- $\det(M I) = \det(M^T M M^T) = \det(I M^T) = -\det(M^T I) = -\det(M I)$. Thus, $\det(M-I)=0.$
- Let V be the subspace of matrices with trace 0, obviously, its dimension is not bigger than n^2-1 since m_{nn} is fixed.

NB. It is well-known that subspace generated by AB - BA also equals V.

Let us show directly that each matrix of trace 0 is a commutator. For $p, q \in [1, n]$ let M_{pq} be the matrix with one in position (p,q) and zero elsewhere. Now take $A = M_{pq}$, $B = M_{rs}$ and consider AB - BA.

with one in position (p,q) and zero eisewhere. Now take $A=M_{pq}, B=M_{rs}$ and consider $AB_{ij}=0$ unless i=p, q=r, s=j in which case we have $AB_{ps}=1$. $BA_{ij}=0$ unless i=r, s=p, q=j in which case we have $AB_{rq}=1$. If $\alpha \neq \beta$ we have $M_{\alpha\beta}=AB-BA$ with $A=M_{\alpha\alpha}$ and $B=M_{\alpha\beta}$. If $\alpha < n$ we have $M_{\alpha\alpha}-M_{nn}=AB-BA$ with $A=M_{\alpha n}$ and $B=M_{n\alpha}$.

3. At first, $0=\sum_{k=1}^n a_{k1}a_{k2}=\sum_{k=1}^n a_{k2}$. Thus, n has to be divisible 2. Suppose that n=2m.

From $\sum_{k=1}^{n} a_{kj} = 0$ we know that the half of values are -1, because of that $\prod_{k=1}^{n} a_{kj} = (-1)^{m}$. Analogously, from $\sum_{k=1}^{n} a_{k2}a_{k3} = 0$ we get $(-1)^{m} = \prod_{k=1}^{n} a_{k2}a_{k3} = \prod_{k=1}^{n} a_{k2}\prod_{k=1}^{n} a_{k3} = (-1)^{m}(-1)^{m}$. Thus, m is divisible by 2.

m is divisible by 2. **4.** Consider vector u = (x, y) with $x^2 + y^2 = 1$. $||Au||^2 = (ax + by)^2 + (cx + dy)^2 \le (a^2 + b^2)(x^2 + y^2) + (a^2 + b^2)(x^2 + y^2) +$

 $(c^2+d^2)(x^2+y^2)=||A||_E^2. \text{ Thus, } \beta=1.$ By the definition, $||A||_{op}^2\geq a^2+c^2$ (take u=(1,0)) and $||A||_{op}^2\geq b^2+d^2$ (take u=(0,1)). Thus, $||A||_{op}^2\geq \frac{1}{2}(a^2+b^2+c^2+d^2)=\frac{1}{2}||A||_E^2$, and, hence, $\alpha=\frac{1}{\sqrt{2}}$

- $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. |A| = |B| = 1 and |AB| = 0.
- Let v be a non-zero vector with (AB-I)v=0. $ABv=A^2Bv=Av$. Then $Bv-v\in\ker A$. Since $B^2 = B$, we also have $Bv - v \in \ker B$. However $Bv - v \in \ker B \cap \ker A = \{0\}$, because A - B is invertible. Thus, Bv = v and, similarly Av = v. By that (A - B)v = 0. Contradiction, since A - B is invertible.
- 7. Let f(x) and g(x) be characteristic polynomals of A and C. Consider h(x) = f(x)g(x) f(0)g(0). By the condition of the problem, h(A)B = h(C)D. Then, using the fact that f(A) = 0, g(C) = 0and, consequently, f(A)g(A)B = f(C)g(C)D = 0, we get f(0)g(0)B = f(0)g(0)D. Since, $f(0) = \det A$, $g(0) = \det C$ and A and C are invertible, then $f(0)g(0) \neq 0$.

8. $0 = \det(X^n + X^{n-2}) = \det X^{n-2} \det(X^2 + I_2)$. Let's suppose that $\det(X^2 + I_2) = 0$. Then $0 = \det(X^2 + I_2) = \det(X + iI_2) \det(X - iI_2) = \det(X + iI_2) \det(X - iI_2) = \det(X + iI_2) \det(X - iI_2)$ $\det(X + iI_2)\overline{\det(X + iI_2)}$. Thus, $\det(X + iI_2) = 0$.

Using the identity $\det(A+xB) = \det Bx^2 + (\operatorname{tr} A \cdot \operatorname{tr} B - \operatorname{tr} (AB))x + \det A$ for A=X, $B=I_2$ and x=i, we get $0 = \det(X+iI_2) = -1 + i\operatorname{tr} X + \det X$. So, $\det X=1$ and $\operatorname{tr} X=0$. Which by Cayley-Hamilton

When $S_0 = A_0 =$ $((-1)^{n-1}X)$ and X^{n-2} by X $((-1)^{n-3})$, we get $2X = \begin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix}$ $((-1)^n 2X = \begin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix})$. **9.** Since $CB \in M_2(\mathbb{R})$ from Cayley-Hamilton we get that $(CB)^2 - \operatorname{tr}(CB) \cdot CB + \det(CB) \cdot I_2 = O_2$. After

multiplying by B to the left and by C to the right we get $O_3 = (BC)^3 - \operatorname{tr}(CB) \cdot (BC)^2 + \det(CB) \cdot (BC) =$ $A^3 - \operatorname{tr}(CB)A^2 + \det(CB)A$. Again, from Cayley-Hamilton we know that $A^3 - 5A^2 + 6A = O_3$. Thus, $\operatorname{tr}(CB) = 5 \text{ and } \det(CB) = 6.$