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Abstract15

The design and implementation of efficient concurrent data structures has seen significant attention.16

However, most of this work has focused on concurrent data structures providing good worst-case17

guarantees. In real workloads, objects are often accessed at different rates, since access distributions18

may be non-uniform. Efficient distribution-adaptive data structures are known in the sequential19

case, e.g. the splay-trees; however, they often are hard to translate efficiently in the concurrent case.20

In this paper, we investigate distribution-adaptive concurrent data structures, and propose a21

new design called the splay-list. At a high level, the splay-list is similar to a standard skip-list,22

with the key distinction that the height of each element adapts dynamically to its access rate:23

popular elements “move up,” whereas rarely-accessed elements decrease in height. We show that24

the splay-list provides order-optimal amortized complexity bounds for a subset of operations, while25

being amenable to efficient concurrent implementation. Experimental results show that the splay-list26

can leverage distribution-adaptivity to improve on the performance of classic concurrent designs,27

and can outperform the only previously-known distribution-adaptive design in certain settings.28

1 Introduction29

The past decades have seen significant effort on designing efficient concurrent data structures,30

leading to fast variants being known for many classic data structures, such as hash tables,31

e.g. [18, 13], skip lists, e.g. [10, 12, 16], or search trees, e.g. [9, 19]. Most of this work has32

focused on efficient concurrent variants of data structures with optimal worst-case guarantees.33

However, in many real workloads, the access rates for individual objects are not uniform.34

This fact is well-known, and is modelled in several industrial benchmarks, such as YCSB [7],35

or TPC-C [20], where the generated access distributions are heavy-tailed, e.g., following a36

Zipf distribution [7]. While in the sequential case the question of designing data structures37

which adapt to the access distribution is well-studied, see e.g. [15] and references therein, in38

the concurrent case significantly less is known. The intuitive reason for this difficulty is that39

self-adjusting data structures require non-trivial and frequent pointer manipulations, such as40

node rotations in a balanced search tree, which can be complex to implement concurrently.41

To date, the CBTree [1] is the only concurrent data structure which leverages the skew42

in the access distribution for faster access. At a high level, the CBTree is a concurrent43

search tree maintaining internal balance with respect to the access statistics per node. Its44

sequential variant provides order-optimal amortized complexity bounds (static optimality),45

and empirical results show that it provides significant performance benefits over a classic46

non-adaptive concurrent design for skewed workloads. At the same time, the CBTree may47

be seen as fairly complex, due to the difficulty of re-balancing in a concurrent setting, and48
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the paper’s experimental validation suggests that maintaining exact access statistics and49

balance in a concurrent setting come at some performance cost—thus, the authors propose a50

limited-concurrency variant, where rebalancing is delegated to a single thread.51

In this paper, we revisit the topic of distribution-adaptive concurrent data structures,52

and propose a design called the splay-list. At a very high level, the splay-list is very similar53

to a classic skip-list [21]: it consists of a sequence of sorted lists, ordered by containment,54

where the bottom-most list contains all the elements present, and each higher list contains a55

sub-sample of the elements from the previous list. The crucial distinction is that, in contrast56

to the original skip-list, where the height of each element is chosen randomly, in the splay-list,57

the height of each element adapts to its access rate: elements that are accessed more often58

move “up,” and will be faster to access, whereas elements which are accessed less often59

are demoted towards the bottom-most list. Intuitively, this property ensures that popular60

elements are closer to the “top” of the list, and are thus accessed more efficiently.61

This intuition can be made precise: we provide a rebalancing algorithm which ensures62

that, after m operations, the amortized search and delete time for an item x in a sequential63

splay-list is O
(

log m
f(x)

)
where f(x) is the number of previous searches for x, whereas64

insertion takes amortized O(logm) time. This asymptotically matches the guarantees of65

the CBTree [1], and implies static optimality. Since maintaining exact access statistics for66

each object can hurt performance—as every search has to write—we introduce and present67

guarantees for variants of the data structure which only maintains approximate access counts.68

If rebalancing is only performed with probability 1/c—meaning that only this fraction of69

readers will have to write—then we show that the expected amortized cost of a contains70

operation becomes O
(
c log m

f(x)

)
. Since c is a constant, this trade-off can be beneficial.71

From the perspective of concurrent access, an advantage of the splay-list is that it can72

be easily implemented on top of existing skip-list designs [13]: the pointer changes for73

promotion and demotion of nodes are operationally a subset of skip-list insertion and deletion74

operations [11]. At the same time, our design does come with some limitations: (1) since75

it is based on a skip-list backbone, the splay-list may have higher memory cost and path76

length relative to a tree; (2) as discussed above, approximate access counts are necessary for77

good performance, but come at an increase in amortized expected cost, which we believe to78

be inherent; (3) for simplicity, our update operations are lock-based (although this limitation79

could be removed).80

We implement the splay-list in C++ and compare it with the CBTree and a regular81

skip-list on uniform and skewed workloads, and for different update rates. Overall results82

show that the splay-list can indeed leverage workload skew for higher performance, and that83

it can scale when access counts are approximate. By comparison, the CBTree also scales84

well for moderately skewed workloads and low update rates, in which case it outperforms the85

splay-list. However, it has relatively lower performance for moderate or high update rates.86

We recall that the original CBTree paper proposes a practical implementation with limited87

concurrency, in which all rebalancing is performed by a single thread.88

Overall, the results suggest a trade-off between the performance of the two data structures89

and the workload characteristics, both in terms of access distribution and access types.90

The fact that the splay-list can outperform the CBTree in some practical scenarios may91

appear surprising, given that the splay-list leads to longer access paths on average due to its92

skip-list backbone. However, our design benefits from allowing additional concurrency, and93

the caching mechanism serves to hide some of the additional access costs.94

Related Work. The literature on sequential self-adjusting data structures is well-established,95

and extremely vast. We therefore do not attempt to cover it in detail, and instead point the96

reader to classic texts, e.g. [15, 22] for details. Focusing on self-adjusting skip-lists, we note97
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that statically-optimal deterministic skip-list-like data structures can be derived from the98

k-forest structure of Martel [17], or from the working set structure of Iacono [14]. Ciriani99

et al. [6] provide a similar randomized approach for constructing a self-adjusting skip-list100

for string dictionary operations in the external memory model. Bagchi et al. [3] introduced101

a general biased skip-list data structure, which maintains balance w.r.t. node height when102

nodes can have arbitrary weight, while Bose et al. [4] built on biased skip-lists to obtain a103

dynamically-optimal skip-list data structure.104

Relative to our work, we note that, naturally, the above theoretical references provide105

stronger guarantees relative to the splay-list in the sequential setting. At the same time,106

they are quite complex, and would not extend efficiently to a concurrent setting. Two107

practical additions that our design brings relative to this prior work is that we are the first108

to provide bounds even when the access count values are approximate (Section 4), and that109

our concurrent design allows the splay-list adjustment to occur in a single pass (Section 5).110

Reference [1] posed the existence of an efficient self-balancing skip-list variant as an open111

question—we answer this question here, in the affirmative.112

The splay-list ensures similar complexity guarantees as the CBTree [1], although its113

structure is different. Both references provide complexity guarantees under sequential access.114

In addition, we provide complexity guarantees in the case where the access counts are115

maintained via approximate counters, in which case the CBTree is not known to provide116

guarantees. One obvious difference relative to our work is that we are investigating a skip-117

list-based design. This allows for more concurrency: the proposed practical implementation118

in [1] assumes that adjustments are performed only by a dedicated thread, whereas splay-list119

updates can be performed by any thread. At the same time, our design shares some of the120

limitations of skip-list-based data structures, as discussed above.121

There has been a significant amount of work on efficient concurrent ordered maps, see122

e.g. [5, 2] for an overview of recent work. However, to our knowledge, the CBTree remained123

the only non-trivial self-adjusting concurrent data structure.124

2 The Sequential Splay-List125

The splay-list design builds on the classic skip-list by Pugh [21]. In the following, we will126

only briefly overview the skip-list structure, and focus on the main technical differences. We127

refer the reader to [13] for a more in-depth treatment of concurrent skip-lists.128

Preliminaries. Similar to skip-lists, the splay-list maintains a set of sorted lists, starting129

from the bottom list, which contains all the objects present in the data structure. Without130

loss of generality, we assume that each object consists of a key-value pair. We thus use the131

terms object and key interchangeably. It is useful to view these lists as stacked on top of132

each other; a list’s index (starting from the bottom one, indexed at 0) is also called its height.133

The lists are also ordered by containment, as a higher-index list contains a subset of the134

objects present in a lower-index list. The higher-index lists are also called sub-lists. The135

bottom list, indexed at 0, contains all the objects present in the data structure at a given136

point in time. Unlike skip-lists, where the choice of which objects should be present in each137

sub-list is random, a splay-list’s structure is adjusted according to the access distribution138

across keys/objects.139

The following definitions make it easier to understand how the operations are handled in140

splay-lists. The height of the splay-list is the number of its sub-lists. The height of an object141

is the height of the highest sub-list containing it. Typically, we do not distinguish between142

the object and its key. The height of a key u is the height of a corresponding object hu. Key143

u is the parent of key v at height h if u is the largest key whose value is smaller than or equal144

to v, and whose height is at least h. That is, u is the last key at height h in the traversal145
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path to reach v. Critically, note that, if the height of a key v is at least h, then v is its own146

parent at height h; otherwise, its parent is some node v 6= u. In addition, we call the set of147

objects for which u is the parent at height h, its h-children or the subtree of u at height h,148

denoted by Chu .149

Our data structure supports three standard methods: contains, insert and delete.150

We say that a contains operation is successful (returns true) if the requested key is found in151

the data structure and was not marked as deleted; otherwise, the operation is unsuccessful.152

An Insert operation is successful (returns true) if the requested key was not present upon153

insertion; otherwise, it is unsuccessful. A Delete operation is successful (returns true) if the154

requested key is found and was not marked as deleted, otherwise, the operation is unsuccessful.155

As suggested, in our implementation the delete implementation does not always unlink the156

object from the lists–instead, it may just mark it as deleted.157

For every key u, we maintain a counter hitsu, which counts the number of contains(u),158

insert(u), and delete(u) operations which visit the object. In particular, successful159

contains(u), insert(u), and delete(u) operations increment hitsu Moreover, unsuccessful160

operations can also increment hitsu if the element is physically present in the data structure,161

even though logically deleted, upon the operation. In this case, the marked element is still162

visited by the corresponding operation. (We will re-discuss this notion in the later sections,163

but the simple intuition here is that we cannot store access counts for elements which are not164

physically present in the data structure, and therefore ignore their access counts.) We will165

refer to operations that visits an object with the corresponding key simply as hit-operations.166

For any set of keys S, we define a function hits(S) to be the sum of the number of167

hits-operations performed to the keys in S. As usual, sentinel head and tail nodes are168

added to all sub-lists. The height of a sentinel node height is equal to the height of the169

splay-list itself, and exceeds the height of all other nodes by at least 1. By convention,170

hitshead = hitstail = 1.171

2.1 The contains Operation172

Overview. The contains operation consists of two phases: the search phase and the balancing173

phase. The search phase is exactly as in skip-list: starting from the head of the top-most174

list, we traverse the current list until we find the last object with key lower than or equal to175

the search key. If this object’s key is not equal to the search key, the search continues from176

the same object in the lower list. Otherwise, the search operation completes. The process is177

repeated until either the key is found or the algorithm attempts to descend from the bottom178

list, in which case the key is not present.179

If the operation finds its target object, its hits counter is incremented and the balancing180

phase starts: its goal is to update the splay-list’s structure to better fit the access distribution,181

by traversing the search path backwards and checking two conditions, which we call the182

ascent and descent conditions.183

We now overview these conditions. For the descent condition, consider two neighbouring184

nodes at height h, corresponding to two keys v < u. Assume that both v and u are on level185

h, and consider their respective subtrees Chv and Chu . Assume further that the number of hits186

to objects in their subtrees (hits(Chv ∪ Chu)) became smaller than a given threshold, which187

we deem appropriate for the nodes to be at height h. (This threshold is updated as more and188

more operations are performed.) To fix this imbalance, we can “merge” these two subtrees,189

by descending the right neighbour, u, below v, thus creating a new subtree of higher overall190

hit count. Similarly, for the ascent condition, we check whether an object’s subtree has higher191

hit count than a threshold, in which case we increase its height by one.192

Now, we describe the conditions more formally. Assume that the total number of hit-193
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operations to all objects, including those marked for deletion, appearing in splay-list is m,194

and that the current height of the splay-list is equal to k + 1. Thus, there are k sub-lists,195

and the sentinel sub-list containing exclusively head and tail. Excluding the head, for each196

object u on a backward path, the following conditions are checked in order.197

The Descent Condition. Since u is not the head, there must exist an object v which
precedes it in the forward traversal order, such that v has height ≥ hu. If

hits(Chu
u ) + hits(Chu

v ) ≤ m

2k−hu
,

then the object u is demoted from height hu, by simply being removed from the sub-list at198

height hu. The object stays a member of the sub-list at height hu − 1 and hu is decremented.199

The backward traversal is then continued at v.200

The Ascent Condition. Let w be the first successor of u in the list at height hu, such
that w has height strictly greater than hu. Denote the set of objects with keys in the interval
[u,w) with height equal to hu by Su. If the number of hits m is greater than zero and the
following inequality holds: ∑

x∈Su

hits(Chu
x ) > m

2k−hu−1 ,

then u is promoted and inserted into the sub-list at height hu + 1. The backward traversal is201

then continued from u, which is now in the higher-index sub-list. The rest of the path at202

height hu is skipped. Note that the object u is again checked against the ascent condition at203

height hu + 1, so it may be promoted again. Also note that the calculated sum is just an204

interval sum, which can be maintained efficiently, as we show later.205

Splay-List Initialization and Expansion. Initially, the splay-list is empty and has only206

one level with two nodes, head and tail. Suppose that the total number of hits to objects in207

splay-list is m. The lowest level on which the object can be depends on how low the element208

can be demoted. Suppose that the current height of the list is k + 1. Consider any object209

at the lowest level 0: in the descent condition we compare hits(C0
u) + hits(C0

v ) against m
2k .210

While m is less than 2k+1, the object cannot satisfy this condition since Chu
v ≥ hitsv ≥ 1, but211

when m becomes larger than this threshold, it could. Thus, we have to increase the height212

of splay-list and add a new list to allow such an object to be demoted. By that, the height213

of the splay-list is always logm. This process is referred to as splay-list expansion. Notice214

that this procedure could eventually lead to a skip-list of unbounded height. However, this215

height does not exceed 64, since this would mean that we performed at least 264 successful216

operations which is unrealistic. We discuss ways to make this procedure more practical, i.e.,217

lazily increase the height of an object only on its traversal, in Section 5.218

The Backward Pass. Now, we return to the description of the contains function. The219

first phase is the forward pass, which is simply the standard search algorithm which stores220

the traversal path. If the key is not found, then we stop. Otherwise, suppose that we found221

an object t. We have to restructure the splay-list by applying ascent and descent conditions.222

Note, that the only objects that are affected and can change their height lie on the stored223

path. For that, in each object u we store the total hits to the object itself, hitsu, as well224

as the total number of hits into the “subtree” of each height excluding u, i.e., for all h we225

maintain hitshu = hits(Chu \ {u}). We denote the hits to the object u as shu.226

Thus, when traversing the path backwards and we check the following:227

1. If the object u 6= t is a parent of t on some level h, we then increase its hitshu counter.228

Note that h ≤ hu.229

2. Check the descent condition for v and u as shv + hitshu
v + shu + hitshu

u ≤ m
2k−hu

. If this230

is satisfied, demote u and increment hitshu
v by shu + hitshu

u . Continue on the path.231
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(a) Before contains(5) (b) After contains(5)

Figure 1 Example of splay-list

3. Check the ascent condition for u by comparing
∑
w∈Su

shw +hitshu
w with m

2k−hu−1 . If this232

is satisfied, add u to the sub-list hu + 1, set hitshu+1
u to the calculated sum minus shu233

and decrease hitshu+1
v by the calculated sum, where h is a parent of u at height hu + 1.234

We then continue with the sub-list on level hu + 1. Below, we describe how to maintain235

this sum in constant time.236

The partial sums trick. Suppose that p(u) is the parent of u on level hu + 1. During the237

forward pass, we compute the sum of hits(Chu
x ) = shx + hitshu

x over all objects x which lie238

on the traversal path between p(u) (including it) and u (not including it). Denote this sum239

by Pu. Thus, to check the ascent condition on the backward pass, we simply have to compare240 ∑
x∈Su

shu + hits(Chu
x ) = shp(u) + hitshu+1

p(u) − Pu against m
2k−hu−1 . Observe that the partial241

sums hits(Su) can be increased only by one after each operation. Thus, the only object on242

level h that can be promoted is the leftmost object on this level. For the first object u, Su243

can be calculated as hitshu+1
p(u) − hits

hu

p(u). In addition, after the promotion of u, only u and244

p(u) have their hitshu+1 counters changed. Moreover, there is no need to skip the objects to245

the left of the promoted object, as suggested by the ascent condition, since there cannot be246

any such objects.247

Example. To illustrate, consider the splay-list provided on Figure 1a. It contains keys248

1, . . . , 6 with values m = 10 and k = blogmc = 3. We can instantiate the sets described above249

as follows: C1
3 = {3, 4, 5}, C1

2 = {2}, C1
head = {head, 1} and C2

head = {head, 1, 2, . . . , 5}. At250

the same time, S4 = {4, 5}, S3 = {3} and S2 = {2, 3}. In the Figure, the cell of u at height251

h > 0 contains hitshu, while the cell at height 0 contains shu. For example, sh3 = 1 and252

hits1
3 = sh4 + sh5 = 2, sh2 = 1 and hits1

2 = 0, sh1 = 1 and hits2
head = 5.253

Assume we execute contains(5). On the forward path, we find 5 and the path to254

it is 2 → 3 → 4 → 5. We increment m, sh5, hits1
3 and hits2

head by one. Now, we have255

to adjust our splay-list on the backward path. We start with 5: we check the descent256

condition by comparing hits(C0
4 ) + hits(C0

5 ) = 3 with m
2k−0 = 11

8 and the ascent condition257

by comparing hits(S5) = 2 with m
2k−0−1 = 11

4 . Obviously, neither condition is satisfied. We258

continue with 4: the descent condition by comparing hits(C0
3 ) + hits(C0

4 ) = 2 with 11
8 and259

the ascent condition by comparing hits(S4) = 3 with 11
4 — the ascent condition is satisfied260

and we promote object 4 to height 1 and change the counter hits1
3 to 2. For 3, we compared261

hits(C1
2 ) + hits(C1

3 ) = 2 with 11
4 and hits(S3) = 4 with 11

2 — the descent condition is262

satisfied and we demote object 3 to height 0 and change the counter hits1
2 to 1. Finally, for263

2 we compared hits(C1
1 ) + hits(C1

2 ) = 4 with 11
4 and hits(S2) = 5 with 11

2 — none of the264

conditions are satisfied. As a result we get the splay-list shown on Figure 1b.265
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2.2 Insert and Delete operations266

Insertion. Inserting a key u is done by first finding the object with the largest key lower than267

or equal to u. In case an object with the key is found, but is marked as logically deleted, the268

insertion unmarks the object, increases its hits counter and completes successfully. Otherwise,269

u is inserted on the lowest level after the found object. This item has hits count set to 1.270

In both cases, the structure has to be re-balanced on the backward pass as in contains271

operation. Unlike the skip-list, splay-lists always physically inserts into the lowest-level list.272

Deletion. This operation needs additional care. The operation first searches for an object273

with the specified key. If the object is found, then the operation logically deletes it by marking274

it as deleted, increases the hits counter and performs the backward pass. Otherwise, the275

operation completes.276

Notice that we maintain the total number of hits on currently logically deleted objects.277

When it becomes at least half of m, the total number of hits to all objects, we initialize a278

new structure, and move all non-deleted objects with corresponding hits to it.279

Efficient Rebuild. The only question left is how to build a new structure efficiently enough280

to amortize the performed delete operations. Suppose that we are given a sorted list of n281

keys k1, . . . , kn with the number of hit-operations on them h1, . . . , hn, where their sum is282

equal to M . We propose an algorithm that builds a splay-list such that no node satisfies the283

ascent and descent conditions, using O(M) time and O(n logM) memory.284

The idea behind the algorithm is the following. We provide a recursive procedure285

that takes the contiguous segment of keys kl, . . . , kr with the total number of accesses286

H = hl + . . .+ hr. The procedure finds p such that 2p−1 ≤ H < 2p. Then, it finds a key ks287

such that hl + . . .+ hs−1 is less than or equal to H
2 and hs+1 + . . .+ hr is less than H

2 . We288

create a node for the key ks with the height p, and recursively call the procedure on segments289

kl, . . . , ks−1 and ks+1, . . . , kr. There exists a straightforward implementation which finds the290

split point s in O(r − l), i.e., linear time. The resulting algorithm works in O(n logM) time291

and takes O(n logM) memory: the depth of the recursion is logM and on each level we292

spend O(n) steps.293

However, the described algorithm is not efficient if M is less than n logM . To achieve294

O(M) complexity, we would like to answer the query to find the split point s in O(1) time.295

For that, we prepare a special array T which contains in sorted order h1 times key k1, h2296

times key k2, . . ., hn times key kn. To get the required s, at first, we take a subarray of T297

that corresponds to the segment [l, r] under the process, i.e., hl times key kl, . . ., hr times298

key kr. Then, we take the key ki that is located in the middle cell dhl+...+hr

2 e of the chosen299

subarray. This i is our required s. Let us calculate the total time spent: the depth of the300

recursion is logM ; there is one element on the topmost level which we insert in logM lists,301

there are at most two elements on the next to topmost level which we insert in logM − 1302

lists, and etc., there are at most 2i elements on the i-th level from the top which we insert in303

logM − i lists. The total sum is clearly O(M).304

Thus, the final algorithm is: if M is larger than n logM , then we execute the first305

algorithm, otherwise, we execute the second algorithm. The overall construction works in306

O(M) time and uses O(n logM) memory.307

3 Sequential Splay-List Analysis308

Properties. We begin by stating some invariants and general propertties of the splay-list.309

I Lemma 1. After each operation, no object can satisfy the ascent condition.310

Proof. Note that we only consider the hit-operations, i.e., the operations that change hits311



XX:8 The Splay-List: A Distribution-Adaptive Concurrent Skip-List

counters, because other operations do not affect any conditions. We will proceed by induction312

on the total number m of hit-operations on the objects of splay-list.313

For the base case m = 0, the splay-list is empty and the hypothesis trivially holds. For the314

induction step, we assume that the hypothesis holds before the start of the m-th operation,315

and we verify that it holds after the operation completes.316

First, recall that, for a fixed object u, the set Su is defined to include all objects of the317

same height between u and the successor of u with height greater than hu. Specifically, we318

name the sum
∑
x∈Su

hits(Chx ) in the ascent condition as the object u’s ascent potential.319

Note that after the forward pass and the increment of shu and hitshv counters where v is a320

parent of u on height h, only the objects on the path have their ascent potential increased321

by one and, thus, only they can satisfy the ascent condition.322

Now, consider the restructuring done on the backward pass. If the object u satisfies the323

descent condition, i.e., v precedes u and T = hits(Chu
v ) + hits(Chu

u ) ≤ m
2k−h , we have to324

demote it. After the descent, the ascent potential of the objects between v and u on the325

lower level hu − 1 have changed. However, these potentials cannot exceed T , meaning that326

these objects cannot satisfy the ascent condition.327

Consider the backward pass, and focus on the set of objects at height h. We claim that328

only the leftmost object at that height can be promoted, i.e., its preceding object has a height329

greater than h. This statement is proven by induction on the backward path. Suppose that330

we have ` objects with height h on the path, which we denote by u1, u2, . . . , u`. By induction,331

we know that none of the objects on the path with lower height can ascend higher than h:332

these objects appear to the right of u1. We know that each object was accessed at least once,333

shui
≥ 1, and, thus, we can guarantee that hits(Su1) > hits(Su2) > . . . > hits(Su`

). Since334

the ascent potentials hits(Sui
) are increased only by one per operation, the first and the only335

object that can satisfy the ascent condition is u1, i.e., the leftmost object with the height h.336

If it satisfies the condition, we promote it. Consider the predecessor of u1 on the forward337

path: the object v with height hv > h. Object u1 can be promoted to height hv, but not338

higher, since the ascent potential of the objects on the path with height hv does not change339

after the promotion of u, and only the leftmost object on that level can ascend. However,340

note that hitshv
v can decrease and, thus, it can satisfy the descent condition, while u1 cannot341

since hitshu1
was equal to hits(Su1) before the promotion and it satisfied the ascent condition.342

Because the only objects that can satisfy the ascent condition lie on the path, and we343

promoted necessary objects during the backward pass, no object may satisfy the ascent344

condition at the end of the traversal. That is exactly what we set out to prove. J345

I Lemma 2. Given a hit-operation with argument u, the number of sub-lists visited during346

the forward pass is at most 3 + log m
shu

.347

Proof. During the forward pass the number of hits does not change; thus, according to348

Lemma 1, the ascent condition does not hold for u. Hence shu ≤ m
2k−hu−1 . We get that349

k − hu − 1 ≤ log m
shu

. Since during the forward pass (k + 1) − hu + 1 sub-lists are visited350

(notice the sentinel sub-list), the claim follows. J351

I Lemma 3. In each sub-list, the forward pass visits at most four objects that do not satisfy352

the descent condition.353

Proof. Suppose the contrary and that the algorithm visits at least five objects u1, u2, . . . , u5354

in order from left to right, that do not satisfy the descent condition in sub-list h. The height355

of the objects u2, . . . , u5 is h, while the height of u1 might be higher. See Figure 2.356
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Figure 2 Depiction of the proof of Lemma 3

357 Note that if the descent condition does
not hold for an object u, the demotion of an-
other object of the same height cannot make
the descent condition for u satisfiable. There-
fore, since the condition is not met for u3
and u5, the sum hits(Su2) ≥ (hits(Chl(u3)) +
hits(Chu3

))+(hits(Chl(u5))+hits(Chu5
)) > m

2k−h +
m

2k−h = m
2k−h−1 , where l(u3) and l(u5) are the

predecessors of u3 and u5 on height h. Note
that it is possible that l(u3) and l(u5) would
be the same as u2 and u4 respectively. This
means that u2 satisfies the ascent condition, which contradicts Lemma 1.

Note that we considered four objects since
u1 is an object of height greater than h. J

Since only the leftmost object can be promoted, the backward path coincides with the358

forward path. Thus, the following lemma trivially holds.359

I Lemma 4. During the backward pass, in each sub-list h, at most four objects are visited360

that do not satisfy the descent condition.361

I Theorem 5. If d descents occur when accessing object u, the sum of the lengths of the362

forward and backward paths is at most 2d+ 8y, where y = 3 + log m
shu

.363

Proof. Each object satisfying the descent condition is passed over twice, once in the forward364

and again in the backward pass. According to Lemma 2, there are at most y sub-lists that365

are visited during either passes. Excluding the descended objects, the total length of the366

forward path, according to Lemma 3 is 4y. Lemma 4 gives the same result for the backward367

path. Hence, the total length is 2d+ 8y which is the desired result. J368

Asymptotic analysis. We can now finally state our main analytic result.369

I Theorem 6. The hit-operations with argument u take amortized O
(

log M
shu

)
time, where370

M is the total number of hits to non-marked objects of the splay-list. At the same time, all371

other operations take amortized O(logM) time.372

Proof. We will prove the same bounds but with m instead of M . Please note that since we373

rebuild the splay-list is triggered when M becomes less than m
2 , we can always assume that374

M ≥ m
2 and, thus, the bounds with m and M differ only by a constant.375

First, we deal with the splay-list expansion procedure: it adds only O(1) amortized time376

to an operation. The expansion happens when m is equal to the power of two and costs O(m).377

Since, from the last expansion we performed at least m
2 hits operations we can amortize the378

cost O(m) against them. Note that each operation will be amortized against only once, thus379

the amortization increases the complexity of an operation only by O(1).380

Since the primitive operations such as following the list pointer, a promotion with the381

ascent check and a demotion with the descent check are all O(1), the cost of an operation is382

in the order of the length of the traversed path. According to Theorem 5, the total length383

of the traversed path during an operation is 2 · d+ 8 · y where d is the number of vertices384

to demote and y is the number of traversed layers: if the object u was found y is equal to385

O
(

log m
shu

)
, otherwise, it is equal to logm, the height of the splay-list.386

Note that the number of promotions per operation cannot exceed the number of passed387

levels y, since only one object can satisfy the ascent condition per level. At the same time,388
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the total number of demotions across all operations, i.e., the sum of all d terms, cannot389

exceed the total number of promotions. Thus, the amortized time of the operation can be390

bounded by O(number of levels passed) which is equal to what we required.391

The amortized bound for delete operation needs some additional care. The operation392

can be split into two parts: 1) find the object in the splay-list, mark it as deleted and393

adjust the path; 2) the reconstruction part when the object is physically deleted. The394

first part is performed in O(log m
shu

) as shown above. For the second part, we perform the395

reconstruction only when the number of hits on objects marked for deletion m−M exceeds396

the number of hits on all objects m, and, thus, M ≤ m
2 . The reconstruction is performed in397

O(M) = O(m) time as explained in Efficient Rebuild part. Thus we can amortize this O(m)398

to hits operations performed on logically deleted items. Since there were O(m−M) = O(m)399

such operations, the amortization “increases” their complexities only on some constant and400

only once, since after the reconstruction the corresponding objects are going to be deleted401

physically. J402

I Remark 7. For example, if all our operations were successful contains, then the asymptotics403

for contains(u) will be O(log m
shu

) where m is the total number of operations performed.404

Furthermore, under the same load we can prove the static optimality property [15]. Let405

mi ≤ m be the total number of operations when we executed i-th operation on u, then the406

total time spent is O
(
shu∑
i=1

log mi

i

)
= O

(
shu∑
i=1

log m
i

)
which by Lemma 3 from [1] is equal to407

O(shi + shi · log m
shi

). This is exactly the static optimality property.408

4 Relaxed Rebalancing409

If we build the straightforward concurrent implementation on top of the sequential imple-410

mentation described in the previous section, it will obviously suffer in terms of performance411

since each operation (either contains, insert or delete) must take locks on the whole412

path to update hits counters. This is not a reasonable approach, especially in the case of413

the frequent contains operation. Luckily for us, contains can be split into two phases: the414

search phase, which traverses the splay-list and is lock-free, and the balancing phase, which415

updates the counters and maintains ascent and descent conditions.416

A straightforward heuristic is to perform rebalancing infrequently—for example, only417

once in c operations. For this, we propose that the operation perform the update of the418

global operation counter m and per-object hits counter shu only with a fixed probability 1/c.419

Conveniently, if the operation does not perform the global operation counter update and420

the balancing, the counters will not change and, so, all the conditions will still be satisfied.421

The only remaining question is how much this relaxation will affect the data structure’s422

guarantees. The next result characterizes the effects of this relaxation.423

I Theorem 8. Fix a parameter c ≥ 1. In the relaxed sequential algorithm where oper-424

ation updates hits counters and performs balancing with probability 1
c , the hit-operation425

takes O
(
c · log m

shu

)
expected amortized time, where m is the total number of hit-operations426

performed on all objects in splay-list up to the current point in the execution.427

Proof. The theoretical analysis above (Theorems 5 and 6) is based on the assumption that428

the algorithm maintains exact values of the counters m and shu — the total number of429

hit-operations performed to the existing objects and the current number of hit-operations to430

u. However, given the relaxation, the algorithm can no longer rely on m and shu since they431

are now updated only with probability c. We denote by m′ and sh′u the relaxed versions of432

the real counters m and shu.433
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The proof consists of two parts. First, we show that the amortized complexity of434

hits operation to u is equal to O
(
c · log m′

sh′u

)
in expectation. Secondly, we show that435

the approximate counters behave well, i.e., E
[
log m′

sh′u

]
= O

(
log m

shu

)
. Bringing these436

two together yields that the amortized complexity of hits operations is O
(
c · log m

shu

)
in437

expectation.438

The first part is proven similarly to Theorem 6. We start with the statement that follows439

from Theorem 5: the complexity of any contains operation is equal to 2d+ 8y where d is440

the number of objects satisfying the descent condition and y = 3 + log m′

sh′u
. Obviously, we441

cannot use the same argument as in Theorem 6 since now d is not equal to the number of442

descents: the objects which satisfy the descent condition are descended only with probability443
1
c . Thus, we have to bound the sum of d by the total number of descents.444

Consider some object x that satisfies the descent condition, i.e. it is counted in d term of445

the complexity. Then x will either be descended, or will not satisfy the descent condition446

after c operations passing through it in expectation. Mathematically, the event that x is447

descended follows an exponential distribution with success (demotion) probability 1
c . Hence,448

the expected number of operations before x descends is c.449

This means that the object x will be counted in terms of type d no more than c times450

in expectation. By that, the total complexity of all operations is equal to the sum of 8y451

terms plus 2c times the number of descents. Since the number of descents cannot exceed the452

number of ascents, which in turn cannot exceed the sum of the y terms, the total complexity453

does not exceed the sum of 10 · c · y terms. Finally, this means that the amortized complexity454

complexity of hits operation is O(c · y) = O
(
c · log m

sh′u

)
in expectation.455

Next, we prove the second main claim, i.e., that

E
(

log m′

sh′u

)
= O

(
log m

shu

)
.

Note that the relaxed counters m′ and sh′u are Binomial random variables with probability456

parameter p = 1
c , and number of trials m and shu, respectively.457

To avoid issues with taking the logarithm of zero, let us bound E
(

log m′+1
sh′u+1

)
, which458

induces only a constant offset. We have:459

E
[
log m′ + 1

sh′u + 1

]
=E [log(m′ + 1)] − E [log(sh′u + 1)]460

≤
Jensen

log(Em′ + 1) − E log(sh′u + 1) = log(mp+ 1) − E log(sh′u + 1).461

462

The next step in our argument will be to lower bound E log(sh′u + 1). For this, we can463

use the observation that sh′u ∼ Binshu,p, the Chernoff bound, and a careful derivation to464

obtain the following result, whose proof is left to the Appendix A.465

B Claim 9. If X ∼ Binn,p and np ≥ 3n2/3 then E [log(X + 1)] ≥ lognp− 4.466

Based on this, we obtain log(mp+ 1)−E[log(sh′u + 1)] ≤ log(mp+ 1)− log(shu · p) + 4 ≤467

log m
shu

+ 5.468

However, this bound works only for the case when shu · p ≥ 3 · (shu)2/3. Consider the469

opposite: shu ≤ 27
p3 . Then, E[log(sh′u + 1)] ≥ 0 ≥ log shu − log 27

p3 . Note that the last term is470

constant, so we can conclude that E[log m′+1
sh′u+1 ] ≤ log m

shu
+C. This matches our initial claim471

that E[log m′+1
sh′u+1 ] = O(log m

shu
). J472
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5 The Concurrent Splay-List473

Overview. In this section we describe on how to implement scalable lock-based implementa-474

tion of the splay-list described in the previous section. The first idea that comes to the mind475

is to implement the operations as in Lazy Skip-list [13]: we traverse the data structure in a476

lock-free manner in the search of x and fill the array of predecessors of x on each level; if x477

is not found then the operation stops; otherwise, we try to lock all the stored predecessors; if478

some of them are no longer the predecessors of x we find the real ones or, if not possible, we479

restart the operation; when all the predecessors are locked we can traverse and modify the480

backwards path using the presented sequential algorithm without being interleaved. When481

the total number of operations m becomes a power of two, we have to increase the height of482

the splay-list by one: in a straightforward manner, we have to take the lock on the whole483

data structure and then rebuild it.484

There are several major issues with the straightforward implementation described above.485

At first, the balancing part of the operation is too coarse-grained—there are a lot of locks to486

be taken and, for example, the lock on the topmost level forces the operations to serialize.487

The second is that the list expansion by freezing the data structure and the following rebuild488

when m exceeds some power of two is very costly.489

Relaxed and Forward Rebalancing. The first problem can be fixed in two steps. The490

most important one is to relax guarantees and perform rebalancing only periodically, for491

example, with probability 1
c for each operation. Of course, this relaxation will affect the492

bounds—please see Section 4 for the proofs. However, this relaxation is not sufficient, since493

we cannot relax the balancing phase of insert(u) which physically links an object. All these494

insert functions are going to be serialized due to the lock on the topmost level. Note that495

without further improvements we cannot avoid taking locks on each predecessor of x, since496

we have to update their counters. We would like to have more fine-grained implementation.497

However, our current sequential algorithm does not allow this, since it updates the path only498

backwards and, thus, needs the whole path to be locked. To address this issue, we introduce499

a different variant of our algorithm, which does rebalancing on the forward traversal.500

We briefly describe how this forward-pass algorithm works. We maintain the basic501

structure of the algorithm. Assume we traverse the splay-list in the search of x, and suppose502

that we are now at the last node v on the level h which precedes x. The only node on level503

h − 1 which can be ascended is v’s successor on that level, node u: we check the ascent504

condition on u or, in other words, compare
∑
w∈Su

hits(Ch−1
w ) = hitshv − hitsh−1

v with m
2k−h ,505

and promote u, if necessary. Then, we iterate through all the nodes on the level h− 1 while506

the keys are less than x: if the node satisfies the descent condition, we demote it. Note that507

the complexity bounds for that algorithm are the same as for the previous one and can be508

proven exactly the same way (see Theorem 6).509

The main improvement brought by this forward-pass algorithm is that now the locks510

can be taken in a hand-over-hand manner: take a lock on the highest level h and update511

everything on level h− 1; take a lock on level h− 1, release the lock on level h and update512

everything on level h− 2; take a lock on level h− 2, release the lock on level h− 1 and update513

everything on level h− 3; and so on. By this locking pattern, the balancing part of different514

operations is performed in a sequential manner: an operation cannot overtake the previous515

one and, thus, the hits counters cannot be updated asynchronously. However, at the same516

time we reduce contention: locks are not taken for the whole duration of the operation.517

Lazy Expansion. The expansion issue is resolved in a lazy manner. The splay-list maintains518

the counter zeroLevel which represents the current lowest level. When m reaches the next519

power of two, zeroLevel is decremented, i.e., we need one more level. (To be more precise,520

we decrement zeroLevel also lazily: we do this only when some node is going to be demoted521
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from the current lowest level.) Each node is allocated with an array of next pointers with522

length 64 (as discussed, the height 64 allows us to perform 264 operations which is more than523

enough) and maintains the lowest level to which the node belonged during the last traverse.524

When we traverse a node and it appears to have the lowest level higher than zeroLevel, we525

update its lowest level and fill the necessary cells of next pointers. By doing that we make a526

lazy expansion of splay-list and we do not have to freeze whole data structure to rebuild. For527

the pseudo-code of lazy expansion, please see Figure 9. For the pseudo-code of the splay-list,528

we refer to Appendix B.529

The following Theorem trivially holds due to the specificity of skip-list: if an operation530

reaches a sub-list of lower height than its target elementm it will still find it, if it is present.531

I Theorem 10. The presented concurrent splay-list algorithm is linearizable.532

6 Experimental Evaluation533

Environment and Methodology. We evaluate algorithms on a 4-socket Intel Xeon Gold534

6150 2.7 GHz server with 18 threads per socket. The code is written in C++ and was535

compiled by MinGW GCC 6.3.0 compiler with -O2 optimizations. Each experiment was536

performed 10 times and all the values presented are averages. The code is available at537

https://cutt.ly/disc2020353.538

Workloads and Parameters. Due to space constraints, our experiments in this section539

consider read-only workloads with unbalanced access distribution, which are the focus of540

our paper. We also execute uniform and read-write workloads, whose results we present in541

Appendix C. In our experiments, we describe a family of workloads by n − x − y, which542

should be read as: given n keys, x% of the contains are performed on y% of the keys. More543

precisely, we first populate the splay-list with n keys and randomly choose a set of “popular”544

keys S of size y · n. We then start T threads, each of which iteratively picks an element and545

performs the contains operation, for 10 seconds. With probability x we choose a random546

element from S, otherwise, we choose an element outside of S uniformly at random.547

For our experiments, we choose the following workloads: 105 − 90 − 10, 105 − 95 − 5548

and 105 − 99− 1. That is, 90%, 95%, and 99% of the operations go into 10%, 5%, and 1%549

of the keys, respectively. Further, we vary the balancing rate/probability, which we denote550

by p: this is the probability that a given operation will update hit counters and perform551

rebalancing. In Appendix C, we also examine uniform and Zipf distributions.552

Goals and Baselines. We aim to determine whether 1) the splay-list can improve over the553

throughput of the baseline skip-list by successfully leveraging the skewed access distribution;554

2) whether it scales, and what is the impact of update rates and number of threads; and,555

finally, 3) whether it can be competitive with the CBTree data structure in sequential and556

concurrent scenarios.557

Sequential evaluation. In the first round of experiments, we compare how the single-558

threaded splay-list performs under the chosen workloads. We execute it with different559

settings of p, the probability of adjustment, taking values 1, 1
2 ,

1
5 ,

1
10 ,

1
100 and 1

1000 . We560

compare against the sequential skip-list and CB-Tree. We measure two values: the number561

of operations per second and the average length of the path traversed. The results are562

presented in Tables 1—3 (Splay-List is abbreviated SL). For readability, throughput results563

are presented relative to the skip-list baseline.564

Relative to the skip-list, the first observation is that, for high update rates (1 through565

1/5), the splay-list predictably only matches or even loses performance. However, this trend566

improves as we reduce the update rate, and, more significantly, as we increase the access567

rate imbalance: for 99− 1, the sequential splay-list obtains a throughput improvement of568

2×. This improvement directly correlates with the length of the access path (see third569

https://cutt.ly/disc2020353
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105 − 90− 10 Skip-list SL p = 1 SL p = 1
2 SL p = 1

5 SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/sec 2874600.0 0.60x 0.78x 1.00x 1.10x 1.12x 1.02x
length 30.81 23.06 23.07 23.08 23.13 23.75 25.06

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5 CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 1.15x 1.36x 1.59x 1.71x 1.71x 1.52x
length 9.13 9.14 9.15 9.17 9.37 9.81

Table 1 Operations per second and average length of a path on 105 − 90− 10 workload.

105 − 95− 5 Skip-list SL p = 1 SL p = 1
2 SL p = 1

5 SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/sec 2844520.0 0.69x 0.93x 1.21x 1.34x 1.39x 1.17x
length 30.84 21.62 21.63 21.65 21.70 22.33 24.46

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5 CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 1.33x 1.61x 1.90x 2.04x 2.09x 1.79x
length 8.61 8.61 8.62 8.65 8.90 9.58

Table 2 Operations per second and average length of a path on 105 − 95− 5 workload.

105 − 99− 1 Skip-list SL p = 1 SL p = 1
2 SL p = 1

5 SL p = 1
10 SL p = 1

100 SL p = 1
1000

ops/sec 3559320.0 0.85x 1.19x 1.65x 1.89x 2.01x 1.64x
length 31.00 17.13 17.16 17.23 17.30 18.59 21.00

CBTree p = 1 CBTree p = 1
2 CBTree p = 1

5 CBTree p = 1
10 CBTree p = 1

100 CBTree p = 1
1000

ops/secs 1.37x 1.72x 2.06x 2.25x 2.36x 2.04x
length 7.25 7.23 7.26 7.28 7.52 8.53

Table 3 Operations per second and average length of a path on 105 − 99− 1 workload.
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Figure 3 Concurrent throughput for 105 − 90− 10 workload.

row). At the same time, notice the negative impact of very low update rates (last column),570

as the average path length increases, which leads to higher average latency and decreased571

throughput. We empirically found the best update rate to be around 1/100, trading off572

latency with per-operation cost.573

Relative to the sequential CBTree, we notice that the splay-list generally yields lower574

throughput. This is due to two factors: 1) the CBTree is able to yield shorter access paths,575

due to its structure and constants; 2) the tree tends to have better cache behavior relative to576

the skip-list backbone. Given the large difference in terms of average path length, it may577

seem surprising that the splay-list is able to provide close performance. This is because of578

the caching mechanism: as long as the path length for popular elements is short enough so579

that they all are mostly in cache, the average path length is not critical. We will revisit this580

observation in the concurrent case.581

Concurrent evaluation. Next, we analyze concurrent performance. Unfortunately, the582

original implementation of the CBTree is not available, and we therefore re-implemented it583

in our framework. Here, we make an important distinction relative to usage: the authors of584

the CBTree paper propose to use a single thread to perform all the rebalancing. However,585

this approach is not standard, as in practice, updates could come at different threads.586
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Figure 4 Concurrent throughput for 105 − 95− 5 workload.
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Figure 5 Concurrent throughput for 105 − 99− 1 workload.

Therefore, we implement two versions of the CBTree, one in which updates are performed by587

a single thread (CBTree-Unfair), and one in which updates can be performed by every thread588

(CBTree-Fair). In both cases, synchronization between readers and writers is performed via589

an efficient readers-writers lock [8], which prevents concurrent updates to the tree. We note590

that in theory we could further optimize the CBTree to allow fully-concurrent updates via591

fine-grained synchronization. However, 1) this would require a significant re-working of their592

algorithm; 2) as we will see below, this would not change results significantly.593

Our experiments, presented in Figures 3, 4, and 5, analyze the performance of the splay-594

list relative to standard skip-list and the CBTree across different workloads (one per figure),595

different update rates (one per panel), and thread counts (X axis).596

Examining the figures, first notice the relatively good scalability of the splay-list under597

all chosen update rates and workloads. By contrast, the CBTree scales well for moderately598

skewed workloads and low update rates, but performance decays for skewed workloads and599

high update rates (see for instance Figure 5(a)). We note that, in the former case the CBTree600

matches the performance of the splay-list in the low-update case (see Figure 3(c)), but its601

performance can decrease significantly if the update rates are reasonably high (p = 1/100).602

We further note the limited impact of whether we consider the fair or unfair variant of the603

CBTree (although the Unfair variant usually performs better).604

These results may appear surprising given that the splay-list generally has longer access605

paths. However, it benefits significantly from the fact that it allows additional concurrency,606

and that the caching mechanism serves to hide some of its additional access cost. Our607

intuition here is that one critical measure is which fraction of the “popular” part of the data608

structure fits into the cache. This suggests that the splay-list can be practically competitive609

relative to the CBTree on a subset of workloads.610

Additional Experiments. The experiments in Appendix C examine 1) the overheads in611

the uniform access case, 2) performance for a Zipf access distribution; 3) performance under612
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moderate insert/delete rates. We also examine performance over longer runs, as well as the613

correlation between element height in the list and its “popularity.”614

7 Discussion615

We revisited the question of efficient self-adjusting concurrent data structures, and presented616

the first instance of a self-adjusting concurrent skip-list, addressing an open problem posed617

by [1]. Our design ensures static optimality, and has an arguably simple structure and618

implementation, which allows for additional concurrency and good performance under619

skewed access. In addition, it is the first design to provide guarantees under approximate620

access counts, required for good practical behavior. In future work, we plan to expand621

the experimental evaluation to include a range of real-world workloads, and to prove the622

guarantees under concurrent access.623
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A Deferred Proofs681

B Claim 9. If X ∼ Binn,p and np ≥ 3n2/3 then

E [log(X + 1)] ≥ lognp− 4.

Proof. Recall the standard Chernoff bound, which says that ifX ∼ Binn,p, then P (|X−np| >682

δnp) ≤ 2e−µδ2/3. Applying this with δ = 1
n1/3p

, we obtain P (|X − np| > n
2
3 ) ≤ 2e−

n1/3
3p2 .683

E log(X + 1) = E log(np + (X − np + 1)) = lognp + E log
(

1 + X−np+1
np

)
= lognp +684

n∑
k=0

pk log
(

1 + k−np+1
np

)
≥

Taylor series and
1+ k−np+1

np ≥ 1
np

685

≥ lognp+
np+n2/3∑

k=np−n2/3
pk

(
k−np+1
np − (k−np+1)2

2n2p2 + . . .
)

+ P (|X − np| > n
2
3 ) · log 1

np ≥ lognp −686

np+n2/3∑
k=np−n2/3

pk

(
2n2/3

np + (2n2/3)2

2(np)2 + . . .
)
−2 lognp·e−

n1/3
3p2 ≥∑np+n2/3

k=np−n2/3 pk≤1

lognp−
(

2n2/3

np + (2n2/3)2

(np)2 + . . .
)
−687

2 lognp · e−
n1/3
3p2 = lognp − 1

1− 2n2/3
np

− 2 lognp · e−
n1/3
3p2 ≥ lognp − 3 − 2 lognp · e−

n1/3
3p2 ≥688

lognp− 4. J689

B Pseudo-code690

In this section we introduce the pseudo-code for contains operation. Insert and delete691

(that simply marks) operations are performed similarly. The rebuild is a little bit complicated692

since we have to freeze whole data structure, however, since we talk about lock-based693

implementations it can be simply done by providing the global lock on the data structure.694

The main class that is used is Node (Figure 6). It contains nine fields: 1) key field695

stores the corresponding key, 2) value field stores the value stored for the corresponding696

key, 3) zeroLevel field indicates the lowest sub-list to which the object belongs (for lazy697

expansion), 4) topLevel field indicates the topmost sub-list to which the object belongs,698

5) lock field allows to lock the object, 6) selfhits field stores the total number of hit-operations699

performed to key, i.e., shkey, 7) next[h] is the succesor of the object in the sub-list of height700

h, 8) hits[h] equals to hitshkey or, in other words, Chkey− selfhits, and, finally, 9) deleted mark701

that indicates whether the key is logically deleted. The splay-list itself is represented by class702

SplayList with five fields: 1) m field stores the total number of hit-operations, 2) M field703

stores the total number of hit-operations to non-marked objects, 3) zeroLevel indicates the704

current lowest level (for lazy restructuring), 4) head and tail are sentinel nodes with −∞705

and +∞ keys, correspondingly. Moreover, the algorithm has a parameter p which is the706

probability how often we should perform the balancing part of contains function.707

708

709
1 class Node:710

2 K key711

3 V value712
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4 int zeroLevel713

5 int topLevel714

6 Lock lock715

7 int selfhits716

8 Node next[MAX_LEVEL]717

9 int hits[MAX_LEVEL]718

10 bool deleted719

11720

12 class SplayList:721

13 int m722

14 int M723

15 int zeroLevel724

16 Node head725

17 Node tail726

18727

19 SplayList list728

20 double p729730

Figure 6 The data structure class definitions.731

The contains function is depicted at Figure 7. If find did not find an object with the732

corresponding key then we return false. Otherwise, we execute balancing part, i.e., function733

update, with the probability p.734

735
1 fun contains(K key):736

2 Node node ← find(key)737

3 if node = null:738

4 return false739

5 if random() < p:740

6 update(key)741

7 return not node.deleted742743

Figure 7 Contains function744

The find method which checks the existence of the key almost identical to the standard745

find function in skip-lists. It is presented on the following Figure 8.746

747
1 fun find(K key):748

2 pred ← list.head749

3 succ ← head.next[MAX_LEVEL]750

4 for level ← MAX_LEVEL-1 .. zeroLevel:751

5 updateUpToLevel(pred, level)752

6 succ ← pred.next[level]753

7 if succ = null:754

8 continue755

9 updateUpToLevel(succ, level)756

10 while succ.key < key:757

11 pred ← succ758

12 succ ← pred.next[level]759

13 if succ = null:760

14 break761

15 updateUpToLevel(succ, level)762

16 if succ 6= null and succ.key = key:763

17 return succ764

18 return null765766

Figure 8 Find function767

Note, that as discussed in lazy expansion part, when we pass the object we check (Figure 8768

Lines 5 and 9) whether it should belong to lower levels, i.e., the expansion was performed,769

and if it is we update it. For the lazy expansion functions we refer to the next Figure 9.770

771
1 // this function is called only when node.lock is taken772

2 fun updateZeroLevel(Node node):773

3 if node.zeroLevel > list.zeroLevel:774

4 node.hits[node.zeroLevel - 1] ← 0775
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5 node.next[node.zeroLevel - 1] ← node.next[node.zeroLevel]776

6 node.zeroLevel--777

7 return778

8779

9 fun updateUpToLevel(Node node, int level):780

10 node.lock.lock()781

11 while node.zeroLevel > level:782

12 updateZeroLevel(node)783

13 node.lock.unlock()784

14 return785786

Figure 9 Lazy expansion functions787

The method update that performs the balancing phase in forward pass is presented on788

Figure 10.789

790
1 fun getHits(Node node, int h):791

2 if node.zeroLevel > h:792

3 return node.selfhits793

4 return node.selfhits + node.hits[h]794

5795

6 fun update(K key):796

7 currM ← fetch_and_add(list.m)797

8798

9 list.head.lock()799

10 list.head.hits[MAX_LEVEL]++800

11 Node pred ← list.head801

12 for h ← MAX_LEVEL-1 .. zeroLevel:802

13 while pred.zeroLevel > h:803

14 updateZeroLevel(pred)804

15 predpred ← pred805

16 curr ← pred.next[h]806

17 updateUpToLevel(curr, h)807

18 if curr.key > key:808

19 pred.hits[h]++809

20 continue810

21811

22 found_key ← false812

23 while curr.key ≤ key:813

24 updateUpToLevel(curr, h)814

25 acquired ← false815

26 if curr.next[h].key > key:816

27 curr.lock.lock()817

28 if curr.next[h].key ≤ key:818

29 curr.lock.unlock()819

30 else:820

31 acquired ← true821

32 if curr.key = key:822

33 curr.selfhits++823

34 found_key ← true824

35 else:825

36 curr.hits[h]++826

37 // Ascent condition827

38 if h + 1 < MAX_LEVEL and h < predpred.topLevel and828

39 predpred.hits[h + 1] - predpred.hits[h] > currM
2MAX_LEV EL−1−h−1 :829

40 if not acquired:830

41 curr.lock.lock()831

42 curh ← curr.topLevel832

43 while curh + 1 < MAX_LEVEL and curh < predpred.topLevel and833

44 predpred.hits[curh + 1] - predpred.hits[curh] >834

45
currM

2MAX_LEV EL−1−curh−1 :835

46 curr.topLevel++836

47 curh++837

48 curr.hits[curh] ← predpred.hits[curh] -838

49 predpred.hits[curh - 1] - curr.selfhits839

50 curr.next[curh] ← predpred.next[curh]840

51 predpred.hits[curh] ← predpred.hits[curh - 1]841
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52 predpred.next[curh] ← curr842

53 predpred ← curr843

54 pred ← curr844

55 curr ← curr.next[h]845

56 continue846

57 // Descent condition847

58 elif curr.topLevel = h and curr.next[h].key ≤ key and848

59 getHits(curr, h) + getHits(pred, h) ≤ currM
2MAX_LEV EL−1−h :849

60 currZeroLevel ← list.zeroLevel850

61 if pred 6= predpred:851

62 pred.lock.lock()852

63 curr.lock.lock()853

64 // Check the conditions that nothing has changed854

65 if curr.topLevel 6= h or855

66 getHits(curr, h) + getHits(pred, h) > currM
2MAX_LEV EL−1−h or856

67 curr.next[h].key > key or pred.next[h] 6= curr:857

68 if pred 6= predpred:858

69 pred.lock.unlock()859

70 curr.lock.unlock()860

71 curr ← pred.next[h]861

72 continue862

73 else:863

74 if h = currZeroLevel:864

75 CAS(list.zeroLevel, currZeroLevel, currZeroLevel - 1)865

76 if curr.zeroLevel > h - 1:866

77 updateZeroLevel(curr)867

78 if pred.zeroLevel > h - 1:868

79 updateZeroLevel(pred)869

80 pred.hits[h] ← pred.hits[h] + getHits(curr, h)870

81 curr.hits[h] ← 0871

82 pred.next[h] ← curr.next[h]872

83 curr.next[h] ← null873

84 if pred 6= predpred:874

85 pred.lock.unlock()875

86 curr.topLevel--876

87 curr.lock.unlock()877

88 curr ← pred.next[h]878

89 continue879

90 pred ← curr880

91 if predpred 6= pred:881

92 predpred.lock.unlock()882

93 if found_key:883

94 pred.lock.unlock()884

95 return885

96 pred.lock.unlock()886887

Figure 10 Pseudocode of the update function.888

C Additional Experimental Results889

C.1 Uniform workload: 105 − 100− 100890

We consider a uniform workload 105 − 100− 100, i.e., the arguments of contains operations891

are chosen uniformly at random (Figure 11). As expected we lose performance lose relative892

to the skip-list due to the additional work our data structure performs. Note also that the893

CBTree outperforms Splay-List in this setting. This is also to be expected, since the access894

cost, i.e., the number of links to traverse, is less for the CBTree.895

C.2 Zipf Distribution896

We also ran the data structures on an input coming from a Zipf distribution with the skew897

parameter set to 1, which is the standard value: for instance, the frequency of words in898
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(c) p = 1/1000

Figure 11 Concurrent throughput for uniform workload.
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Figure 12 Concurrent throughput on Zipf 1 workload.

the English language satisfies this parameter. As one can see on Figure 12, our splay-list899

outperforms or matches all other data structures.900

C.3 General workloads901

In addition to read-only workloads we implemented general workloads, allowing for inserts and902

deletes, in our framework. General workloads are specified by five parameters n−r−x−y−s:903

1. n, the size of the workset of keys;904

2. r%, the amount of contains performed;905

3. x% of contains are performed on y% of keys;906

4. insert and delete chooses a key uniformly at random from s% of keys.907

More precisely, we choose n keys as set S and we pre-populate the splay-list: we add a key908

from S with probability 00%. Then, we choose s · n keys uniformly at random to get W key909

set. Also, we choose y ·n keys from inserted keys to get R key set. We start T threads, each of910

which chooses an operation: with probability r% it chooses contains and with probabilities911
100−r

2 % it chooses insert or delete. Now, the thread has to choose an argument of the912

operation: for contains operation it chooses an argument from R with probability x%,913

otherwise, it chooses an argument from S \R; for insert and delete operations it chooses914

an argument from W uniformly at random.915

We did not perform a full comparison with all other data structures (skip-list and the916

CBTree). However, we did a comparison to the splay-list iteself on the following two types917

of workloads: read-write workloads, 105 − 98 − 90 − 10 − 25, 105 − 98 − 95 − 5 − 25 and918

105 − 98− 99− 1− 25 — choosing contains operation with probability 98%, and insert919

and delete operations takes one quarter of elements as arguments; and read-only workloads,920

105 − 0− 90− 10− 0, 105 − 0− 95− 5− 0 and 105 − 0− 99− 1− 0 — read-only workload.921
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Distribution 10 sec 10 min
105 − 90− 10 2777150 3630640 (+30%)
105 − 95− 5 3401220 4403906 (+29%)
105 − 99− 1 6707690 8184215 (+22%)

Zipf 1 3806500 4261981 (+12%)
Table 4 Comparison of the throughput on runs for 10 seconds and 10 minutes

The intuition is that the splay-list should perform better on the second type of workloads, but922

by how much? We answer this question: the overhead does not exceed 15% on 99−1-workloads,923

does not exceed 7% on 95− 5-workloads, and does not exceed 5% on 90− 1-workloads. As924

expected, the less a workload is skewed, the less the overhead. By that, we obtain that the925

small amount of insert and delete operations does not affect the performance significantly.926

C.4 Longer executions927

We run the splay-list with the best parameter p = 1
100 for ten minutes on one process on the928

following distributions: 105 − 90− 10, 105 − 95− 5, 105 − 99− 1 and Zipf with parameter929

1. Then, we compare the measured throughput per second with the throughput per second930

on runs of ten seconds. Obviously, we expect that the throughput increases since the data931

structure learns more and more about the distribution after each operation. And it indeed932

happens as we can see on Table 4. In the long run, the improvement is up to 30%.933

C.5 Correlation between Key Popularity and Height934

We run the splay-list with the best parameter p = 1
100 for 100 seconds on one process on the935

following distributions: 105 − 90− 10, 105 − 95− 5, 105 − 99− 1 and Zipf with parameter 1.936

Then, we build the plots (see Figure 13) where for each key we draw a point (x, y) where x937

is the number of operations per key and y is the height of the key. We would expect that938

the larger the number of operations, the higher the nodes will be. This is obviously the case939

under Zipf distribution. With other distributions the correlation is not immediately obvious,940

however, one can see that if the number of operations per key is high, then the lowest height941

of the key is much higher than 1.942
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(a) Distribution 105 − 90− 10 (b) Distribution 105 − 95− 5

(c) Distribution 105 − 99− 1 (d) Zipf distribution with parameter 1

Figure 13 The correlation between the popularity and the height
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