
Performance Challenges in Modular
Parallel Programs

Umut Acar Vitaly Aksenov
Arthur Chargueraud Mike Rainey

aksenov.vitaly@gmail.com

Granularity Problem
Given a multicore machine with
shared memory and a nested paral-
lel program how to execute this
program efficiently?
Requirements: – Online

– Handle templated code
– Hardware independent

Too small tasks ⇒ too large overheads
Too big tasks ⇒ not enough parallelism
Ideal task size ⇒ how to select the threshold?

Motivating Example
We are given an array with elements of type T.
Find the number of elements that satisfy p:
p = [&] (T* x) { return hash(x) == 2017 }.

template <T, P>
int match(T* lo, T* hi, P p)
int result
int n = hi - lo

if n ≤ THRESHOLD
result = match_seq(lo, hi, p)

else
T* mid = lo + (n / 2)
int result1, result2
fork2join([&] {

result1 = match(lo, mid, p)
}, [&] {

result2 = match(mid, hi, p)
})
result = result1 + result2

return result

Type T Size threshold Comment

char 800M 1 100x slower
10 17x slower
5000 (TBB) optimal
ours optimal

char[64] 200M 1 78% slower
10 (TBB) 6% slower
5000 optimal
ours optimal

char[2048] 0.4M 1 (TBB) optimal
10 optimal
5000 16% slower
ours optimal

char[131072] 0.01M 1 (TBB) optimal
10 optimal
5000 19x slower
ours optimal

Spguard to Control Granularity
– Arguments: complexity c(x), parallel
pb(x) and sequential bodies sb(x);

– Maintains constant C that approximates the
ratio between complexity and running time.

– Predicts the execution time as C·c(x);
– if the prediction is less than κ then executes

sequential body sb(x), else executes parallel
body pb(x);

– measures the total sequential execution time
for future predictions

template <T, P>
int match(T* lo, T* hi, P p)

int result
int n = hi - lo
spguard([&] { // complexity function
return n

}, [&] { // parallel body
if n ≤ 1

result = match_seq(lo, hi, p)
else

T* mid = lo + (n / 2)
int result1, result2
fork2join([&] {

result1 = match(lo, mid, p)
}, [&] {

result2 = match(mid, hi, p)
})
result = result1 + result2

}, [&] { // sequential body
result = match_seq(lo, hi, p)

})
return result

Implementation of Spguards as a Library
template <Complexity, Par_body, Seq_body>
void spguard(estimator* es, Complexity c,

Par_body pb, Seq_body sb)
int N = c()
time work = if es.is_small(N)

then measured_run(sb)
else measured_run(pb)

es.report(N, work)

const double κ // parallelism unit
const double α // growth factor

class estimator
double C // constant for estimations
int Nmax = 0 // max complexity measure
void report(int N, time T)

atomic { if T ≤ κ and N > Nmax
C = T / N
Nmax = N }

bool is_small(int N)
return (N ≤ Nmax) or

(N ≤ α · Nmax and N · C ≤ α · κ)

Challenges

1. In nested parallel programs a spguard with wrong
initial constant can always choose parallel body and
will never update a constant.

Solution. Report the time spent during the parallel
call as the sum of sequential sub-computations.

2. A constant can differ significantly for different
sizes: for example, if the data becomes unfit in the
cache. So, we cannot use the obtained constant for
the sizes arbitrarily bigger.

Solution. We allow to sequentialize only if the pre-
dicted work is small and the size is not much bigger
than the current maximal known size.

Theoretical Result
Theorem. Tp ≤ (1 + O(1)

κ
) · w

P
+O(κ) · s+ 1

P
·O(log2 κ),

where Tp is a parallel time of a nested parallel fork-join program including the constant time overhead
per fork2join, P is a number of cores, and w and s are work and span without considering overheads.

It is a generalization of Brent’s bound Tp ≤ w/P + s which ignores task creation costs.

Assumptions
for any spguard g = spguard(F (g),P (g),S(g)), P (g)= [&]{Sp, fork2join(L(g),R(g)),Sm}

time measurements do not difffer much from work 1
E ≤M(S(g), I)/Ws(S(g), I) ≤ E

sequential work in P (g) is not much bigger than
work in S(g)

1 ≤Ws(P (g), I)/Ws(S(g), I) ≤ D

a task α times bigger induces no more than β more
work

if F (J) ≤ F (I) ≤ α · F (J) then
Ws(g, J) ≤Ws(g, I) ≤ β ·Ws(g, J)

there is a γ-balance between branches of the fork 1
γ ≤ Ws(L(g), I)/Ws(S(g), I) ≤ γ and
1
γ ≤Ws(R(g), I)/Ws(S(g), I) ≤ γ

spguards are called sufficiently frequently in a call
tree

if g′ is an immediate outer spguard of g
then Ws(S(g

′), I) ≤ γWs(S(g), I)

Evaluation
https://github.com/deepsea-inria/pctl
We compare against the manually tuned code
from PBBS suite [1].

Application/input PBBS (s) Ours
blockradix-sort

random 0.20 −7.4%
exponential 0.19 −8.4%
random kvp 256 0.49 −23.9%
random kvp 108 0.49 −27.7%

comparison-sort
random 1.13 −36.4%
exponential 0.82 −31.3%
almost sorted 0.63 −18.8%

suffix-array
trigrams 3.58 −6.3%
dna 1.29 −6.7%
text 4.11 −7.4%
wiki 3.66 −5.3%

convex-hull
in circle 0.61 +5.8%
kuzmin 0.41 −6.9%
on circle 8.26 −32.4%

nearest-neighbours
in square 5.75 −2.2%
kuzmin 22.00 −2.5%
in cube 7.90 −6.5%
on sphere 14.60 −31.2%
plummer 23.54 −2.5%

ray-cast
in cube 7.90 −1.9%
on sphere 0.87 −0.2%
happy 0.50 −1.9%
xyz-rgb manuscript 9.46 +0.3%
turbine 4.10 −2.1%

delaunay
in square 3.39 −4.1%
kuzmin 3.99 −4.4%

mis
cube-grid 0.12 +1.2%
rMat24 0.07 +2.7%
rMat27 0.06 +2.7%

mst
cube-grid 2.28 −9.9%
rMat24 2.21 −13.3%
rMat27 1.89 −16.3%

spanning
cube-grid 0.62 −5.8%
rMat24 0.44 −0.6%
rMat27 0.33 −5.0%

References and Acknowledgements
[1] G. Blelloch et al., Brief-Announcement: The
Problem Based Benchmark Suite. SPAA’2012, p.
68-70.
This work is partially supported by the National Science
Foundation (CCF-1408940 and CCF-1629444) and Eu-
ropean Research Council (ERC-2012-StG-308246).


