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1 Introduction

Papers of Zeilberger ([5]), Chaiken and others contain a special technique for solving problems on

linear algebra, which allows us to interpret these problems in terms of the graph theory. We are trying

to extend this technique and prove the following theorem.

Let F be a simply connected bounded figure on the square grid consisting of unit squares, GF be its

dual graph, i. e. a graph in which vertices correspond to the cells of figure and an edge joins two vertices,

iff the corresponding cells share a common side. Denote by AF the adjacency matrix of graph GF . We

say that two tilings form a good pair, if the difference of numbers of vertical dominoes in these tilings

equals 2.

Theorem 1.1. If the set of all tilings of figure F can be split onto good pairs, then detAF = 0. If the

set of all tilings, except one, can be split onto good pairs, then detAF = (−1)s, where s is one half of the

area of the figure.

In § 2 we describe, how to interpret the determinant in terms of 1-factors and the pfaffian. In § 3 we

introduce the notion ¡¡sign of a figure¿¿ and show, how to calculate it. In § 4 we prove the main theorem.

In § 5 we calculate the determinant of the adjacency matrices of figures, similar to rectangle.

2 Determinants and 1-factors

Let F be a simply connected figure on the square grid consisting of 2s(F ) unit squares. Let GF

be the dual graph of the figure F , i. e. vertices of GF correspond to the cells of figure F and edges

correspond to pairs of cells that share common side. Observe that graph GF is biparite, its partition
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is determined by chess coloring of figure F . Denote by AF = (aij) the adjacency matrix of the graph

GF , matrix AF is symmetrical. We consider also symmetrical matrices of more general type ÃF , which

can be obtained from AF if we replace 1’s by arbitrary real numbers. For simplicity we interpret graph

GF and its subgraphs as directed graphs, each undirected edge we treat as a pair of edges with opposite

directions. Matrix elements aij we interpret as weights of the corresponding edges.

Let us remind that 1-factor of directed graph GF is a subgraph, which has the same set of vertices

as graph GF and such that each its vertex has one ingoing and one outgoing edge.

Let figure F consists of n cells, then ÃF is a matrix of size n× n and

det ÃF =
∑
π

sgn(π)
n∏
i=1

ai,π(i), (1)

where the sum is taken over the set of all permutations of {1, . . . , n}, and sgn(π) denotes the sign of

a permutation. Each non-zero summand in the formula (1) uniquely determines 1-factor of graph GF ,

precisely the directed subgraph consisting of edges i → π(i) (if ai,π(i) 6= 0, then such edge exists). We

denote 1-factor, determined by the permutation π, by the same letter π.

If the permutation π is written as a product of cycles, we can calculate its sign by the formula

sgn(π) = (−1)l1−1(−1)l2−1 . . . (−1)lm−1,

where m is the number of cycles in the permutation and li is the length of the i-th cycle. Our graph is

bipartite, therefore every cycle has even length. Each cycle of the even length considered as a permutation

is an odd permutation. Thus, we can calculate the sign of permutation π by the formula

sgn(π) = (−1)#the number of cycles in π.

and the determinant can be calculated by the formula

det ÃF =
∑
π

(−1)#the number of cycles in πWπ, (2)

where the sum is taken over the set of all 1-factors of graph GF , and Wπ denotes the weight of 1-factor

π, which equals by definition to the product of weight of all edges of 1-factor. For adjacency matrix AF

each factor Wπ equals 1.

Definition. We will use the term configuration instead of 1-factor, a parity of the number of cycles in

the configuration we call a parity of configuration, and the expression (−1)#number of cycles in π we call the

sign of configuration π.

A domino tilings of the figure we call a tiling for brevity. Each tiling of figure F consists of s(F )

domino. Each tiling of figure F determines a perfect matching of graph GF , we will omit the word

“perfect” hereinafter.

Definition. Fix the figure F . Denote by ck the number of tilings of the figure F , which contain exactly

k vertical dominoes. We call the polynomial fF (x) =
+∞∑
i=0

ck · xk the polynomial of vertical statistics of

tilings of figure F .

We say that an edge in the configuration is rising, if it is vertical and is directed upwards, and falling,

if it is vertical and is directed downwards. Denote by uk the number of configurations in figure F , which
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contain exactly k rising edges. We call the polynomial

gF (x) =

+∞∑
k=0

uk · xk (3)

the polynomial of vertical statistics of configurations of figure F .

Theorem 2.1. Let F be an arbitrary figure on the square grid consisting of unit squares. Then the

following statements hold:

1) the number of configurations in the graph GF is equal to the square of the number of tilings of

figure F ;

2) gF (x2) = f2F (x).

Proof. 1) Consider a chess coloring of the figure, and split the edges of each configuration onto two

groups: edges, which starts from black vertices and edges, which starts from white vertices. Edges of

each group determine a matching, which can be interpreted as a tiling. This map is bijective.

2) Due to this bijection we see that the coefficient of xk in fF (x)2 is equal to the number of configura-

tions, containing exactly k vertical edges. Since the number of rising edges in each configuration equals

one half of the number of vertical edges, the statement follows.

It follows from the first claim of the previous theorem and the formula (2), that the parity of deter-

minant detAF is equal to the parity of the number of tilings of figure F .

Let us remind the definition of pfaffian. For every pair of vertices of undirected graph G we fix the

order in which the vertices of this pair should be written. We may assume, that vertices of the graph are

numbered and therefore the corresponding order is given for every pair of numbers. The order of pairs

vertices allows us to split matchings of the graph onto two classes. Two matchings belong to the same

class, if the first matching as a set of ordered pairs of vertices can be transformed to another one by an

even permutations. We can mark the matchings of the first class by the plus sign, and mathings from

another class by the minus sign. Consider a skew-symmetric matrix A, in which aij = −aji, if (i, j) —

right ordered pair of vertices, which are connected by an edge, and aij = 0 otherwise. We say that edge

(i, j) corresponds to matrix element aij , if (i, j) is a right ordered pair. Define the pfaffian of matrix A

as an expression

Pf A =
∑
τ

sgn(τ)w(τ),

where the summation is taken over the set of all perfect matchings of graph G, and w(τ) is equal to the

product of the matrix elements, corresponding to edges of the matching. It is known that

detA = (Pf A)2. (4)

For each figure on the square grid and its graph GF there exists the orientation of the pairs of

neighbouring vertices, such that all matchings of figure F have equal sign; this orientation is called Pfaff

orientation of graph. If A is the skew-symmetrical adjacency matrix of graph GF , which is given by a

Pfaff orientation, then Pf A is equal to the number of matchings of the graph. But we are interested in

another, non-Pfaff orientation on the pairs of vertices.
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Definition. Consider a chess coloring of vertices of graph GF . Consider an orientation on the set of

pairs of the neighbouring vertices, such that the first vertex in each pair is black. We call this orientation

chess orientation. Denote by Ã#
F the skew-symmetrical matrix, which is given by this orientation.

Looking at the chess coloring of the figure we can represent ÃF as a block matrix 2 × 2, left-top

block corresponds to black cells, and bottom-right block corresponds to the white cells. If we change

signs of all matrix elements, which are written in “white” rows and in “black” columns, we will obtain a

skew-symmetrical matrix Ã#
F . Thus,

det ÃF = (−1)s(F ) det Ã#
F .

It is more convenient for us to explain this formula via pfaffians.

Theorem 2.2. If F is an arbitrary figure on the square grid with even area 2s(F ) then

(−1)s(F ) det ÃF =
(
Pf Ã#

F

)2
.

Proof. The expression (Pf Ã#
F )2 counts all the pairs of matchings (τ1, τ2), which are taken with sign

sgn(τ1) sgn(τ2). The product of signs is equal to 1, if one matching can be transformed to another by an

even permutation, and −1, if the permutation is odd. For the calculation of sgn(τ1) sgn(τ2) let us depict

our graph and draw both matchings in it. This picture is a set of cycles, i. e. a configuration, denote it

by π̃ (the orientation of edges is the same as in the proof of the first point of the theorem 2.1). The map

(τ1, τ2) 7→ π is a bijection. Define the orientation of edges by the checkerboard coloring rule, i.e. the first

vertex of an edge is always black. Now construct a permutation which transforms τ1 in τ2. First, perform

counter-clockwise shift in each cycle, the obtained permutation has parity (−1)#number of cycles in π. As

the result of this shift τ1 becomes τ2, but all (!) the edges of matching τ2 are written in the wrong order

due to the property of the chess orientation. We will fix it applying transpositions, the parity of the

repairing permutation is equal to (−1)s(F ). As a result we have

sgn(τ1) sgn(τ2) = (−1)s(F )+number of cycles in π. (5)

So, (
Pf Ã#

F

)2
= (−1)s(F )

∑
π

(−1)#number of cycles in πWπ.

The sum in the right side is equal to det ÃF due to (2).

3 A sign of a simply connected figure on the square grid

Lemma 3.1. Let P be a simply connected polygon on the square grid. Let a be a number of integer points

with an even ordinate and b a number of integer points with an odd ordinate on the boundary of P . Let

d be a number of integer points inside P . Then the sum of lengths of vertical sides of the polygon P is

equal to a− b+ 2d+ 2 modulo 4.

Proof. Induction by the area. If the dual graph contains terminal vertex, then cut the corresponding cell.

Otherwise we cut a suitable corner cell.
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Remark. We allow some polygons to be degenerate (i. e. cycle on two vertices, with two parallel edges).

It is easy to see, that the statement of lemma remains true in degenerate case.

Theorem 3.2. Let F be a simply connected polygon on the square grid, consisting of even number of

cells. Then either for each configuration in graph GF the parity of the number of rising edges is equal to

the parity of the number of cycles in it, or for each configuration these parities are opposite.

Proof. Consider an arbitrary configuration in GF . It is obvious, that the number of rising edges in it

equals to the number of falling edges, denote this number by v. Let the configuration consists of k cycles.

Each cycle is a polygon. Since all of the cycles have even length, and the figure is simply connected,

the inner part of each cycle contains even number of integer points. Therefore applying the statement

of lemma 3.1 to each cycle, we can omit the term 2d in the left hand side of the congruence. Now if we

sum up over the set of all cycles, we obtain

A−B + 2 · k ≡
mod 4

the total length of all vertical sides = 2 · v,

where A is equal to the number of integer points with even ordinates and B is the number of integer

points with odd ordinates on the boundary of cycles. Since the configuration covers all integer points of

the figure, the difference A−B is even and does not depend on configuration. Put A−B = 2 · t. Then

2 · v ≡ 2 · t + 2 · k (mod 4), and so v ≡ t + k (mod 2). Since t does not depend on configuration, the

theorem is proven.

Definition. If the two parities in the statement of the theorem 3.2 are coincide, we say, that the sign of

figure F equals 1, otherwise the sign of figure F equal to −1. Thus by definition for each configuration

π in graph GF

(−1)number of rising edges in π = sgnF · (−1)number of cycles in π. (6)

We consider also a “logarithm” of the sign of F , which we denote by SignF . By definition SignF is

equal to 0 or 1, such that

sgnF = (−1)SignF .

Lemma 3.3. The sign of a simply connected figure F can be calculated as follows.

1) SignF = 1
2(A−B), where A is the number of integer points in the dual figure with even ordinates,

B is the number of points with odd ordinates.

2) SignF equals one half of the difference of the number of black vertices and the number of white

vertices in the horizontal ¡¡zebra¿¿ coloring of F .

3) SignF is equal to the parity of the number of horizontal dominoes in any tiling of figure F .

Proof. 1) It follows from the proof of the theorem 3.2.

2) It is almost the same as the statement 1). The difference A− B equals the difference of numbers

of black and white cells in the horizontal ¡¡zebra¿¿ coloring of F .

3) If we interpret the tiling as a configuration, the number of cycles in it equals the number of dominoes,

the number of rising edges is equal to the number of vertical dominoes. By definition sgnF = −1, if the

parity of the number of the rising edges in the configuration is not equal to the parity of the number of
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cycles, and sgnF = 1 otherwise. Thus,

SignF ≡
mod 2

number of cycles + number of rising edges =

= number of dominoes + number of vertical dominoes.

It remains to observe, that vertical dominoes are counted in both summands, while horizontal dominoes

is counted only in the first one.

In the definition of pfaffian we can arbitrarily set the sign “plus” to the one of the two classes of

matchings, and the sign “minus” to the other one. In the case of chess orientation we can set this signs

“geometrically”. Denote by V (τ), H(τ) the number of vertical and horizontal edges in matching τ .

Lemma 3.4. In the definition of pfaffian we can state that the sign of matching τ equals (−1)
1
2
(H(τ)+SignF ).

Proof. The sum H(τ) + SignF is even by lemma 3.3. Consider two matchings τ1, τ2 and configuration π,

which is determined by them as in the proof of theorem 2.2. Let us remind, that each matching contains

s(F ) edges, numbers V (τ1) and V (τ2) always have the same parity, and the number of rising edges in the

configuration, given by the two matchings, equals 1
2(V (τ1) + V (τ2)).

Let’s check that signs, specified by the statement of the lemma, are in concordance with the parity

of the permutation from the definition of a sign of a matching, i. e. the sum s(F ) + number of cycles π

in equality (5) is even if and only if the signs are equal. It is true, because modulo 2 we have

number of cycles in π + s(F ) = number of rising edges in π + SignF + s(F ) =

=
1

2
(V (τ1) + V (τ2)) + SignF +

1

2
(V (τ1) +H(τ1) + V (τ2) +H(τ2)) ≡

≡ 1

2
(H(τ1) + SignF ) +

1

2
(H(τ2) + SignF ).

4 Formulae for the determinant of the adjacency matrix

The following theorem reduces the question of calculation of detAF to the investigation of the vertical

statistics of figure F .

Theorem 4.1. For every simply connected figure F

detAF = sgnF ·
∑
π

(−1)the number of rising edges in π, (7)

detAF = sgnF · gF (−1) = sgnF · f2F (i), (8)

where gF and fF are polynomials of the vertical statistics.

Proof. Comparing formulae (2) and (6), we obtain automatically (7). By formulae (7) and (3)

detAF = sgnF ·
∑
π

(−1)the number of rising edges in π =

+∞∑
i=0

ci · (−1)i = gF (−1).
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Substituting −1 instead of x2 in g, we obtain detAF = sgnF · gF (−1) = sgnF · fF 2(i).

Definition. We say that a pair of tilings is good, if the difference of numbers of vertical dominoes in

them is equal to 2.

Theorem 4.2. Let F be an arbitrary simply connected figure on the square grid consisting of 2s(F )

squares. If the set of all tilings of figure F can be split onto good pairs, then detAF = 0. If the set of all

tilings, except one, can be split onto good pairs, then detAF = (−1)s(F ).

Proof. Let us calculate detAF by the formula (8). If the good pair consists of the tiling with k vertical

dominoes and the tiling with k+2 vertical dominoes, then its contribution into fF (i) is equal to ik+ik+2 =

0. Therefore all good pairs contribute zero into fF (i) and the first claim of the theorem follows.

If the set of all tilings, except one, can be split onto good pairs, we denote the number of vertical

and horizontal dominoes in the remaining tiling by v and h, h + v = s(V ). Then fF (i) = iv by the

previous reasoning, sgnF = (−1)h by the lemma 3.3, and therefore detAF = sgnF · fF 2(i) = (−1)h+v =

(−1)s(F ).

So for the calculation detAF we should know whether the set of all tilings of the figure can be split

onto good pairs. The figure (not simply connected) for which the set of tilings can not be split onto good

pairs is depicted on figure 1.

It is clear from the proof that in terms of the vertical statistics the possibility to split the set of tilings

onto good pairs is equivalent to the divisibility of the polynomial fF (x) by x2 + 1.

Before we move to an application of the theorem, we shall prove, that for an arbitrary simply connected

figure F on the square grid of even number of squares detAF = 0 or detAF = ±1. This statement will

follow from the next lemma.

Lemma 4.3. The set of all tilings of an arbitrary simply connected figure on the square grid of even

number of squares could be split onto good pairs, probably except one.

Proof. To prove this theorem we use the method of mathematical induction on the area of the figure F .

Base. F contains 2 squares, i.e. F is the domino. It is obvious, that the theorem holds for F .

Step.

To start we choose the “lowest” “corner” square of F , from which we shall apply halfdiagonal lemma.

For that we look at all bottom-right diagonals from all squares of F , then choose the corner one of two

types: or , which lies on the lowest such diagonal. Without loss of generality, let it be . Let us

apply halfdiagonal lemma from the chosen squares. There could be three cases:

The first case. The squares, which are neighbours by side to the right and to the bottom to the last

××
×

××
×

Figure 1. The tilings of this figure cannot be split onto good pairs
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square of halfdiagonal, belong to F . ×
× •

·
·
·
·
·
×

Note, that this is not possible to happen, because there are obviously exist such corner , which lies

on lower diagonal, than the chosen corner.

The second case. F contains only one of two neighbours by side to the right and to the bottom to

the last square of halfdiagonal. ×
× •

·
·
·
·
• ×
•

Applying halfdiagonal lemma, the domino marked by black circles could be removed, because the set

of all tilings, which doesn’t contain it, could be split onto good pairs. To complete this case we use the

induction hypothesis.

It is possible, that after domino removal, F was split onto different parts. The set of all tilings in

F is the cartesian product of the set of all tilings of created parts. If at least in one part the set of all

tilings could be split onto good pairs, then the set of all tilings of F could be split too. Otherwise, the

cartesian product of unpaired tiling in all parts is the only unpaired tiling of F .

The third case. The squares, neighbours by side to the right and to the bottom of the last square of

halfdiagonal, aren’t in F . ×
× •

·
·
·
·
• ×
×

By the reasoning, similar to the proof of the lemma of halfdiagonal, it is simple, that in this case the set

of all tilings of F could be split onto good pairs.

As the corollary of this lemma and Theorem 4.2 we get:

Theorem 4.4. For an arbitrary simply connected figure F on the square grid of even number of squares

detAF = 0 or detAF = ±1.

5 Application to “stamps” and rectangles

Definition. We call n-stamp a figure that can be obtained from square n× n, by deleting some cells on

its upper and its right sides (so it looks like postage stamp but with irregular perforation along its two

sides). Let us enumerate rows of a n-stamp from bottom to top, and columns from left to right. Each

cell is determined by the numbers of its row and column. We say that n-stamp is regular (figure 4), if
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it contains exactly one cell from the pair (n, i) and (i, n), if i < n, and does not contain the cell (n, n).

Otherwise we say that the stamp is irregular (See figure 2).

Stamps were introduced by D.Karpov [2], they are interesting, because we know the parity of their

number of tilings, precisely, the following theorem holds.

Theorem 5.1 ([2]). The number of tilings of n-stamp is odd if and only if the stamp is regular.

Lemma 5.2 (about a ¡¡halfdiagonal¿¿). Let figure F contains three diagonal rows of cells, like on the

figure 3, and cells, which are marked by crosses, do not belong to the figure. Then the set of all tilings of

figure F , which does not contains domino marked with bold circles, can be split onto good pairs.

We say that the lemma statement holds for the bottom-right direction. We will apply this lemma in

other diagonal directions, too. This lemma in slightly different form, is proven in [3, lemma 2], it has

been applied there for the proof of the theorem 5.1. We apply the similar reasoning in the following

theorem.

Theorem 5.3. 1) Let F be an arbitrary regular n-stamp. Then detAF = (−1)n(n−1)/2.

2) If F is an irregular n-stamp, then detAF = 0.

Proof. 1) The expression n(n−1) in the formula equals the area of any regular stamp. By theorem 4.2 it

is sufficient to check, that the set of all tilings of each regular stamp, except one, can be split onto good

pairs. We will check it by the induction by n. The base is trivial.

Step of induction, n→ n+1. Consider a regular (n+1)-stamp. We will split the set of its tilings onto

good pairs. For this we take a look at the bottom-right and upper-left corner cells of the (n+ 1)-stamp.

One of these cells lies inside the n×n square, let it be the upper-left cell. Apply the halfdiagonal lemma

in the bottom-right direction starting from this cell. Then the set of tilings, which does not contain the

marked domino (figure 4, left) can be split onto good pairs. Let’s look at tilings, which contain this

domino. Apply the halfdiagonal lemma again in the upper-left direction starting from the cell to the left

of the marked domino (figure 4, middle). By this lemma the set of tilings, which does not contain the

marked domino in the upper-left corner, can be split onto good pairs. If we look at the remaining tilings,

they contain this domino. Apply the halfdiagonal lemma once again in the bottom-right direction from

the cell below the domino and so on. As a result of numerous applying the halfdiagonal lemma we split

the set of tilings onto pairs except the tilings, containing all the dominoes on the left and the bottom

sides of our (n+ 1)-stamp (fig. 4, right). By the induction hypothesis there is the bijection between the

remaining tilings and tilings of the regular n-stamp. Therefore all tilings except one can be split onto

good pairs.

Figure 2. Irregular 9-stamp

×

×

×

. . .

. . .

• •

Figure 3. Halfdiagonal
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·
·
·
·
·
·
• •

·
·
·
·
·

•
•

Figure 4. Construction of ¡¡unpaired¿¿ tiling of (n+ 1)-stamp

1 2

3
4

5

6

7

8

· · ·
· · ·

· · ·
· · ·

...
...

...
...

. . .

Figure 5. Layout of the cells for the irregular stamp

2) By theorem 4.2 it is sufficient to check, that tilings of each irregular stamp can be split onto good

pairs. We will check it by induction by n. The base is trivial.

Step of induction, n− 1→ n. Consider an arbitrary n-stamp. We mark some cells of its n×n square

like on the figure 5.

Consider the following cases:

1) The figure does not contain cells 1 and 4. Consider a diagonal from 5 to 6. By the halfdiagonal

lemma the set of all tilings can be split onto pairs (because the marked domino does not belong to the

figure). Similarly, if four cells 1, 2, 3, 4 don’t belong to the stamp.

2) The stamp contains the cell 1, but not the cell 4 (or vice versa). Consider the first case, the second

one is similar. Apply the halfdiagonal lemma in the direction from 6 to 1. As in the proof of the previous

item, we split the set of all tilings onto pairs, except those tilings for which the position of dominoes on

the leftmost column and bottom row is fixed like on the figure 4, right. The set of exceptional tilings can

be split onto good pairs by induction hypothesis.

3) Cells 1 and 4 belong to the stamp, but 2 and 3 do not belong. Then each tiling contains dominoes

1− 5 and 4− 6. Cut them. By the halfdiagonal lemma, which we apply in the direction from 7 to 8, the

set of all tilings can be split onto good pairs.

4) Cells 1, 2, 4 belong to the stamp, but 3 does not belong (or similarly 1, 3, 4 belong to the stamp,

but 2 does not belong). Obviously, each tiling contains the domino 4− 6. Cut it. Apply the halfdiagonal

lemma in the direction from 8 to 7. Observe that each tiling contains the domino 5 − 7 and therefore

each tiling contains the domino 1− 2. We cut these dominoes and finish the proof by induction, like in

item 2.

Remark that this proof proves also the theorem 5.1. The following criteria of parity of tilings of the

rectangle is proven in [2].

Theorem 5.4. The number of tilings of the rectangle n × m is odd if and only if numbers n + 1 and

m+ 1 are coprime.

In [3] this theorem is proven exactly by spliting tilings onto good pairs! Combining this theorem and

the theorem 4.2, we obtain the following theorem.
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Consequence 5.4.1. For an arbitrary rectangle m× n

detAn×m =

0, if (n+ 1,m+ 1) 6= 1;

(−1)
n·m
2 , if (n+ 1,m+ 1) = 1;

where (n,m) is the greatest common divisor of n and m.

This result is already known, see for example [6]. But the combinatorial proof, presented here, is new.
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