1. f(xy) = f(x)f(y) - f(x+y) + 1 and f(1) = 2. Put x = 1 and y = n: $f(n) = 2f(n) - f(n+1) + 1 \Rightarrow f(n+1) = f(n) + 1$. This means that f(n) = n + 1(1).For x = k and $y = \frac{n}{k}$: $f(n) = f(k)f(\frac{n}{k}) - f(k + \frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) - k - f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n}{k}) + 1 \Rightarrow n + 1 = (k+1)f(\frac{n$ $f(\frac{n}{k}) = \frac{n}{k} + 1.$ Thus, for $x \in \mathbb{Q}$ f(x) = x + 1. And since \mathbb{Q} is dense in \mathbb{R} we have f(x) = x + 1 for $x \in \mathbb{R}$.

2. Let $f(0) \neq 0$. Then $|f(0) - 0| > |f(f(0)) - f(0)| \ge |f(f(f(0))) - f(f(0))| \ge |0 - f(f(0)$ |f(0) - f(f(f(0)))| = |f(0) - 0|. Contradiction.

3. $f(x) + f(\frac{x-1}{x}) = 1 + x(1).$ For $x = \frac{x-1}{x}$: $f(\frac{x-1}{x}) + f(\frac{-1}{x-1}) = \frac{2x-1}{x}(2).$

For
$$x = \frac{-1}{x-1}$$
: $f(\frac{-1}{x-1}) + f(x) = \frac{x-2}{x-1}$ (3).

 $(1) + (3) - (2): 2f(x) = 1 + x + \frac{x-2}{x-1} - \frac{2x-1}{x} = \frac{x^3 - x^2 - 1}{x(x-1)} \Rightarrow F(x) = \frac{x^3 - x^2 - 1}{2x(x-1)}.$ $4. \quad 3333 = f(9999) = f(9996) + f(3) + \delta_{9996,3} = f(9993) + 2f(3) + \delta_{9993,3} = \dots = 3333f(3) + \delta_{9996,3} + \dots$ $This means, that f(3) = 1 and \delta_{9996,3} = \delta_{9993,3} = \dots = \delta_{3,3} = 0.$ Since 2013 is divisible by 3, f(2013) = 671.

Since the function is continuous it maps $(-\infty, +\infty)$ to some interval X. All irrationals from 5. $(-\infty, +\infty)$ are mapped into rationals from X. Thus, rationals from $(-\infty, +\infty)$ are mapped to all irrationals and some set of rationals from X. This is impossible, since the set of irrationals in X is incountable,

while the set of rationals is countable. **6.** Let f be not equal to zero. Then, since f is continuous, then there exists an interval [a, b] such that |a-b| < 1, f(a) = 0 and |f(b)| is the maximum on the interval. By the Mean Value Theorem: $\frac{f(b)-f(a)}{b-a} = f'(c) \Rightarrow |f(c)| < |f(b)| < |f'(c)|.$ Contradiction.

7. Let $g(t) = \frac{f(\cos t)}{\sin t}$, then $g(t + \pi) = g(t)$. $g(2t) = \frac{f(2\cos^2 t - 1)}{2\sin t \cos t} = \frac{f(\cos t)}{\sin t} = g(t)$. Then for any n and $k \ g(1 + \frac{n\pi}{2^k}) = g(2^k + n\pi) = g(2^k) = g(1)$. Since, $\{1 + \frac{n\pi}{2^k} | n, k \in \mathbb{Z}\}$ is dense and g is continuous on its domain, \overline{g} is constant on its domain. We know that g(t) = g(-t), thus g(t) = 0, when t is not a multiple of π . Hence, f(x) = 0 for $x \in (-1, 1)$. Finally, since f is continuous, f(x) = 0for $x \in [-1, 1]$.

8. When a > 2, $f(x) = \frac{2a}{a-2}$ satisfies: the perimeter and the area are equal to $\frac{2a^2}{a-2}$. Now, suppose $a \le 2$. Let M be the maximal value of f(x). Then the area does not exceed $a \cdot M$. At the same time, the perimeter is at least 2M + a: from (0,0) to point with f(x) = M, from point with f(x) = M to (a, 0) and from (a, 0) to (0, 0). It can be seen that area $\leq a \cdot M \leq 2M < 2M + a \leq$ pertimeter. $\frac{1}{2} = \frac{1}{2} + \frac{1}$ $a^2 f'(\frac{a}{\pi})$ ~

9.
$$f'(x) = \frac{a}{xf(\frac{a}{x})}$$
. Let us take the derivative: $f''(x) = -\frac{a}{x^2f(\frac{a}{x})} + \frac{x}{x^3f^2(\frac{a}{x})}$
Now, substitute $f(\frac{a}{x}) = \frac{xf'(x)}{a}$ and $f'(\frac{a}{x}) = \frac{x}{f(x)}$: $f''(x) = -\frac{f'(x)}{x} + \frac{f'(x)^2}{f(x)}$.
Clear denominators: $xf(x)f''(x) + f(x)f'(x) = xf'(x)^2$.
Divide by $f(x)^2$: $0 = \frac{f'(x)}{f(x)} + \frac{xf''(x)}{f(x)} - \frac{xf'(x)^2}{f(x)^2} = \left(\frac{xf'(x)}{f(x)}\right)'$.
Thus, $\frac{f'(x)}{f(x)} = \frac{d}{x}$ and $f(x) = cx^d$.

10. By the Mean Value Theorem there exists $c_1 \in [-a, 0]$ such that $|f'(c_1)| = \frac{|f(0) - f(-a)|}{0 - (-a)} \leq \frac{2}{a}$ and, consequently, $f(c_1)^p + f'(c_1)^q \leq 1 + \left(\frac{2}{a}\right)^q$. Analogously, there exists $c_2 \in [0, a]$ such that $f(c_2)^p + f'(c_2)^q \leq \frac{1}{a}$. $1 + \left(\frac{2}{a}\right)^q$. Thus, there exists $c \in [c_1, c_2]$ such that $(f(c)^p + f'(c)^q)' = 0$. This is almost what we need, except for a multiplicative factor f'(c). We can divide by it only if f'(c) = 0. However, if f'(c) = 0 then $f(c)^{p} + f'(c)^{q} = f(c)^{p} \leq 1 < f(0)$, but it should be the maximum on $[c_{1}, c_{2}]$.

11. By the Mean Value Theorem there exists $c \in [0, x]$ such that $-1 \leq f'(c) = \frac{f(x) - f(0)}{x - 0} = \frac{f(x) - 1}{x}$ and $f(x) \geq 1 - x$. Analogously, $1 \geq f'(c) = \frac{f(2) - f(x)}{2 - x} = \frac{1 - f(x)}{2 - x}$ and $f(x) \geq x - 1$. Thus, $f(x) \geq |x - 1|$. $\int_{0}^{2} f(x) dx \ge \int_{0}^{2} |x - 1| dx = 1.$ However, |x - 1| is not continuous, thus, the strong inequality follows.