Theorem (Cayley-Hamilton). If A is $n \times n$ matrix and I_n is the $n \times n$ identity matrix, then the characteristic polynomial of A is defined as $p(\lambda) = \det(\lambda I_n - A)$. For example, for n = 2 $p(\lambda) = 1$ $\lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$.

Replacement of the scalar eigenvalues λ with the matrix A in $p(\lambda)$ gives 0, i.e., p(A) = 0,

- 1. If M is 3×3 matrix with $M^TM = I$ and $\det M = 1$. Find $\det(M I)$.
- Let S be the subspace of M_{n×n} (the vector space of all real n×n matrices) generated by all matrices of the form AB − BA with A, B ∈ M_{n×n}. Show that dim(S) = n² − 1.
 Let n≥ 3. Let A be n×n matrix such that a_{ij} ∈ {-1,1} for all 1 ≤ i, j ≤ n. Suppose that a_{k1} = 1
- for all $1 \le k \le n$ and $\sum_{k=1}^{n} a_{ki} a_{kj} = 0$ for all $i \ne j$. Show that n is multiple of 4.

Definition. Two norms $||\cdot||_1$ and $||\cdot||_2$ are equivalent on linear space X if there exists C and D such that for every $x \in X$: $C||x||_1 \le ||x||_2 \le D||x||_1$.

- 4. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Consider two norms: $||A||_E = (a^2 + b^2 + c^2 + d^2)^{\frac{1}{2}}$ and $||A||_{op} = \sup_{||v||_2 = 1} ||Av||$. Prove that they are equivalent.
- 5. Give an example of two 2×2 matrices such that the norm (op norm from Problem 4) of the product is less than the product of the norms.
- **6.** Let $A, B \in \hat{M}_n(\mathbb{C})$ such that $A^2 = A$, $B^2 = B$ and A B is invertible. Prove that AB I is invertible.
- 7. Let A, B, C, D be complex $n \times n$ matrices with A and C invertible. If $A^k B = C^k D$ for all $n \in \mathbb{N}$ then
- 8. Let $n \in \mathbb{N}$, $n \geq 3$. Find $X \in \mathcal{M}_2(\mathbb{R})$ such that $X^n + X^{n-2} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.
- **9.** Consider the matrix $A = \begin{pmatrix} 2 & -2 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \end{pmatrix}$. Let $B \in M_{3,2}(\mathbb{R})$ and $C \in M_{2,3}(\mathbb{R})$ so that $B \cdot C = A$. Find $\det(CB)$ and $\operatorname{tr}(CB)$.

Theorem (Cayley-Hamilton). If A is $n \times n$ matrix and I_n is the $n \times n$ identity matrix, then the characteristic polynomial of A is defined as $p(\lambda) = \det(\lambda I_n - A)$. For example, for n = 2 $p(\lambda) = 1$ $\lambda^2 - \operatorname{tr}(A)\lambda + \det(A)$.

Replacement of the scalar eigenvalues λ with the matrix A in $p(\lambda)$ gives 0, i.e., p(A) = 0,

- 1. If M is 3×3 matrix with $M^TM = I$ and $\det M = 1$. Find $\det(M I)$.
- 2. Let S be the subspace of $M_{n\times n}$ (the vector space of all real $n\times n$ matrices) generated by all matrices
- of the form AB BA with $A, B \in M_{n \times n}$. Show that $\dim(S) = n^2 1$. 3. Let $n \ge 3$. Let A be $n \times n$ matrix such that $a_{ij} \in \{-1, 1\}$ for all $1 \le i, j \le n$. Suppose that $a_{k1} = 1$ for all $1 \le k \le n$ and $\sum_{k=1}^{n} a_{ki} a_{kj} = 0$ for all $i \ne j$. Show that n is multiple of 4.

Definition. Two norms $||\cdot||_1$ and $||\cdot||_2$ are equivalent on linear space X if there exists C and D such that for every $x \in X$: $C||x||_1 \le ||x||_2 \le D||x||_1$.

- **4.** Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Consider two norms: $||A||_E = (a^2 + b^2 + c^2 + d^2)^{\frac{1}{2}}$ and $||A||_{op} = \sup_{||v||_2 = 1} ||Av||$. Prove that they are equivalent.
- 5. Give an example of two 2×2 matrices such that the norm (op norm from Problem 4) of the product is less than the product of the norms.
- **6.** Let $A, B \in M_n(\mathbb{C})$ such that $A^2 = A$, $B^2 = B$ and A B is invertible. Prove that AB I is invertible.
- 7. Let A, B, C, D be complex $n \times n$ matrices with A and C invertible. If $A^k B = C^k D$ for all $n \in \mathbb{N}$ then
- 8. Let $n \in \mathbb{N}$, $n \geq 3$. Find $X \in \mathcal{M}_2(\mathbb{R})$ such that $X^n + X^{n-2} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$.
- **9.** Consider the matrix $A = \begin{pmatrix} 2 & -2 & 3 \\ 0 & 0 & 3 \\ 0 & 0 & 3 \end{pmatrix}$. Let $B \in M_{3,2}(\mathbb{R})$ and $C \in M_{2,3}(\mathbb{R})$ so that $B \cdot C = A$. Find $\det(CB)$ and $\operatorname{tr}(CB)$