
1. f(xy) = f(x)f(y)− f(x+ y) + 1 and f(1) = 2.
Put x = 1 and y = n: f(n) = 2f(n) − f(n + 1) + 1 ⇒ f(n + 1) = f(n) + 1. This means that

f(n) = n+ 1 (1).
For x = k and y = n

k : f(n) = f(k)f(nk ) − f(k + n
k ) + 1 ⇒ n + 1 = (k + 1)f(nk ) − k − f(

n
k ) + 1 ⇒

f(nk ) =
n
k + 1.

Thus, for x ∈ Q f(x) = x+ 1. And since Q is dense in R we have f(x) = x+ 1 for x ∈ R.
2. Let f(0) 6= 0. Then |f(0) − 0| > |f(f(0)) − f(0)| ≥ |f(f(f(0))) − f(f(0))| ≥ |0 − f(f(0))| ≥

|f(0)− f(f(f(0)))| = |f(0)− 0|. Contradiction.
3. f(x) + f(x−1x ) = 1 + x (1).

For x = x−1
x : f(x−1x ) + f( −1x−1) =

2x−1
x (2).

For x = −1
x−1 : f(

−1
x−1) + f(x) = x−2

x−1 (3).

(1) + (3)− (2): 2f(x) = 1 + x+ x−2
x−1 −

2x−1
x = x3−x2−1

x(x−1) ⇒ F (x) = x3−x2−1
2x(x−1) .

4. 3333 = f(9999) = f(9996)+f(3)+δ9996,3 = f(9993)+2f(3)+δ9993,3 = . . . = 3333f(3)+δ9996,3+. . ..
This means, that f(3) = 1 and δ9996,3 = δ9993,3 = . . . = δ3,3 = 0. Since 2013 is divisible by 3,

f(2013) = 671.
5. Since the function is continuous it maps (−∞,+∞) to some interval X. All irrationals from

(−∞,+∞) are mapped into rationals from X. Thus, rationals from (−∞,+∞) are mapped to all irra-
tionals and some set of rationals fromX. This is impossible, since the set of irrationals inX is incountable,
while the set of rationals is countable.

6. Let f be not equal to zero. Then, since f is continuous, then there exists an interval [a, b] such
that |a − b| < 1, f(a) = 0 and |f(b)| is the maximum on the interval. By the Mean Value Theorem:
f(b)−f(a)

b−a = f ′(c)⇒ |f(c)| < |f(b)| < |f ′(c)|. Contradiction.
7. Let g(t) = f(cos t)

sin t , then g(t+ π) = g(t).

g(2t) = f(2 cos2 t−1)
2 sin t cos t = f(cos t)

sin t = g(t).

Then for any n and k g(1 + nπ
2k
) = g(2k + nπ) = g(2k) = g(1). Since, {1 + nπ

2k
|n, k ∈ Z} is dense and

g is continuous on its domain, g is constant on its domain. We know that g(t) = g(−t), thus g(t) = 0,
when t is not a multiple of π. Hence, f(x) = 0 for x ∈ (−1, 1). Finally, since f is continuous, f(x) = 0
for x ∈ [−1, 1].

8. When a > 2, f(x) = 2a
a−2 satis�es: the perimeter and the area are equal to 2a2

a−2 .

Now, suppose a ≤ 2. Let M be the maximal value of f(x). Then the area does not exceed a ·M . At
the same time, the perimeter is at least 2M + a: from (0, 0) to point with f(x) = M , from point with
f(x) =M to (a, 0) and from (a, 0) to (0, 0). It can be seen that area ≤ a·M ≤ 2M < 2M+a ≤ pertimeter.

9. f ′(x) = a
xf( a

x
) . Let us take the derivative: f

′′(x) = − a
x2f( a

x
)
+

a2f ′( a
x
)

x3f2( a
x
)
.

Now, substitute f(ax) =
xf ′(x)
a and f ′(ax) =

x
f(x) : f

′′(x) = −f ′(x)
x + f ′(x)2

f(x) .

Clear denominators: xf(x)f ′′(x) + f(x)f ′(x) = xf ′(x)2.

Divide by f(x)2: 0 = f ′(x)
f(x) + xf ′′(x)

f(x) −
xf ′(x)2

f(x)2
=
(
xf ′(x)
f(x)

)′
.

Thus,
f ′(x)
f(x) = d

x and f(x) = cxd.

10. By the Mean Value Theorem there exists c1 ∈ [−a, 0] such that |f ′(c1)| = |f(0)−f(−a)|
0−(−a) ≤ 2

a and,

consequently, f(c1)
p+f ′(c1)

q ≤ 1+
(
2
a

)q
. Analogously, there exists c2 ∈ [0, a] such that f(c2)

p+f ′(c2)
q ≤

1 +
(
2
a

)q
. Thus, there exists c ∈ [c1, c2] such that (f(c)p + f ′(c)q)′ = 0. This is almost what we need,

except for a multiplicative factor f ′(c). We can divide by it only if f ′(c) = 0. However, if f ′(c) = 0 then
f(c)p + f ′(c)q = f(c)p ≤ 1 < f(0), but it should be the maximum on [c1, c2].

11. By the Mean Value Theorem there exists c ∈ [0, x] such that −1 ≤ f ′(c) = f(x)−f(0)
x−0 = f(x)−1

x

and f(x) ≥ 1 − x. Analogously, 1 ≥ f ′(c) = f(2)−f(x)
2−x = 1−f(x)

2−x and f(x) ≥ x − 1. Thus, f(x) ≥ |x − 1|.
2∫
0

f(x) dx ≥
2∫
0

|x− 1|dx = 1. However, |x− 1| is not continuous, thus, the strong inequality follows.
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