Theorem 1 (Chebyshev's Inequality). If $f, g : [a, b] \to \mathbb{R}$ are two monotonic functions of the same monotonicity, then

$$(b-a) \cdot \int_{a}^{b} f(x)g(x)dx \ge \left(\int_{a}^{b} f(x)dx\right) \left(\int_{a}^{b} g(x)dx\right).$$

If f and g are of opposite monotonicity, then the inequality should be reversed.

Theorem 2 (The Mean Value Theorem). Let $f : [a, b] \to \mathbb{R}$ be a continuous function and $g : [a, b] \to \mathbb{R}$ be a non-negative integrable function. Then, there is $c \in [a, b]$ such that

$$f(c) \cdot \int_{a}^{b} g(x)dx = \int_{a}^{b} f(x)g(x)dx$$

Theorem 3 (Cauchy-Schwarz's Inequality). If $f, g : [a, b] \to \mathbb{R}$ are integrable, then

$$\left|\int_{a}^{b} f(x)g(x)dx\right|^{2} \leq \left(\int_{a}^{b} f^{2}(x)dx\right) \cdot \left(\int_{a}^{b} g^{2}(x)dx\right),$$

with equality when $|g(x)| = c \cdot |f(x)|$

Theorem 4 (Hölder's Inequality). If $f, g : [a, b] \to \mathbb{R}$ are integrable and $\frac{1}{p} + \frac{1}{q} = 1$ with p, q > 1, then

$$\int_{a}^{b} |f(x)g(x)| dx \le \left(\int_{a}^{b} |f(x)|^{p} dx\right)^{\frac{1}{p}} \cdot \left(\int_{a}^{b} |g(x)|^{q} dx\right)^{\frac{1}{q}},$$

with equality when $|g(x)| = c \cdot |f(x)|^{p-1}$.

1. a) Prove Chebyshev's inequality.

b) Let $f: [0,1] \to \mathbb{R}$ be a non-decreasing continuous function and n be a positive integer. Prove that $\int_{0}^{1} f(x) dx \le (n+1) \cdot \int_{0}^{1} x^{n} f(x) dx.$

c) Let $f:[0,1] \to (0,1)$ be a Riemann integrable function. Show that $\frac{2\int_{0}^{x} f^{2}(x) dx}{\int_{0}^{1} (f^{2}(x)+1) dx} < \frac{\int_{0}^{1} f^{2}(x) dx}{\int_{0}^{1} f(x) dx}$. 2. Let $f \in C^{2}[0,1]$. Show that, for any $y \in [0,1]$, $|f'(y)| \le 4\int_{0}^{1} |f(x)| dx + \int_{0}^{1} |f''(x)| dx$. 3. Let $f:[1,13] \to \mathbb{R}$ be a convex and integrable function. Prove that $\int_{1}^{3} f(x) dx + \int_{11}^{13} f(x) dx \ge \int_{5}^{9} f(x) dx$. 4. Let $f:[0,1] \to [0,\infty)$ be integrable. Prove that $2\int_{0}^{1} f^{4}(x) dx + \left(\int_{0}^{1} f(x) dx\right)^{4} \ge 3\left(\int_{0}^{1} f^{2}(x) dx\right)^{2}$. 5. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function such that $0 \le f'(x) \le 1$ and f(a) = 0. Prove that $3\left(\int_{a}^{b} f^{2}(x) dx\right)^{3} \ge \int_{a}^{b} f^{8}(x) dx$.

6. Let $f: [1, \infty) \to \mathbb{R}$ and $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^2 + x^2}$. Prove that there exist two positive numbers c_1 and c_2 , such that $\frac{c_1}{x} \le f(x) \le \frac{c_2}{x}$ for $x \in [1, \infty)$. 7*. Let f be a differentiable function on [1, 2] with f(1) = 1, f(2) = 2 and f'(x) + f(x) > 1 for every $x \in [1, 2]$. Prove that $1 \le \int_{1}^{2} f(x) dx \le e$. 8*. Let $f: [0,1] \to \mathbb{R}$ be a differentiable function with continuous derivative and $\int_{0}^{1} f(x) dx = \int_{0}^{1} x f(x) dx = 1$. 1. Prove that $\int_{0}^{1} |f'(x)|^3 dx \ge \left(\frac{128}{3\pi}\right)^2$.

9. Let $f(x) \in C^2[0,1], |f''(x)| \le 1$ and f(x) reach its maximum value $\frac{1}{4}$ on (0,1). Prove that $|f(0)| + |f(1)| \le 1$.

10. Let f(x) be continuous in [0,1], $\int_{0}^{1} f(x) dx = 0$ and $\int_{0}^{1} x f(x) dx = 1$. Prove that there exists at least one point c such that |f(c)| > 4.

one point c such that |f(c)| > 4. **11***. Let $f: [a,b] \to \mathbb{R}$ be twice differentiable with continuous derivative f'' and f(a) = f(b). Prove that $\left(\int_{a}^{b} xf'(x)\mathrm{d}x\right)^{2} \leq \frac{(b-a)^{5}}{120}\int_{a}^{b} (f''(x))^{2}\mathrm{d}x.$