′ to an identityn−1 is k − (i− 1) and thus we
provided the series of swaps to obtain an identityn from p with ≤ k.
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Lemma 8.4.6. Suppose S is a connectivity component with a cycle embedded into
Gridn via φ′ which respects invariants 8.4. Suppose we have a new edge in the
connectivity component S. We denote S with a new edge by S+. Let’s call the
frame of a maximal cycle containing the ends of the new edge F . The connectivity
components left when removing F from S+ are S1 and S2. Suppose that our
algorithm embeds S1 above F .

1. If there is a cycle in F that was present in S then all the nodes from S1 were
above that cycle in φ′(S).

2. If there is a cycle in F that was present in S then there is a node of cycle that
is top-most for both new and old embeddings.

3. For each node u ∈ V (S1) and for each node v ∈ V (S2) level⟨φ′(u)⟩ >
level⟨φ′(v)⟩ except possibly the first two inner simple-graph nodes of Ti if
Si connects to F with a tree Ti from a cycle-tree decomposition of Si.

Proof. Assume S1 connects to F via edge (f1, c1), f1 ∈ V (F ), c1 ∈ V (S1) and
S2 connects to F via edge (f2, c2), f2 ∈ V (F ), c2 ∈ V (S2)

1. We want to prove the following fact: consider component A is connected to
cycle C with edge (a, c), a ∈ V (A) c ∈ V (C) and it is embedded above C
by φ1 and below C by φ2. Then for each path in A starting from a which
is monotone for both φ1 and φ2 it has changed its orientation i.e. if it was
increasing it is now decreasing and vice versa. To see this note that a was a
top-most node and became the bottom-most node of the path or vice versa.

For each type of S1 our new edge processing strategy maintained an ori-
entation of some monotone path in S1 which can be extended remaining
monotone to the node connected to the cycle. Thus by the fact above it must
remain on the same side of the cycle.

2. Denote the cycle in statement by C,. Denote by A the component that was
above C in φ′(S) which contains S1. Say it is connected to C via edge (a, c)
a ∈ V (A) c ∈ V (C). Then by item 1 node c is top-most in both embeddings
of S and S+ since there is a monotonically increasing path starting from a

which does not pass through nodes of C.
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3. If S1 and S2 are both line-graphs from the proof of compatibility for line-
graphs we know that the must be in the different trees in a cycle-tree decom-
position of S meaning they are separated by cycle and thus their nodes don’t
share levels. Moreover nodes form S1 were in the top-most tree and nodes
from S2 were in the bottom-most tree, so indeed every node from S1 was
embedded higher than every node of S2.

For all the other cases on S1 and S2 in the proof of their compatibility
we build a monotone path which passes through c2, f2, f1, c1. This path
is monotonically increasing levels in φ′(S) if S1 is embedded above F by
our algorithm. So level⟨φ′(c2)⟩ < level⟨φ′(c1)⟩ so our goal now is to
analyze what nodes from S1 can go under level⟨φ′(c1)⟩ (the analysis for S2

is symmetric).

If S1 connects to F with a cycle or S1 is a line-graph no nodes can go under
c1.

To analyze the last case on S1 we need the following fact: if S2 exists then
V (F ) contains a node of degree three in S. This is because V (F ) contains
two nodes of degree three in S+ namely the foots of opposite (non adjacent)
whiskers and those nodes are not adjacent since the cycle is of length at least
6. So one of them must have been of degree three before the new edge.

So assume now S1 connects to F with a tree and contains a node of degree
three. From the analysis of compatibility for such S1 we know that c1 is
either an extended trunk core node or an exit-graph node in S. If it is an
exit-graph node, then S2 does not exists since if it does there is a node of
degree three in V (F ) in S and thus there are two disjoint paths from c1 to
nodes of degree three which can’t be for an exit-graph node.

If now c1 is in an extended trunk core node of a tree T . If F contains a
cycle that was present in S then nodes from S1 and S2 were separated by
this cycle then by item 1 all the nodes from S1 were above that cycle and all
the nodes from S2 were bellow so the proposal holds. All the nodes from
an extended trunk core of T were above c1 in S so the only possible nodes
are the nodes to go below c1 are nodes from inner simple-graphs of T . And
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the inner simple-graphs starting from the third one can’t cross the first two
graphs heads so they can’t cross c1 as well.

We are now ready to analyze the cost payed by each node when a new edge
in the connectivity component appears.

Scenario 8.1 (Inner simple-graph reorienting). The node falls into this scenario if
it is a part of an inner simple-graph which is being reoriented.

Lemma 8.4.7. The Inner simple-graph reorienting scenario costsO(n) for a node
and happens only once for a given node.

Proof. Node can’t pay more than 2n so O(n) bound is trivial.
The inner simple-graph has only two possible orientations. We change its

orientation only if the current one violates the invariants 8.4 thus we will never get
back to it.

Scenario 8.2 (First time on a cycle). The node falls into this scenario if it was not
on a cycle before the new edge and after the new edge it is.

Lemma 8.4.8. The First time on a cycle scenario happens at most once for each
node and costs O(n).

Proof. Trivial.

Scenario 8.3 (Cycle in the frame). The node falls in this scenario if it is in the
cycle which is a part of F and is present in S.

Lemma 8.4.9. The Cycle in the frame scenario happens O(n) times for each node
and costs O(1).

Proof. Since we have only O(n) edges the O(n) upper bound is trivial.
If the cycle is embedded respecting invariants 8.4 with a node specified to

be the top most (which is the case due to the lemma 8.4.6) then we have only two
four possibilities for a cycle to be embedded and for each to of them one can be
transformed to another making each node changing the relative order only with
O(1) nodes from cycle which by Lemma 8.4.5 gives us O(1) cost per node.
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Note also that by Lemma 8.4.6 nodes from cycle do not change relative order
with nodes from S1 or S2 and thus the cost of their inner relative change is the only
cost they need to pay.

So the nodes of F fall into either First time on a cycle scenario or to the
cycle in the frame scenario.

As for the Si nodes we need to consider 2 cases. The nodes are either a part
of first two inner simple-graphs when Si starts from a tree or not.

If yes, and those node change their relative order to the nodes of Si this
means that the reorientation of simple-graphs had been performed thus they fall
into Inner simple-graph reorienting scenario. If they did not change relative order
to Si this means they didn’t change the order with Sj, j ∈ {1, 2} \ {i} neither with
F so they pay nothing.

As for the nodes from Si that are not the part of first two inner simple-graphs
by the Lemma 8.4.6 they didn’t change the relative order with Sj, by the embedding
strategy they didn’t change the relative order with the nodes from Si (// consider
mirroring? //) accept possibly first two inner-simple graphs and also by the Lemma
8.4.6 they didn’t change the relative order with the cycle contained in F . As for
the nodes of F which were not on the cycle we say that they pay for all the relative
order changes.

8.4.2 New edge between two components

We now define and analyse the behaviour of the algorithm when the edge
between two connectivity components is revealed. The strategy would be to bring
the larger component towards the smaller one.

Scenario 8.4 (Connectivity component movement). . The node falls in this sce-
nario if its component is a smaller of two between which the new edge is revealed.

Lemma8.4.10. TheConnectivity componentmovement scenario happensO(log n)

times and cost O(n).

Proof. The size of the component is at least doubled.

We now dive into the case analysis.
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We first want to distinguish to cases: either the bigger component has a tree
with a non-empty trunk core or not.

If not that means that there are at most two nodes of degree three. If the
new edge increases the number of degree three nodes from 0 to one, from 1 to 2 or
from 2 to three we say that it is an individual scenario and we can allow the total
reconfiguration according to the 8.3.1.

Scenario 8.5 (New degree three node.). The node falls into this scenario if the new
edge increases the number of the nodes of degree three in the component from 0
to 1, from 1 to 2 or from 2 to 3.

Lemma 8.4.11. The New degree three node scenario can happen O(1) times and
costs O(n).

Proof. Trivial.

We now assume that there is a tree in the bigger component with a non-empty
trunk core or a cycle with an inner edge. The smaller component can then connect
to:

1. The inner node of the trunk core.

2. The inner simple-graph node.

3. The cycle node.

4. The exit-graph node.

In the following analysis the new scenario appear

Scenario 8.6 (No more an exit-graph.). The node falls into this scenario if it is no
longer a part of an exit-graph.

Lemma 8.4.12. The No more an exit-graph scenario happens at most once and
costs O(n).

Proof. The closest node of degree three to the exit-graph node has only one path
to another degree three node.
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Let us discuss all the possible cases.

1. If the smaller connectivity component connects to the inner trunk core node
then by Lemma 8.3.5 it must be a line-graphs and there for to maintain
the quasi-correctness of the embedding we only to choose its orientation
and reorient its trunk core neighbours. The scenarios engaged here are the
connectivity component movement and inner simple-graph reorienting.

2. For the inner simple-graph node the analysis is basically the same as in the
previous case.

3. Cases:

• Only cycle

• Cycle and a line-graph

• Cycle and a tree with a degree three node

4. Cases:

• Smaller component does not make new nodes of degree three

• It does. Then we reorient the exit-graphs as they are no longer exit-
graphs. This is the no more an exit graph scenario.

9. Conclusion

In this paper, we presented three results: 1) the upper bound cost on any
algorithm for an arbitrary demand graph; 2) an online algorithm with its cost for a
cycle demand graph; and, finally, 3) an online algorithm with its cost for a Gridn

demand graph. In the last two cases, we presented algorithms that match the lower
bound. We think this is the first important step towards the tight bound for more
generic graphs such as arbitrary grids that we are going to research in the future
work.
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