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Abstract. Non-Volatile Random Access Memory (NVRAM) is a novel
type of hardware that combines the benefits of traditional persistent
memory (persistency of data over hardware failures) and DRAM (fast
random access). In this work, we describe an algorithm that can be
used to execute NVRAM programs and recover the system after a hard-
ware failure while taking the architecture of real-world NVRAM sys-
tems into account. Moreover, the algorithm can be used to execute
NVRAM-destined programs on commodity persistent hardware, such as
hard drives. That allows us to test NVRAM algorithms using only cheap
hardware, without having access to the NVRAM. We report the usage
of our algorithm to implement and test NVRAM CAS algorithm.
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1 Introduction

For a long time the industry assumed the existence of two distinct types of the
memory. The first one is a persistent memory that preserves its content even
in the presence of hardware (e.g., power) failures. This type of memory was
assumed to support mainly sequential block access with the poor performance
of random access. Due to its ability to persist data this kind of memory is widely
used to recover the system after a hardware failure: one can load the data from
the persistent memory and restore the state of the application before the crash.
The second type of the memory is DRAM that supports fast random byte-
addressable access but loses its content on hardware failures. Due to its speed,
this kind of memory is widely used in high-performance computations.

Nowadays, we can get benefits from both of these worlds due to the invention
of Non-Volatile Random Access Memory (NVRAM)—a novel type of hardware
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that combines both the persistency and the fast random access. This allows us to
implement low-latency persistent data structures that require random access to
the memory, e.g., binary search trees, linked lists, and etc. A lot of work has been
done to come up with data structures, hand-tuned for the NVRAM [11, 10, 13].
Some authors propose techniques, that can be used to transform DRAM-resident
data structures into the ones suitable for the NVRAM [9, 12].

Despite the speed of the NVRAM is compatible with the speed of the DRAM,
the NVRAM is not expected to replace volatile memory totally since processor
registers and the NVRAM cache are expected to remain volatile. Thus, even on
NVRAM systems, a system failure leads to: 1) the loss of the results of recent
computations since x86 computations are performed using volatile processor
registers, and 2) the loss of data that was written to the NVRAM cache and has
not been flushed to the NVRAM.

To make sure that the written data becomes persistent, we should flush one
or several cache lines to the NVRAM. Flush of a single cache line is an atomic
action: if a crash occurs during cache line flushing, the whole cache line is either
persisted or not. However, if we want to flush multiple cache lines at a time, a
crash event can occur between flushes — in such a case, only a part of the data
becomes persistent while the rest is lost.

This yields one of the major challenges of NVRAM. If a system failure hap-
pens during a complex update, when some updated values have been flushed to
the NVRAM from the cache while others still reside in the cache, non-flushed
memory is lost and after the restart the NVRAM appears to be in an inconsistent
state.

Due to the difficulty of ensuring storage consistency in the presence of the
volatile NVRAM cache, a lot of works assume the absence of such cache [3–5, 7].
However, in this work we consider real-life systems, thus we take the volatility
of the NVRAM cache into account.

Another problem with the NVRAM is defining which executions are consid-
ered “correct” in the presence of hardware failures, that can lead to the loss of
data. Despite a lot of correctness conditions were defined in the previous years [1,
5, 14, 17, 3], only Nesting Safe Recoverable Linearizability [3] describes the work
with nested functions. Thus, maintaining persistent call stack is a crucial part of
systems based on this concept. However, while methods of maintaining NVRAM
heap are well-studied [8, 6], methods of maintaining the persistent program stack
are not studied at all: other works just assume the existence of a persistent call
stack [3, 4, 12].

Moreover, the persistent stack allows us to design and implement novel com-
plex system recovery algorithms, which can be faster than traditional log-based
system recovery methods. Previously, such complex algorithms were considered
impractical for traditional persistent memory systems due to the high latency of
random access of traditional persistent memory, following directly from its me-
chanical nature, but on NVRAM-based systems such complex algorithms may
be found useful.

In this work, we describe an algorithm, based on the implementation of the
persistent call stack, that can be used to execute NVRAM programs and recover
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the system after a hardware failure while taking the architecture of real-world
NVRAM systems into account. Moreover, the algorithm can be used to execute
NVRAM-destined programs on commodity persistent hardware, such as hard
drives. That allows us to test NVRAM algorithms using only cheap persistent
hardware, such as HDD, SSD, etc., without having access to the NVRAM. We
report the usage of our algorithm to implement and test correct and incorrect
versions of the NVRAM CAS algorithm [3]. Also, we describe a method, that
can be used to verify executions of NVRAM CAS algorithm for serializability.

The rest of the work is organized as follows. In Section 2, we discuss the
system model, various failure models, operation execution model and talk about
different correctness conditions, suitable for the NVRAM. In Section 3, we dis-
cuss the concept of the persistent program stack and its implementation. In
section 4 we present the solutions for the challenges we faced during the imple-
mentation of our algorithm. Also, we show there the architecture of the system
along with the system recovery algorithm. In Section 5, we discuss the usage
of our algorithm to implement and verify the NVRAM CAS algorithm, along
with the method of checking executions of the NVRAM CAS algorithm for se-
rializability. In Section 6, we discuss the directions of the future research. We
conclude our work with Section 7.

2 Model

2.1 System model

Our system model is based on the model described in [3].

There are N processes {pi}Ni=1 executing operations concurrently. Also, there
are M objects {Oj}Mj=1 located in the shared non-volatile memory. Processes
communicate with each other by executing operations on shared objects (see
Fig. 1a), that can support read, write or read-modify-write [15] operations.

In our model, all shared memory is considered non-volatile, i.e., it does not
lose its content even after a crash event. However, we assume the existence of a
volatile memory in the system. Each object LO, located in the volatile memory,
is considered local to some process p. In other words, only process p can access
object LO. Thus, besides being able to execute operations on shared objects,
each process can access its local objects. Such objects support only read and
write operations (see Fig. 1b).
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(a) Execution of operations on shared
objects

(b) Execution of operations on local ob-
jects

Fig. 1: System execution model

However, our model still does not reflect some properties of the real-world
hardware: for example, it does not take into account the existence of the volatile
NVRAM cache and the existence of shared volatile memory.

2.2 Failure model

There exist two general failure models:

– Individual crash-recovery model [3]. In such a model, each process can face
a crash event independently of all other processes. When a process faces a
crash event, it stops working until it is restarted. All data, stored in the
volatile memory of the failed process, is lost. However, all data persisted to
the NVRAM is not lost and remains available to the failed process after its
restart.

– System crash-recovery model. In such a model, a crash event happens in
the whole system instead of an individual process. The whole systems stops
working until it is restarted. After the system restarts, the contents of all the
volatile memory is lost. As in the previous model, the data, persisted in the
NVRAM, is not lost and remains available to all processes after the system
restarts.

Note, that the system crash-recovery model is a special case of the individual
crash-recovery model, since a crash of the whole system can be represented as
a set of N simultaneous crash events of individual processes — one crash event
per each process. Despite the fact that individual crash-recovery model is a more
general model, in this work we focus mainly on system crash-recovery model.
In real-world shared memory systems multiple computational units are placed
in a single server and thus a failure of a single computational unit is impossible
without a failure of the entire system. That is why, in our opinion, system crash-
recovery model describes more accurately the real-life crash event — for example,
power loss.
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2.3 Operation execution

We say that function F is being executed by process p if execution of F has been
started by p but has not been finished yet. As described in [3], we work with
the nested invocation of functions: at any moment, multiple functions can be
executed by any process. It happens when function F invokes function G. Thus,
executed functions in each process form a nested sequence. In the above example
execution of G is nested into the execution of F.

To allow the recovery of the system, we provide each function F with a dual
function F.Recover, which receives the same arguments as F. F.Recover is called
after the system restart to perform system recovery and it should either finish
the execution of F or roll back F.

To perform the system recovery, for each process p we should call F.Recover
for each function F being executed by p at the crash moment. Moreover, recovery
functions should be called in the certain order: if the execution of G is nested
into the execution of F, G.Recover should be called before F.Recover. Thus,
each process should perform the recovery in the LIFO (stack) order.

Also we should consider the possibility of repeated failures — failures which
happen during the recovery procedure. Consider the system failure after F was
invoked. After the restart, we should call F.Recover to complete the recovery.
Suppose another system failure happens before F.Recover is finished. After the
second restart, we should again continue the recovery at executing F.Recover.
It means that there is no difference between the system failure happening during
the execution of F or during the execution of F.Recover: in both cases, we should
call F.Recover to complete the recovery. Thus, F.Recover should be designed
so that it can complete the operation (or roll it back) no matter whether the
crash occurred when executing F or F.Recover.

2.4 Correctness

Multiple correctness conditions for NVRAM exist. Here, we outline three most
important (from the strongest to the weakest):

1. Nesting Safe Recoverable Linearizability [3]. It requires each invoked function
F to be completed even if a crash event occurs while executing F. Thus, under
that correctness condition, F.Recover should finish the execution of F either
by completing it successfully or by rolling it back.

2. Durable Linearizability [17]. It requires that each function F, execution of
which has finished before a crash, should be completed. If a crash event
occurs while executing function F, such function may be either completed or
not.

3. Buffered Durable Linearizability [17]. It is a weaker form of Durable Lin-
earizability. Its difference is in that it allows function F not to be completed
even if its execution finished before a crash. However, that correctness condi-
tion requires each object to provide sync operation — all functions, finished
before a call to sync must be completed, even if a crash event occurs.
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In this work, we propose an algorithm that can be used to run NVRAM-
destined programs under Nesting Safe Recoverable Linearizability — the strongest
correctness condition.

3 Persistent Stack

3.1 Program stack concept

In order to execute programs for NVRAM, for each thread6 t we maintain an
information about functions, which were executed by t when a crash occurred.
Also, to invoke recover functions in the correct order we maintain the order in
which these functions were invoked.

We maintain that order by using the notion of program stack: each thread t
has its own NVRAM-located stack, and each function executed by t corresponds
to a single frame of the stack. When a function is invoked, the corresponding
frame is added to the top of the stack. After the end of the execution, the
frame is removed from the top. Therefore, when a crash occurs, the stack of
thread t contains frames, that correspond to functions that were executed by t
at the crash moment. Moreover, such frames are located in the correct order: if
execution of G was nested into the execution of F, a frame of G is located closer
to the top of the stack, than a frame of F.

3.2 Issues of existing implementations

The functionality of the program stack is already implemented by standard ex-
ecution systems: for example, x86 program stack. However, we cannot use them
as-is, even if we transfer it from the DRAM to the NVRAM.

Here we remind the implementation of the function call via the x86 stack.
Suppose function F calls function G using x86 command CALL G. To perform
such an invocation, we should store a return address on the stack — the address
of the instruction in function F that follows the instruction CALL G. After the
execution of G is finished, we continue execution of F from that instruction. This
is exactly how x86 instruction RET works — it simply reads the return address
from the stack and performs JMP to that address, allowing it to the continue the
execution from the desired point.

Note that such a program stack implementation has a number of drawbacks,
that makes it impossible for us to use such implementation as a persistent stack:

– After the system restart due to the crash, the code segment may be relo-
cated, i.e., have a different offset in the virtual address space. That will make
us incapable of identifying which functions were executed at the crash mo-
ment — we simply won’t be able to match return address from the stack
with an address of some instruction after the code segment relocation.

6 When talking about practical aspects of concurrent programming, we use the word
“thread” in the same context, as the word “process” in the theory of concurrent
programming
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– We cannot guarantee an atomicity of adding a new frame to the stack or
removing a frame from the top of the stack – if a crash occurs during adding
or removing stack frame, after the system restarts the stack might be in an
inconsistent state.

Thus, instead of using existing program stack implementations, we present
our persisted stack structure that overcomes the above drawbacks.

3.3 Persistent stack structure

Each thread has an access to its own persistent stack. For simplicity, in this
section we assume that the persistent stack is allocated in the NVRAM as a
continuous memory region of constant size. However, we explain how to make a
stack of unbounded size in Appendix A of the full version of the paper, available
at [2].

Persistent stack consists of consequent persistent stack frames — one frame
per function that accesses NVRAM. 7 Each frame ends with a one-byte end
marker: it is 0x1 (stack end marker) if the frame is the last frame of the stack;
otherwise, it is 0x0 (frame end marker). Any data located after the stack end
marker is considered invalid — it should never be read or interpreted in any way
(see Fig. 2).

Fig. 2: Persistent stack structure

To finish the description of the data layout, each persistent stack frame con-
sists of: 1) a unique identifier of the invoked function that allows us to call the
appropriate recover function during the system recovery; 2) arguments of the
function, serialized into a byte array—during the system recovery we pass them
to the recover function; 3) a one-byte end marker (either 0x0 or 0x1).

3.4 Update of the persistent stack

The persistent stack should be updated: 1) when the function is invoked — a new
frame should be added to the top of the stack, 2) when the function execution
is finished — the top frame of the stack should be removed.

Adding the new frame to the top of the stack. Suppose the stack at the
beginning of the operation has two frames in it (see Fig. 3a):

To add a new frame to the top of the stack, we perform the following actions:

7 Each such function must have a recover version, as described above.
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1. After the stack end marker, we write a new frame with the stack end marker
set. Note that the new frame (frame 3) is located after the stack end marker
of the previous frame (frame 2). Therefore, the new frame is not considered
as a stack frame, while the previous frame (frame 2) is still the last stack
frame (see Fig. 3b).

2. Change the end marker of the current last stack frame (frame 2) from 0x1

to 0x0. Thus, the last stack frame (frame 2) becomes the penultimate stack
frame and the new frame (frame 3) becomes the last stack frame (see Fig. 3c).
We name that one-byte end marker changing operation as moving the stack
end forward.

(a) Persistent stack before the function invocation

(b) Persistent stack after writing the new frame after the stack
end marker

(c) Persistent stack after adding the new frame to the top of the
stack

Fig. 3: Adding new frame to the top of the stack

Removing the top frame from the stack. Suppose the stack at the begin-
ning of the operation has three frames in it (see Fig. 4a):

To remove the top frame from the stack, we simply change the end marker
of the penultimate stack frame (frame 2) from 0x0 to 0x1, thus making the
penultimate stack frame the last stack frame (see Fig. 4b). We name that one-
byte end marker changing operation as moving the stack end backward. Note,
that frame 3 becomes the part of the invalid data and, therefore, it will not be
considered as a stack frame anymore.
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(a) Persistent stack before exiting from a function

(b) Persistent stack after exiting from a function

Fig. 4: Removing the top frame from the stack

Dummy frame. Note that both frame removal and frame addition procedures
assume the existence of at least one frame in the stack, besides the one that
is being removed or added. Particularly, this assumption implies that the bot-
tom stack frame cannot be removed from the stack. We can simply satisfy that
assumption by introducing a dummy frame — the stack frame, located at the
bottom of the stack (i.e. the first frame, added to the stack). That frame is added
to the stack at the initialization of the stack and is never removed. By that, we
ensure that there is always at least one frame, thus making it possible for us to
use the stack update procedures, described above.

Flushing long frames. Note that sometimes a new stack frame does not fit
into a single cache line — for example, that can happen when some function
receives arguments list with length greater than the cache line size. In such case,
we will not be able to add such frame to the stack atomically (since only single
cache line can be persisted atomically). Therefore, we can face a crash event that
will force us to write the new frame partially (see Fig. 5).

Fig. 5: Persistent stack with partially flushed frame

In our algorithm, we, at first, add a new frame to the stack, and only after the
new frame has been written successfully we move the stack end forward. Thus,
even if the crash event happens, the stack will remain consistent: partially written
frame will be located after the stack end marker and will not be considered as
a stack frame. Therefore, this scenario does not brake Nesting-safe Recoverable
Linearizability, since the last function invocation was not linearized before the
crash event. We can simply think that the crash happened before the function
invocation and the function was never invoked.
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The atomicity of the stack update. We can say that a function invocation
linearizes only when we move the stack end forward. This requires only the
flushing of a single byte to the NVRAM. Since a single byte always resides in a
single cache line, this flush always happens atomically.

The same observation can be made for moving the stack end backward : an
execution of the function is finished when we change the end marker of the
penultimate stack frame from 0x0 to 0x1. As was described above, such action
happens atomically.

Persistent stack and the NVRAM The procedure of adding and removing a
stack frame requires only the ability to flush a single byte atomically and not the
entire cache line — this makes us capable of implementing the stack maintenance
algorithm on a hardware that does not support atomic flushing of an entire cache
line. Thus, the algorithm described above, can be easily emulated without having
access to an expensive NVRAM hardware, using almost any existing persistent
hardware such as HDD, SSD, etc.

For the above reasoning to remain correct, we should maintain two following
invariants:

1. We should flush the new stack frame before moving the stack end forward.
Suppose we violate that rule. Consider a crash event that happens at some
time after the moving the stack end forward. Suppose also, that new stack
frame (frame 3) has been written to the volatile NVRAM cache and was lost
during the crash. After the system restart we will not be able to call the
recover function for frame 3, because we have lost that frame (see Fig. 6a).

2. When changing the end marker of some frame (either from 0x0 to 0x1 or
vice versa) we should immediately flush it before staring the execution of
the invoked function or continuing the execution of the caller function.
Suppose we violate that rule. Consider a crash event, happening while ex-
ecuting function F, corresponding to frame 3. Also consider that the frame
end marker, written to frame 2, has been written to the volatile NVRAM
cache and thus has been lost (see Fig. 6b). After the system restart, we do
not consider frame 3 as a stack frame, and, thus, we do not even invoke
F.Recover.

(a) New stack frame has been lost due to volatility
of the NVRAM cache

(b) End marker has been lost due
to volatility of the NVRAM cache

Fig. 6: Results of violating flushing invariants
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4 System implementation

4.1 Pointers to the memory in NVRAM

When working with pointers to the NVRAM we face the problems similar to
those we faced when working with function addresses (Section 3.2). Suppose
we have acquired pointer ptr pointing to the NVRAM. We store ptr in the
NVRAM (for example, in some persistent stack frame, as an argument of some
function F). After that, we face a crash event. And when we restart the system,
the mapping of the NVRAM into the virtual address space can change, thus,
making pointer ptr invalid, since it does not point to the NVRAM anymore.

The same problem happens when we emulate NVRAM using HDDs, mapped
to the virtual address space using mmap syscall: on each system restart, HDD is
mapped to a different location in the virtual address space.

This problem has a very simple solution: instead of using direct pointers to
the NVRAM, we shall use offsets from the beginning of the NVRAM mapping
into the virtual address space. Suppose the mapping of the NVRAM begins at
address MAP ADDR. Then, instead of storing ptr we store ptr - MAP ADDR — an
offset of the desired memory location. Note that such an offset does not depend
on an exact location of the mapping, thus making it safe for us to store it in the
NVRAM and use after the system restart.

4.2 Handling return values

Traditionally, on x86 architecture, functions return value using the volatile mem-
ory — either in x86 register EAX, if the return value is an integer, or in FPU register
ST0, if the return value is floating-point. For example, cdecl, one of the most
popular x86 calling conventions, implies the above rules for return value.

However, in our case we cannot use volatile processor registers to store return
value. Consider a crash event occurring after the callee function G has saved the
return value to the EAX and finished its execution by moving the stack end back-
ward. At that time, the caller function F has not persisted the return value from
EAX to the NVRAM. After the system restart, we will not invoke G.Recover, but
start from F.Recover instead. However, we cannot execute F.Recover properly,
because we have lost the result of G.

That is why functions should store their results directly in the NVRAM. We
could come up with two approaches where to store them:

1. on the persistent stack. For example, we can use an especially-allocated place
in a persistent stack frame for that purpose.

2. in the NVRAM heap. In such a case, the caller can preallocate a memory
location for the answer before invoking the callee, and pass the pointer to
that memory location in callee’s arguments (note, that as was mentioned in
Section 4.1, we should use offsets instead of pointers to the NVRAM). After
that, callee can store its answer in that memory location.

In both cases, the callee should flush the answer to the NVRAM before
moving the stack end backward. Our implementation supports returning of small
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values (up to 8 bytes) on the persistent stack, while big values are returned in
the NVRAM heap.

4.3 Architecture of the system

The system consists of a single main thread and N worker threads.
Main thread can run in either a standard mode or a recovery mode.
When running in the standard mode, the main thread performs the following

steps.

1. Initialize the NVRAM heap. This may include the initialization of the mem-
ory allocator, the mapping of the NVRAM to the virtual address space and
the consequent initialization of the variable MAP ADDR, mentioned in Sec-
tion 4.1

2. Initialize N new persistent stacks.
3. Start N worker threads, giving each worker thread pointer to the beginning

of its persistent stack.
4. Receive task that should be executed by the system and add them to the

producer-consumer queue.

When running in the standard mode, worker threads receive tasks from the
producer-consumer queue and execute them.

In case of a crash, the main thread starts in the recovery mode and performs
the following steps:

1. Initialize the NVRAM heap.
2. Start N recovery threads, giving each recovery thread the pointer to a per-

sistent stack of some worker thread.
3. Wait for all recovery threads to finish.
4. Restart the system in normal mode.

Each recovery thread executes the following algorithm:

1. Traverse its persistent stack from the top to the bottom.
2. Execute the corresponding recover operation for each stack frame.
3. After the recovering of an operation on the top of the stack is finished, pop

the top frame.
4. After all the frames (except for the dummy one) are removed from the stack,

finish the execution.

System recovery happens in parallel, which allows for a faster recovery than
an ordinary single-threaded recovery.

We note that our algorithm deals well with repeated failures. If such a failure
happens during the recovery, the new recovery continues not from the beginning,
but from where the previous recovery was interrupted. More formally, consider a
frame, corresponding to a function F. If during the recovery we have completed
execution of F.Recover and removed that frame from the stack, even after the
repeated failure we will not run a recover function for that frame once more.
Thus, we achieve the progress even in the presence of repeated failures.
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5 Verification

The described algorithm of the persistent stack can be used to implement and
verify CAS algorithm for NVRAM, described in [3]. That paper assumes the
absence of the volatile NVRAM cache, i.e., all writes are performed right into
the memory. To emulate this, we should flush each written cache line to the
NVRAM immediately after the corresponding write. Also, we should implement
the algorithm so that each written value never crosses the border of a cache line
to allow atomic flush of each written value.

Multiple correctness conditions for concurrent algorithms exist: the most
popular are linearizability [16], sequential consistency and serializability [18]. We
want to perform the verification against some of these correctness conditions.

From now on we take CAS algorithm for the NVRAM as the running example.
Consider the following execution. Multiple threads run a set of CAS operations
on a single register Reg: {CAS(Reg, oldi, newi)}Ni=1, and the initial value of Reg
is init. And for each operation we know whether it was finished successfully or
not.

We present an algorithm, that can be used to check such an execution for
serializability in a polynomial time.

5.1 Serializability

To verify the execution for serializability in polynomial time, we build a graph
〈V,E〉, G = {oldi}Ni=1 ∪ {newi}Ni=1 ∪ {init} and construct the set of edges E the
following way: a→ b ∈ E if and only if there exists a successful CAS(Reg, a, b)
in the execution. Also, we read the final value of the register. We can read it
after all the CAS operations are finished.

Since each edge of G corresponds to a successful CAS, each successful CAS
was executed exactly once, and each successful CAS(Reg, a, b) changed value of
Reg from a to b, to verify the execution for serializability we should find some
Eulerian circuit that starts in the initial value of the register and ends in the final
value of the register — such a circuit corresponds to the sequential execution.
Thus, the execution is serializable if and only if such a circuit can be found8.

5.2 Running examples

We have implemented the algorithm, described above, using HDD-based memory-
mapped files to emulate the NVRAM. We used UNIX utility kill to interrupt
the system at random moments by that emulating system crashes.

We have generated random executions of the algorithm in the following way:

1. Generate an initial integer value of the register;
2. Generate {newi}Ni=1 and {oldi}Ni=1 as integer values, uniformly sampled from

some range: either wide range [−105, 105]), or narrow range ([−10, 10]);

8 Please, note that we can simply serialize unsuccessful operation at the times when
the register holds a value different from oldi.
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3. Start the system in the normal mode, add descriptors of {CAS(Reg, oldi, newi)}Ni=1

operations to the producer-consumer queue in the random order;
4. Run 4 working threads that execute these CAS operations;
5. At random moment, emulate system failure using the kill utility;
6. Restart the system in the recovery mode waiting for all CAS operations, that

were executing at the crash moment, to complete;
7. Restart the system in the normal mode, add all remaining descriptors to the

queue;
8. Run steps 4-7 until all operations are completed;
9. Get answers of all CAS operations, get the final value of the register, and,

finally, verify the execution for serializability.

We have verified a lot of random executions along with emulated system
failures at random moments. All executions of the CAS algorithm presented in
[3] were found to be serializable. We also verified the executions of incorrect CAS
algorithm with especially-added bugs: we have removed the matrix R from the
CAS algorithm. The executions of such a wrong implementation were reported
to be non-serializable.

The implementation is publicly available at https://github.com/KokorinIlya/NVRAM runner.

6 Future work

We find three interesting directions for the future work: 1) implement and test
other NVRAM algorithms; 2) find the polynomial algorithm that verifies exe-
cutions of CAS algorithm for linearizability and sequential consistency, or prove
that the problem of such a verification is NP-complete; 3) develop a plugin for
one of the modern C++ compilers that can be used to reduce the boilerplate
code: e.g., automatically create a new stack frame on each function call, remove
the top frame when a function execution finishes, and etc.

7 Conclusion

In this paper we presented an algorithm that can be used to run NVRAM
programs. The described algorithm takes into consideration different aspects
of real-world NVRAM systems. Moreover, the algorithm can be used to run
NVRAM-destined programs on commodity persistent hardware, which can be
useful for implementing and testing novel NVRAM algorithms without having
an access to an expensive NVRAM hardware. The algorithm was successfully
used to implement and verify the CAS algorithm for NVRAM.
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