- 1. Consider $f(x) = 2\sin\frac{x}{2}$.
- If y is equal to f'(a) or f'(b) we are done. Otherwise, consider $\phi(t) = f(t) yt$. Suppose that

Since ϕ is continuous on the closed interval [a, b] it attains its maximum on [a, b] by the extreme value theorem. However, it cannot be achieved at a and b, since $\phi'(a) = f'(a) - y > 0$ and phi'(b) = f'(b) - y < 0.

Therefore, ϕ must attain its maximum value at $x \in (a,b)$. Hence, by Fermat's theorem, $\phi'(x) = 0$, i.e., f'(x) = y.

- If there exist two points s and t such that f'(s) < 1 < f'(t). Then by Darboux's theorem for each $y \in [f'(s), f'(t)]$ there exists x in [s, t] such that f'(x) = y. Thus, we can find two satisfying points x_1 and x_2 . Otherwise, we have $f'(x) \leq 1$ on (a,b) or $f'(x) \geq 1$ on (a,b). That contradicts with f(a) = aand f(b) = b.
- **4.** Consider the following function $f_n(x) = n\left(f\left(x + \frac{1}{n}\right) f(x)\right)$. By the condition f_n has a non-negative derivative, thus it is increasing. Thus, for x < y $f_n(x) \le f_n(y)$. By taking $n \to \infty$, we conclude that $f'(x) \le f'(y)$. Thus, f' is increasing and by Darboux's theorem we conclude that f' is continuous.
- If $P(z) = a(z-z_0)^k$ and $f(A_1) = \ldots = f(A_n)$, then all A_i are on a circle of center z_0 , and thus are the vertices of a convex polygon.

Now, suppose that there exist two different roots z_1 and z_2 of P such that $|z_1-z_2|$ is minimal. Consider the line between z_1 and z_2 , and let $z_3 = \frac{z_1 + z_2}{2}$. Denote by s_1 and s_2 be the half lines determined by z_3 .

By the minimality of $|z_1 - z_2|$, $f(z_3)$ has to be greater than zero. Also, since $\lim_{|z| \to \infty, z \in s_1} f(z) = \lim_{|z| \to \infty, z \in s_2} f(z) = \infty$, by the Intermediate Value Theorem there exists

 $z_4 \in s_1$ and $z_5 \in s_2$ such that $f(z_3) = f(z_4) = f(z_5)$. **6.** First, we prove that f has limit at ∞ and $-\infty$. Suppose the opposite, then there exists two sequences a_n and b_n such that $\lim_{n \to \infty} f(a_n) = a < b = \lim_{n \to \infty} f(b_n)$. This implies that there exists c such that $f(a_n) < c < f(b_n)$ for all big n. By the Intermediate Value Theorem there exists an infinite sequence c_n such that $f(c_n) = c$. Contradiction.

Now, let $l_1 = \lim_{x \to \infty} f(x)$ and $l_2 = \lim_{x \to -\infty} f(x)$. There are two cases: the first one is $l_1 \neq l_2$. Suppose that $l_1 < l_2$. Consider $l_1 < a < b < l_2$. There are numbers A and B such that f(x) < a for x < A and

f(x) > b for x > B. Thus, clearly $f(x) \in [a, b]$ only happens for $x \in [A, B]$, which is bounded. The second case is $l_1 = l_2 = l$. We can choose either a < b < l or l < a < b. using the same argument as in the first case we are done.

7. Assume that f(a) < 0 and f(b) > 0. There exists ϵ such that f(x) < 0 for $x \in [a, a + \epsilon]$ and f(x) > 0 for $x \in [b - \epsilon, b]$. Let us consider two arithmetic progressions: $a_1 < a_2 < \ldots < a_n \in [a, a + \epsilon]$ and $b_1 < b_2 < \ldots < b_n \in [b - \epsilon, b]$.

Define $F(t) = \sum_{k=1}^{n} f((1-t)a_k + tb_k)$. $F(0) = \sum_{k=1}^{n} f(a_k) < 0$ and $F(1) = \sum_{k=1}^{n} f(b_k) > 0$. Thus, by the Intermediate Value Theorem there exists τ with $F(\tau) = 0$.

Suppose such a function exists. Consider $g(x) = e^{-x} f(x)$. Its derivative has Intermediate Value Property by Darboux's Theorem. However, it has a discontinuity at zero: $\lim_{x\to 0^-} = \lim_{x\to 0} e^{-x} \sin x = 0$ and

 $\lim_{x \to 0+} = \lim_{x \to 0} e^{-x} \cos x = 1.$ Contradiction.

There exist p and q such that f(p) = a and f(q) = b. Let p < q.

The set of f(x) = a on [p,q] is bounded thus it has a supremum α . The set of f(x) = b on $[\alpha,q]$ is bounded thus it has an infimum β . We claim that $f([\alpha, \beta]) = [a, b]$.

Obviously, due to the Intermediate Value Theorem $f([\alpha, \beta]) \supseteq [a, b]$. Suppose that f(x) < a for some $x \in [\alpha, \beta]$. Thus, by the continuity there exists $y \in [x, \beta]$ with f(x) = a. Contradiction, since α is a supremum. The same goes if f(x) > b.

10. $A = \{x \in [0,1] : x + f(x) \ge 1\}$ is non-empty and has an infimum. Let it be c. Since 0 + f(0) < 1and f is continuous, the inequality x + f(x) < 1 holds in a neighbourhood of the origin, therefore c > 0. To summarize: there is a $c \in (0,1]$ such that c + f(c) = 1 and x + f(x) < 1 for all $x \in [0,c)$.

Since f is continuous, it attains extremum f(d) on [0,1] where $d \in (0,1)$. Consider g(x) = x + f(x). Since g(0) = 0 < d < 1 = c + f(c) = g(c), there exists α with $g(\alpha) = d$.

Now consider h(x) = f(x+f(x)) - f(x) on [0,c]. We have $h(\alpha) = f(\alpha+f(\alpha)) - f(\alpha) = f(d) - f(\alpha) \ge 0$, $h(c) = f(c + f(c)) - f(c) = f(1) - f(c) = -f(c) \le 0$, and h(d) = f(d + f(d)) - f(d) only if $d \le c$. Thus, by the Intermediate Value Theorem $h(\gamma) = 0$ with $\gamma \in [\alpha, c]$. However, we cannot be sure that $\gamma < 1$. If $\gamma = 1$, then c = 1, and thus d < c and we can choose another γ from $[\alpha, d]$. Thus, we found a square.