1. Let f be a real valued differentiable function on $(0,\infty)$ satisfying $|f(x)| \leq 2$ and $f(x)f'(x) \geq \sin x$ for $x \in (0, \infty)$. Does $\lim_{x \to \infty} f(x)$ exists?

Theorem (Darboux's Theorem). Let I be a closed interval and $f: I \to \mathbb{R}$ a real-valued differentiable function. Then f' has the intermediate value property: If a < b are points in I, then for every g between f'(a) and f'(b), there exists an x in (a,b) such that f'(x) = y.

- 2. Prove Darboux's Theorem. 3. Let $f:[a,b] \to [a,b]$ be a continuous function which is differentiable on (a,b) and f(a)=a, f(b)=b. Prove that there exist two distinct points x_1 and x_2 in (a,b) such that $f'(x_1)f'(x_2) = 1$.
- **4.** Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $f'(x) \leq f'\left(x + \frac{1}{n}\right)$ for all $x \in \mathbb{R}$ and all positive
- integers n. Prove that f' is continuous. **5.** A function $f: \mathbb{R}^2 \to \mathbb{R}$ is called *olympic* if for $n \geq 3$ and any $A_1, \ldots, A_n \in \mathbb{R}^2$ distinct points such that $f(A_1) = \ldots = f(A_n)$, the points A_1, \ldots, A_n are the vertices of a convex polygon.

Let $P \in \mathbb{C}[X]$ be non-constant. Prove that $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = |P(x+iy)| is olympic if and only if all the roots of \vec{P} are equal.

- **6.** The continuous function $f: \mathbb{R} \to \mathbb{R}$ has the property that for any a, the equation f(x) = f(a) has only finite number of solutions. Prove that there exist real numbers a and b such that the set of x with $f(a) \le f(x) \le f(b)$ is bounded.
- 7. Let $f:[a,b]\to\mathbb{R}$ be a continuous function such that f(a)f(b)<0. Prove that for all integers $n\geq 3$, there exists an arithmetic progression $x_1 < \ldots < x_n$ such that $f(x_1) + f(x_2) + \ldots + f(x_n) = 0$.
- 8. Prove that there are no differentiable functions $f: \mathbb{R} \to \mathbb{R}$, such that $f'(x) f(x) = \begin{cases} \sin x, & x \in (-\infty, 0) \\ \cos x, & x \in [0, \infty) \end{cases}$.
- **9.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and let $a < b \in f(\mathbb{R})$. Prove that there exists an interval I such that f(I) = [a, b].
- 10. Let $f:[0,1]\to [0,\infty)$ be a continuous function such that f(0)=f(1)=0 and f(x)>0 for 0 < x < 1. Show that there exists a square with two vertices in the interval (0,1) on the x-axis and the other two vertices on the graph of f.
- 1. Let f be a real valued differentiable function on $(0,\infty)$ satisfying $|f(x)| \leq 2$ and $f(x)f'(x) \geq \sin x$ for $x \in (0, \infty)$. Does $\lim_{x \to \infty} f(x)$ exists?

Theorem (Darboux's Theorem). Let I be a closed interval and $f: I \to \mathbb{R}$ a real-valued differentiable function. Then f' has the intermediate value property: If a < b are points in I, then for every y between f'(a) and f'(b), there exists an x in (a,b) such that f'(x) = y.

- 2. Prove Darboux's Theorem. 3. Let $f:[a,b] \to [a,b]$ be a continuous function which is differentiable on (a,b) and f(a)=a, f(b)=b. Prove that there exist two distinct points x_1 and x_2 in (a,b) such that $f'(x_1)f'(x_2)=1$.
- **4.** Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function such that $f'(x) \leq f'(x + \frac{1}{n})$ for all $x \in \mathbb{R}$ and all positive integers n. Prove that f' is continuous.
- **5.** A function $f: \mathbb{R}^2 \to \mathbb{R}$ is called *olympic* if for $n \geq 3$ and any $A_1, \ldots, A_n \in \mathbb{R}^2$ distinct points such that $f(A_1) = \ldots = f(A_n)$, the points A_1, \ldots, A_n are the vertices of a convex polygon.

Let $P \in \mathbb{C}[X]$ be non-constant. Prove that $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = |P(x+iy)| is olympic if and only if all the roots of \vec{P} are equal.

- **6.** The continuous function $f: \mathbb{R} \to \mathbb{R}$ has the property that for any a, the equation f(x) = f(a) has only finite number of solutions. Prove that there exist real numbers a and b such that the set of x with $f(a) \le f(x) \le f(b)$ is bounded.
- 7. Let $f:[a,b]\to\mathbb{R}$ be a continuous function such that f(a)f(b)<0. Prove that for all integers $n\geq 3$,
- 7. Let $f:[a,b] \to \mathbb{R}$ be a continuous function such that $f(x_1) + f(x_2) + \ldots + f(x_n) = 0$. there exists an arithmetic progression $x_1 < \ldots < x_n$ such that $f(x_1) + f(x_2) + \ldots + f(x_n) = 0$. 8. Prove that there are no differentiable functions $f: \mathbb{R} \to \mathbb{R}$, such that $f'(x) f(x) = \begin{cases} \sin x, & x \in (-\infty, 0) \\ \cos x, & x \in [0, \infty) \end{cases}$.
- **9.** Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function and let $a < b \in f(\mathbb{R})$. Prove that there exists an interval I such that f(I) = [a, b].
- 10. Let $f:[0,1]\to [0,\infty)$ be a continuous function such that f(0)=f(1)=0 and f(x)>0 for 0 < x < 1. Show that there exists a square with two vertices in the interval (0,1) on the x-axis and the other two vertices on the graph of f.