Theorem (Jensen's Inequality). For a convex function f holds $f(tx_1 + (1-t)x_2) \le tf(x_1) + (1-t)f(x_2)$ for all $t \in [0, 1]$.

Theorem (Cauchy-Schwarz's Inequality). If $f, g : [a, b] \to \mathbb{R}$ are integrable, then

$$\left| \int_{a}^{b} f(x)g(x) \, dx \right|^{2} \leq \left(\int_{a}^{b} f^{2}(x) \, dx \right) \cdot \left(\int_{a}^{b} g^{2}(x) \, dx \right),$$

with equality when $|g(x)| = c \cdot |f(x)|$

- 1. Prove that $\int_0^1 \frac{dx}{\sqrt{x+2^{-x}}} < 0.8$.
- 2. Prove that the following inequality holds for all x > 1, $\int_{1}^{x} \frac{\sqrt{t^2+1}}{t} dt > \sqrt{\ln^2 x + (x-1)^2}$.
- 3. Consider $a \in \mathbb{R}_+$ and the convex function $f:[0,a] \to \mathbb{R}$ with f(0)=0. Prove that $\int_0^a f(x) \, \mathrm{d}x \ge \frac{a^2}{c^2} \int_0^c f(x) \, \mathrm{d}x$ for all $c \in (0,a)$.
- **4.** If $f:[0,\infty)\to\mathbb{R}$ is a convex function and a,b,c>0, show that: $\int_0^a f(x) \, \mathrm{d}x + \int_0^b f(x) \, \mathrm{d}x + \int_0^c f(x) \, \mathrm{d}x +$
- **5.** Let $f:[0,1] \to \mathbb{R}$ be concave and f(0) = 1. Prove that $\frac{3}{2} \int_{0}^{1} x f(x) dx \le \int_{0}^{1} f(x) dx \frac{1}{4}$.
- **6.** Prove that if $f:[0,\infty)\to\mathbb{R}$ is continuous and satisfies the inequality $2015\int_0^x f^2(t) dt \leq \left(\int_0^x f(t) dt\right)^2$, then $f(x)\equiv 0$.
- 7. Let $f_1, f_2, \ldots, f_n : [0,1] \to (0,\infty)$ be continuous functions and let σ be a permutation of the set $\{1,2,\ldots,n\}$. Prove that $\prod_{i=1}^n \int_0^1 \frac{f_i^2(x)}{f_{\sigma(i)}(x)} dx \ge \prod_{i=1}^n \int_0^1 f_i(x) dx$. 8. Let $f: [0,1] \to \mathbb{R}$ be a function with a continuous derivative f'. Prove that if $f\left(\frac{1}{2}\right) = 0$, then
- 8. Let $f:[0,1]\to\mathbb{R}$ be a function with a continuous derivative f'. Prove that if $f\left(\frac{1}{2}\right)=0$, then $\int\limits_0^1 (f'(x))^2 \,\mathrm{d}x \ge 12 \left(\int\limits_0^1 f(x) \,\mathrm{d}x\right)^2$.
- **9.** Let $f \in C^1[0,1]$ with $\int_0^1 f(t) dt = 0$. Prove that $\int_0^1 f(t)^2 dt \le \frac{1}{2} \int_0^1 f'(t)^2 dt$.
- **10.** Let $F = \{f : [0,1] \to [0,\infty) \Big| f$ continuous and let $n \ge 2$ be a positive integer. Determine the least real constant c such that $\int\limits_0^1 f(\sqrt[n]{x}) \, \mathrm{d}x \le c \int\limits_0^1 f(x) \, \mathrm{d}x$ for every $f \in F$.