Theorem (Stolz-Cezaro). Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences of real numbers. Assume that b_n is strictly monotone and divergent sequence and the following limit exists $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = \ell$. Then, $\lim_{n\to\infty} \frac{a_n}{b_n} = \ell$

- 1. Evaluate $\lim_{n\to\infty} e^{\frac{1}{n+1}+\ldots+\frac{1}{2n}}$.
- 2. Find the limit $\lim_{n\to\infty} \cos \frac{2\pi e n!}{3}$.
- **3.** Let $a_1 = a$, $a_2 = b$ and $a_n = \sqrt{a_{n-1}a_{n-2}}$. Find the limit $\lim_{n \to \infty} a_n$.
- 4. Find the limit $\lim_{n\to\infty} \frac{2^n}{a^{2^n}+1}$ with a>1.

 5. Find the limit $\lim_{n\to\infty} \frac{1^p+2^p+...+n^p}{n^{p+1}}$.
- **6.** Let (x_n) and (y_n) be two sequences of reals such that the sequences $x_n y_n$ and $x_n^3 + y_n^3$ have zero as a limit. Prove that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$
- 7. Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers so that $a_1>2$ and $a_n=\sqrt{2+a_{n-1}}$ for all $n\geq 2$. Calculate the following limit $\lim_{n\to\infty} (3-a_n)^{4^n}$.
- **8.** Let $x_{n+1} = \sin x_n$ and $x_0 \in (0, \pi)$. Find $\lim_{n \to \infty} \sqrt{n} \cdot x_n$.
- **9.** Let $(x_1, y_1) = (0.8, 0.6), x_{n+1} = x_n \cos y_n y_n \sin y_n$ and $y_{n+1} = x_n \sin y_n + y_n \cos y_n$. Find $\lim_{n \to \infty} x_n = x_n \sin y_n + y_n \cos y_n$. and $\lim_{n\to\infty} y_n$.
- **10.** Given sequence (a_n) with $\lim_{n\to\infty} a_n\left(\sum_{i=1}^n a_i^2\right) = 1$. Prove that $\lim_{n\to\infty} (3n)^{\frac{1}{3}}a_n = 1$.

Theorem (Stolz-Cezaro). Let $(a_n)_{n\geq 1}$ and $(b_n)_{n\geq 1}$ be two sequences of real numbers. Assume that b_n is strictly monotone and divergent sequence and the following limit exists $\lim_{n\to\infty} \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = \ell$. Then, $\lim_{n\to\infty} \frac{a_n}{b_n} = \ell$

- 1. Evaluate $\lim_{n\to\infty} e^{\frac{1}{n+1}+\ldots+\frac{1}{2n}}$.
- 2. Find the limit $\lim_{n\to\infty} \cos \frac{2\pi e n!}{3}$. 3. Let $a_1=a, a_2=b$ and $a_n=\sqrt{a_{n-1}a_{n-2}}$. Find the limit $\lim_{n\to\infty} a_n$.

- 4. Find the limit lim_{n→∞} 2ⁿ/a^{2ⁿ+1} with a > 1.
 5. Find the limit lim_{n→∞} 1^{p+2^p+...+n^p}/_{n^{p+1}}.
 6. Let (x_n) and (y_n) be two sequences of reals such that the sequences x_n y_n and x_n³ + y_n³ have zero as a limit Preventible 1 lim x_n lim x_n = 0. a limit. Prove that $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 0$
- 7. Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers so that $a_1>2$ and $a_n=\sqrt{2+a_{n-1}}$ for all $n\geq 2$. Calculate the following limit $\lim_{n\to\infty} (3-a_n)^{4^n}$.
- **8.** Let $x_{n+1} = \sin x_n$ and $x_0 \in (0, \pi)$. Find $\lim_{n \to \infty} \sqrt{n} \cdot x_n$.
- **9.** Let $(x_1, y_1) = (0.8, 0.6), x_{n+1} = x_n \cos y_n y_n \sin y_n$ and $y_{n+1} = x_n \sin y_n + y_n \cos y_n$. Find $\lim_{n \to \infty} x_n$
- **10.** Given sequence (a_n) with $\lim_{n\to\infty} a_n\left(\sum_{i=1}^n a_i^2\right) = 1$. Prove that $\lim_{n\to\infty} (3n)^{\frac{1}{3}}a_n = 1$.