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We have implemented a model of contrast gain control in human vision that incorporates a number of key
features, including a contrast sensitivity function, multiple oriented bandpass channels, accelerating nonlin-
earities, and a divisive inhibitory gain control pool. The parameters of this model have been optimized
through a fit to the recent data that describe masking of a Gabor function by cosine and Gabor masks [J. M.
Foley, “Human luminance pattern mechanisms: masking experiments require a new model,” J. Opt. Soc. Am.
A 11, 1710 (1994)]. The model achieves a good fit to the data. We also demonstrate how the concept of re-
cruitment may accommodate a variant of this model in which excitatory and inhibitory paths have a common
accelerating nonlinearity, but which include multiple channels tuned to different levels of contrast [P. C. Teo
and D. J. Heeger, “Perceptual image distortion,” in Human Vision, Visual Processing, and Digital Display V,
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1. INTRODUCTION

With some notable exceptions, spatial patterns are most
easily seen against a uniform background; backgrounds
that contain spatial patterns typically raise visual thresh-
olds. Understanding this phenomenon of pattern mask-
ing is an important part of understanding the process of
pattern detection and pattern visibility in general.

Visual masking describes a broad range of phenomena
that may be arranged in various operational or theoreti-
cal taxonomies. Here we deal exclusively with static tar-
get and masking patterns that appear simultaneously
and that vary only in regard to their relative intensities
on successive displays. In addition, the mask is a simple
pattern such as a sinusoid or a Gabor function. We shall
call this pattern masking. Considerations associated
with stochastically defined masks such as visual noise re-
main outside the scope of the current paper.

There are two traditional explanations for pattern
masking. In one, the mechanism detecting the target
has a nonlinear, compressive response. The mask acti-
vates this mechanism and pushes its response into the
compressive range. The differential between responses
to mask alone and to target plus mask is thereby reduced,
and threshold is elevated.!? In the second explanation,
the mask inhibits the target detection mechanism, either
directly or through other mechanisms. More recently,
models that incorporate both these mechanisms within a
process of contrast gain control have been proposed.’™
These psychophysical models are largely inspired by re-
cent analyses of the response properties of single visual
neurons in primary visual cortex.5® Here contrast gain
control is a mechanism that serves to keep neural re-
sponses within their permissible dynamic range while re-
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taining the information conveyed by the pattern of activ-
ity over the neural ensemble. In the normalization
model by Heeger,? each neuron has an accelerating non-
linearity but is also inhibited divisively by a pool of re-
sponses of other neurons. In the psychophysical model
by Teo and Heeger® that is closely based on this cortical
normalization theory, masking occurs through the inhibi-
tory effect of this normalizing pool. Foley’s model of
masking® also incorporates a divisive inhibitory pool.

Despite their success in predicting certain masking
data, there remain reasons to consider alternative mod-
els. Foley’s model was designed to predict results for a
narrow range of experimental stimuli and can make no
predictions for other stimuli. To accommodate generic
two-dimensional (2D) stimuli, we require that the model
be image driven; that is, it must accept images as inputs.
The model by Teo and Heeger is image driven but does
not specify certain aspects, such as the contribution of dif-
ferent spatial frequencies to the inhibitory pool. In addi-
tion, their model places a rigid constraint on the form of
the nonlinearity, which in turn obliges them to posit mul-
tiple mechanisms responsive to different ranges of con-
trast. The model by Wilson and Humanski* is particu-
larly concerned with temporal dynamics of the gain
control process and consequently devotes less attention to
spatial details. Cannon and Fullencamp have developed
an image-driven model that incorporates a gain control
process, but it is designed to predict only estimates of ap-
parent contrast.’

Additional impetus for a general image-driven model of
spatial masking arises from the enduring search by vari-
ous engineering communities for a practical and accurate
model of the visibility of spatial patterns. In contexts
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such as display design and image compression, the model
must be general enough to deal with any imagery that
might be displayed or compressed. Parameter-driven
models designed to deal with simple patterns such as sev-
eral sinusoidal gratings typically offer little guidance on
what to do with complex images such as photographs.
There have, in fact, been numerous efforts to develop
image-driven models for evaluation of image quality,
several of which incorporate pattern-masking mecha-
nisms. The model by Daly!! is particularly complete but
does not directly predict detection thresholds. The model
by Lubin'? does predict thresholds but, like Daly’s, as-
sumes that contrast gain control occurs only within a
channel.

To explore the various elements of the contrast gain
control process and to provide a general image-driven
model of pattern masking that might be used in applied
contexts, we have developed a model of pattern masking
based on contrast gain control. We have applied this
model to recent psychophysical results obtained by
Foley,? with generally excellent results.

2. MODEL

As discussed in Section 1, most of the existing models of
masking and contrast gain control share many features.
Furthermore, it is unclear at this time precisely which
features are essential to successful prediction of human
experimental data. Consequently we designed a model
with a modular structure whose building blocks corre-
spond to a large extent with specific individual assertions
about the processing of luminance contrast signals.

A. Generic Model
An overview of this generic model is pictured in Fig. 1.
The input to the model is a pair of images. These might
be, for example, the two images presented to an observer
in a two-alternative forced-choice experiment. Each im-
age traverses an identical set of processing stages, which
are illustrated for image 1. The first stage is a linear fil-
ter bank. In general, the output of this stage will be a set
of filtered images, one for each filter in the bank. Bor-
rowing a term from signal processing, we call these
subbands.’® The next stage is a sampling operation,
which may alter the number and the positions of samples
in each subband.

At this point, the signal forks into excitatory and in-
hibitory paths, each of which begins with a point nonlin-
earity. The inhibitory stage is then subject to a second
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Fig. 1. Outline of the generic image discrimination model incor-
porating contrast gain control.
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Fig. 2. Outline of the specific model used in our contrast gain
control model of pattern masking. CSF, contrast sensitivity
function.
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Fig. 3. Example stimuli to illustrate the operation of the model:
(a) cosine mask at 45-deg orientation, (b) Gabor target, (c) mask
at 25% contrast, (d) mask at 25% contrast plus target at 50% con-
trast.

linear filtering operation, which we characterize as a pool-
ing operation. This pooled signal then drives an inhibi-
tory operation on the excitatory path.

Finally, the processed representations of the two im-
ages are compared, leading to a decision.

This generic model can clearly accommodate a wide
range of specific choices regarding filtering, nonlineari-
ties, the inhibitory process, and the comparison mecha-
nism. In Subsection 2.B we describe the specific choices
that we have made and compare them with those made by
other comparable models.

B. Specific Model

Our specific model is illustrated in Fig. 2. It shows the
various choices that we have made regarding the generic
components. These are discussed in more detail in the
following subsections.

C. Example Stimuli
To illustrate the behavior of the model it is useful to con-
sider a pair of example stimuli, as shown in Fig. 3. The
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constituent parts are shown in Figs. 3(a) and 3(b): a co-
sine grating at a frequency of 4 cycles/image and an ori-
entation of 45 deg, and a vertical Gabor function of the
same frequency. These elements are combined to form
the two signals of a two-alternative forced-choice detec-
tion task. Figure 3(c) shows the mask alone at 25% con-
trast, and in Fig. 3(d) the mask is combined with a 50%
contrast Gabor target.

D. Contrast Sensitivity Filter

Variations in contrast sensitivity can be incorporated into
a filter bank model in either of two general ways. The
first is to set the gain of each of the filters in the bank in
such a way that the ensemble produces the empirical con-
trast sensitivity. The second is to place a single contrast
sensitivity filter (CSF) at the front end and to calibrate
the remainder of the model in such a way that it intro-
duces no further variations in contrast sensitivity. There
are many issues involved in this decision, but here we
take the latter course.

The CSF was designed to match in shape the CSF mea-
sured with Gabor stimuli. The data shown in Fig. 4 (Ref.
14) show that a parabola in log-log coordinates is a rea-
sonable description of this function. This log-log-
parabolic filter is then implemented as a digital filter,
with parameters of peak sensitivity, peak frequency, and
log bandwidth.

E. Gabor Array

We experimented with two different multiple-channel fil-
ter banks. The first is the set of filters defined by the cor-
tex transform,'® as modified by Daly.!' The second, from
which all the results below are derived, is a filter set that
we call the Gabor array. It is a collection of Gabor filters
that vary in spatial frequency, orientation, and phase. It
is convenient to consider the filters as forming an array,
in which each row corresponds to a particular spatial fre-
quency and each column to a particular orientation, as
shown in Fig. 5. The distinctive feature of this type of
filter bank is the Gabor shape for each filter and the rect-
angular sampling of the orientation-log frequency plane.
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Fig. 4. Contrast sensitivities for 1-octave Gabor targets as a
function of spatial frequency, fit by a parabola in log-log coordi-
nates (from Ref. 14). The parameters are peak sensitivity,
62.24; peak frequency, 1.04 c/deg; and log bandwidth at half-
height, 1.118.
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Fig. 5. Gabor array filter bank, with three spatial frequencies
and four orientations. (a) The transfer functions and (b) the
even impulse responses of each filter are shown, all scaled to unit
amplitude.

Within these constraints there is freedom in selection of
frequency spacing and bandwidth and of orientation spac-
ing and bandwidth. The output of the filter bank is an
array of images equal in number to the number of filters
and each equal in size to the input.

In Fig. 5 and succeeding figures, we illustrate the be-
havior of the model as it responds to signal and mask. In
these illustrations we show a Gabor array with three fre-
quency bands and four orientation bands, with 1-octave
frequency bandwidths, and other parameters set to rea-
sonable values. However, the actual values of model pa-
rameters used in fitting experimental data may differ and
are given further below.

Although we describe many of the mechanisms of this
model in image-processing terms, we emphasize that the
underlying physical model is that of arrays of visual neu-
rons. Where possible, we make use of simplifying as-
sumptions or algorithms. One of these relates to the sign
of our elementary responses. Cells in primary visual cor-
tex typically have little or no maintained discharge, and it
seems likely that they signal only with positive responses.
At a first approximation they appear to half-wave rectify
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their underlying linear responses.'® It is conventionally
assumed that positive and negative deviations of the
stimulus are signaled by pairs of complementary neurons
that are 180 deg out of phase, much like the on- and off-
center cells at earlier levels of the visual pathway. This
leads to a set of four hypothetical phases of the individual
receptive fields: 0, 90, 180, and 270 deg. Since in the
absence of response noise only one of each opposed pair
will respond to a given signal, we simulate this situation
with just two phase receptive fields (0 and 90 deg), each of
which produce signed responses. It should be understood
that a negative response simulates the positive response
of a negative phase cell. The pictures throughout this
paper that show both positive and negative deviations
from zero should be viewed as the ensemble response of
two sets of opposite phase neurons. Likewise, math-
ematical expressions that depict responses indexed by
phase should be understood as representing all-positive
responses at one of four phases.

A second obvious approximation in our simulation of
neural populations is that ours is a sampled model in
which a set of neurons at representative points in space,
frequency, orientation, and phase is used to approximate
the presumably more continuous distribution in nature.

The Gabor array filter bank is implemented as a set of
analytic filters that produce a complex output from a real
input.’'8 The real and the imaginary parts of this com-
plex response represent the responses of even (0 and 180
deg) and odd (90 and 270 deg) filters, respectively. Like-
wise, positive values represent responses of 0- and 90-deg
phase neurons, while negative values represent responses
of 180- and 270-deg phase neurons.

F. Sampling

To this point, the model has multiplied the dimensional-
ity of the signal by a factor equal to the number of filters.
While there is some reason to believe that the primary vi-
sual cortex may oversample its retinal input, and while
such oversampling may have advantages in terms of shift
invariance, there are also powerful advantages to down-
sampling the lower-frequency channels. First, this al-
lows a pyramid style of representation, in which each sub-
band is sampled in proportion to its characteristic spatial
wavelength. Second, downsampling in proportion to
wavelength greatly reduces the amount of subsequent
computation required.

We have experimented with both downsampled and un-
sampled representations and have generally found that,
within the limits of our experiments, and provided that
the filters are appropriately normalized (see below), we
obtain very similar results. We have therefore worked
mainly with the sampled variant, since it is computation-
ally much more efficient.

Specifically, for our octave-spaced frequency channels,
we downsampled each subband in each spatial dimension
by a factor of 2%, where L is the level that is 0 for the
highest frequency band. Our Gabor filters have a center
frequency of N 27571 for each level, where N is the Ny-
quist frequency of the input. Downsampling by 2% will
preserve information, provided that the response at that
level has no energy above N 27%, that is, 1 octave above
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the filter frequency. This is approximately true for Ga-
bor filter bandwidths of less than approximately 1.5 oc-
taves.

Figure 6 shows the downsampled real response array
to the mask alone and to the mask-plus-target example
stimuli. Each row contains response images for one spa-
tial frequency, while each column corresponds to a par-
ticular orientation. The arrangement is the same as for
the filters shown in Fig. 5(b). Note that, because of
downsampling, the number of samples in the third row is
16 times fewer than in the first row. As expected the
mask-alone responses appear primarily in the subband at
the corresponding frequency and orientation, while the
mask-plus-target responses also show activity in the sub-
band tuned to the target. As noted above, the filters pro-
duce both real and imaginary response images; here and
in subsequent figures we show only the real part.

G. Excitatory Nonlinearity

Each scalar sample in the excitatory path undergoes a
power-law nonlinearity with an exponent of p. In the
model by Foley, this is typically a value between 2 and 3,
while in the Teo—Heeger model it has a value of 2. Note

O
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Fig. 6. Responses of the Gabor filter bank (a) to mask alone and
(b) to mask plus target.
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Fig. 7. Responses after the excitatory nonlinearity (a) to mask
alone and (b) to mask plus target.

that even and odd samples separately undergo this non-
linearity. In addition, the nonlinearity is applied to the
unsigned response magnitude, to which the sign is then
reattached. This conforms to the sign-preservation
premise described above.

Figure 7 shows responses to mask alone and to mask
plus target after the excitatory nonlinearity. Compari-
son of Figs. 6 and 7 shows that the excitatory nonlinearity
tends to suppress small responses and to amplify large
ones.

H. Inhibitory Nonlinearity

The inhibitory nonlinearity is identical to that in the ex-
citatory path, except for a possibly different exponent q.
We have generally investigated values of ¢ = 2. In Fo-
ley’s model this exponent is less than p and is usually ap-
proximately 2. In the Teo—Heeger model it is 2.

I. Inhibitory Pooling

The pooling operation in the inhibitory path linearly com-
bines signals over the five dimensions of phase (0, 90, 180,
270 deg), frequency, orientation, and space (x and y). In
its most general form this combination would be specified
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by a 5D kernel that is itself a function of five dimensions.
We make the following simplifying assumptions. We as-
sume complete summation over phase. This agrees with
the Teo—Heeger model, while Foley’s model does not ad-
dress this point. We also assume that pooling is shift in-
variant over level (log frequency), orientation, and space.
These two assumptions allow us to implement the pooling
by way of a convolution operation in the transform do-
main. Specifically, let the filter responses be written
tux4, where u = (L, 6) specifies the level and the orien-
tation of the subband, x specifies the location within the
subband, and ¢ is the phase. Then the pooled response
can be written as a convolution with a pooling kernel H:

t . % Hyzy. (D

u,x,¢

Because it is a convolution, it can be implemented by
way of multiplication in the frequency domain. This is
circular convolution, in which the borders of the two op-
erands are implicitly connected at their edges (toroidal
boundaries). While this is a natural assumption for the
periodic orientation dimension, it will cause wraparound
errors in spatial and frequency dimensions unless buffer
regions are inserted, as we have done. In the phase di-

(b)

Fig. 8. (a) Example set of three inhibitory pooling kernels, one
for each level, and (b) their corresponding 3D Fourier transforms.
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Fig. 9. Response of inhibitory path (a) to mask alone and (b) to
mask plus target.

mension we have always assumed perfect summation, so
the calculation reduces to a 4D convolution. In the
sampled case the subband size varies with frequency, so
that it must be expressed as a set of separate 3D convo-
lutions at each spatial frequency. In this sampled case,
for simplicity, we have also assumed no pooling over spa-
tial frequency.

As a further simplification, we have considered only
separable Gaussian kernels, which may be specified en-
tirely by width in orientation, space, and (in the un-
sampled case) frequency. An example set of pooling ker-
nels is shown in Fig. 8. This example specifies almost
complete pooling over orientation, but very little pooling
over space. Because each row is a separate 3D kernel for
one spatial frequency, pooling over frequency is not rep-
resented. The 3D Fourier transforms of these kernels,
which are used in the convolution, are also shown.

Foley’s model employs a combination rule in which fil-
ter responses to similarly oriented target and mask com-
ponents are combined linearly before the nonlinearity,
but responses to differently oriented target and mask
components are combined after the nonlinearity.

The output of the inhibitory stage has the same dimen-
sions as that of the excitatory stage and is intended to
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represent the aggregate inhibitory signal that will control
the gain of each neuron. This output is illustrated in Fig.
9 for the two example stimuli. Note that the complete
summation over phase has produced a demodulated, all-
positive signal and that the inhibition extends broadly
over orientation but is confined largely to one band of spa-
tial frequency.

J. Divisive Gain Control
After pooling, the inhibitory path controls the gain of the
excitatory path through a divisive operation:

u,x,$
rizae = . (2)
bt Hagg

The gain control expression contains a positive con-
stant b, which defines the point at which saturation be-
gins and also prevents division by zero. A similar divi-
sive formulation is common to most models of contrast
gain control.>3%8 Some further comments on the param-
eterization of this expression are provided in Appendix A.

Fig. 10. Normalized responses (a) to mask alone and (b) mask
plus target.
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Fig. 11. Differential response raised to the power 8 = 4 for the
example stimuli: (a) target contrast, 50%; (b) target contrast,
17%. For clarity, both images are displayed at full contrast; in
(a) the largest value is 195.3; in (b) it is 1.3.

This divisive operation is applied on a sample-by-
sample basis. Figure 10 shows the results for our ex-
ample stimuli.

K. Comparison

At the comparison stage, the normalized responses to the
two stimuli are subtracted. This step, which is common
to most models of masking, is consistent with simple ideal
observer theory but is one of the steps most susceptible to
criticism. It assumes, for example, that the observer has
a photographic memory for the two images.

L. Decision

We adopt a simple probability summation rule at the de-
cision stage. A Minkowski summation (Holder norm)
with exponent B is applied to the response differences:

1B
d=1{> l1raze — oramel®| - 3

The differences are assumed to be at threshold, and the
images discriminated, when d > 1. Figure 11 shows the
real part of the differential response, after it is rectified
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and raised to the power 8 = 4. This result is shown not
only for the example target Gabor of 50% contrast that
has been used in the previous figures but also for a target
contrast of 17%, approximately the threshold value found
for this configuration of target and mask.> Though there
are also sizable responses at other points, it is clear that
the largest response is, as expected, at the center of the
Gabor target. This is particularly true for the near-
threshold responses shown in Fig. 11(b).

This decision rule has a number of possible interpreta-
tions. The first interpretation is that of probability sum-
mation among independent high-threshold mechanisms.
Each neuron independently determines whether on a
given trial its response in the two intervals differed by a
criterion amount, and, if this criterion is met in any
neuron, the correct interval is selected. If the exponent
is 2, then this rule is equivalent to an ideal observer of
a signal-known-exactly, applied to the normalized
responses.

M. Channel Filter Normalization

We have elected to place all the variation in sensitivity
with spatial frequency in a CSF that precedes the Gabor
filter bank. In particular, we normalize each level of the
Gabor filter array in such a way that the CSF specifies
the approximate sensitivity to 1-octave Gabor signals at
each frequency of the array.

This normalization is accomplished in the following
way. Consider the Gabor filter at u = {f, 0} (the orien-
tation is not important, but we will assume that a filter at
orientation O exists). We write the response of this filter
to a unit amplitude 1-octave Gabor signal at frequency f
as G;. Then, using no mask and assuming that the in-
hibitory signal is negligible, we have

d = b‘q(E |GA*

1B

(4)

The set of filters at frequency [ is then scaled by d .
In the absence of a CSF, the threshold amplitude for the
Gabor would then be 1; in the presence of the CSF it will
have a threshold equal to the inverse of the value of the
CSF at the corresponding frequency. This approxima-
tion neglects the contribution of all the channels except
for the one at the frequency and the orientation of the Ga-
bor, which in most cases will be minor.

3. SIMULATIONS

A. Computational Methods
The model described above was implemented in the
MATHEMATICA programming language.'®

The model contains a number of parameters that affect
the size of the computation. Most importantly, these are
D, the width in degrees of the simulated square area of
visual field, and F, the spatial frequency in cycles per de-
gree (c/deg) of the highest channel simulated. Together,
these parameters specify the sampling density of the im-
ages. Thus P, the image width in samples, is usually
equal to 4DF. Most of the data that we simulate here
concern small targets that can largely be contained
within an area of 2 deg on a side. In addition, they all
have spectra centered at 2 c/deg. Therefore most of
the simulations that we show are for F = 4 c/deg,
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Table 1. Model Notation

Model parameters

a CSF peak amplitude
fo CSF peak frequency
w CSF log bandwidth

p Excitatory exponent
q Inhibitory exponent
b Saturation constant

Sy Pooling width in x or y
Sy Pooling width in orientation
sy Pooling width in frequency
k octave bandwidth of Gabor filters
B Minkowski exponent
Model variables

tzzs  Gabor filter response
ruz¢  Normalized response
d Decision variable, analogous to d’

Simulation control parameters

Number of orientations simulated

Width in degrees of the square simulated area
Width in pixels of the square simulated area

Spatial frequency in cycles/degree of highest channel
Number of octave-spaced frequency channels

SRS B -Bele)

D = 2deg. Thus the stimuli, and the response image in
one subband at the highest frequency, are represented by
images 32 pixels on a side. We have experimented with
larger sizes and have found little change. Another im-
portant factor is O, the number of orientation channels
simulated. A final factor is C, the number of spatial-
frequency channels simulated. Once the highest fre-
quency is chosen, adding lower frequencies spaced an oc-
tave apart adds relatively little computational effort
(~30%) in the downsampled case. In the downsampled
case, the total number of samples in the response array is
approximately 260F2D?%/3. For example, with a field
width of 2 deg, three frequencies (1, 2, and 4 c/deg) and
eight orientations, the number of complex response
samples is 10,752. For reference, we provide in Table 1 a
summary of model parameters, variables, and simulation
control parameters.

B. Effect of Mask Orientation

Foley and Boynton®?° collected data for detection of a 2-
c/deg, 0-deg orientation Gabor target added to a 2-c/deg
cosine mask at one of several orientations or to a com-
bined Gabor and cosine mask. These stimuli are illus-
trated in Fig. 12.

In the experiments depicted by the first row in Fig. 12,
Foley and Boynton varied the contrast of the cosine mask
at each orientation over the range from —46 to —10 dB in
steps of 4 dB. The first panel of the second row illus-
trates a contrast discrimination experiment in which a
Gabor target was detected on a Gabor mask, whose con-
trast was likewise varied over the range from —46 to
—10 dB in steps of 4 dB. In the final two panels of the
second row, the contrast discrimination experiment was
repeated in the presence of an additional cosine mask
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with fixed contrast of —20 dB and an orientation of either
45 or 90 deg. For each experiment depicted by a single
image in Fig. 12, the resulting set of data set may be rep-
resented by a plot of target threshold-versus-mask con-
trast, both in decibels.

Foley and Boynton presented results from two observ-
ers, KMF and JYS. Each complete data set contains 88
thresholds, consisting of 10 masked thresholds and 1 ab-
solute threshold from each of the panels in Fig. 12. We
fitted our model to all 88 points of each observer. All the
model parameters were optimized separately for each ob-
server, except for ¢ = 2 and sy = 0. Simulation control
parameters were O =8, D =2deg, P =32, F
= 4c/deg, C = 3.

The experimental data (points) and simulation results
(curves) are shown in Figs. 13 and 14. Individual panels
correspond to the separate experiments illustrated in Fig.
12. There are systematic departures, but given the size
and the complexity of the data set, the fit is quite good.
The rms errors of the fits are 1.67 and 2.0 dB for KMF
and JYS, respectively. The optimized parameters are
given in Table 2. Foley noted some key effects in the
data: (1) the facilitation for like-oriented target and
mask, (2) the diminished but persistent masking as mask
orientation differs from the target, and (3) the persistence
of facilitation in the presence of the fixed cosine mask.
All these effects, as well as many of the detailed gyrations
of the data, are captured by the model.

C. Effect of Mask Phase

In another experiment, Foley and Boynton2’ compared
the masking effects of cosine masks of 0 and 90 deg phase.
In their model, as in our own, the inhibitory path sums
over all the phases, while the excitatory path does not.
Thus facilitation, which depends on the accelerating non-
linearity in the excitatory path, should be phase depen-
dent, while the masking should be less affected. Their
data are shown in Fig. 15. In fact, the data provide only
modest support for the absence of facilitation, but the
model, which shows no facilitation, does provides a good
fit to the data.

The simulations shown in Fig. 15 were produced by op-
timization of model parameters for these data, with the
parameters from observer KMF being used as a starting
point. The initial values themselves provided a reason-
able fit, but, since the phase data were from a third ob-
server (CCC), a further optimization was deemed appro-

Fig. 12. Stimuli from Foley and Boynton.?’ The first row
shows a Gabor target added to cosine masks at orientations of 0,
11.25,22.5, 45, and 90 deg. The second row shows the same Ga-
bor target added to an identical Gabor mask or a Gabor mask
plus a cosine mask at 45 or 90 deg.
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Fig. 13. Data and simulations for observer KMF. Each graph contains an absolute threshold (no mask) plotted on the vertical axis; the

corresponding model prediction is indicated by a horizontal line.
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Fig. 14. Data and simulations for observer JYS, as in Fig. 13.

Table 2. Estimated Model Parameters and Rms
Error for the Two Observers in Foley and Boynton

(Ref. 20)*
Observer

Parameter KMF JYS
CSF peak amplitude a 39.58 42.76
CSF peak frequency fo 2.036 1.003
CSF log;y bandwidth w 1.12 1.12
Excitatory exponent p 2.323 2.297
Inhibitory exponent* q 2 2
Saturation constant b 0.0203 0.0785
Pooling width in x or y Sy 1.55 0.53
Pooling width in orientation sy 88.74 deg 79.74 deg
Pooling width in frequency* sp 0 0
Octave bandwidth of Gabor filters % 0.893 1.487
Minkowski exponent B 5.414 4.87
Rms error of fit 1.668 1.996

“Parameters with asterisks were fixed.

priate. The final parameters were very similar to those
for observer KMF listed in Table 2.

4. DISCUSSION

We have constructed an image-based model of contrast
gain control whose essential elements are, in order: (1) a
CSF; (2) linear, oriented, frequency-selective channels; (3)
excitatory and inhibitory paths with different point non-

linearities; (4) linear pooling within the inhibitory path
over the dimensions of frequency, orientation, phase, and
space; (5) division of the excitatory path by the inhibitory
path; and (6) Minkowski pooling over the differential re-
sponse to the pair of images to be discriminated. This
model is similar in many respects to models developed by
Foley® and by Teo and Heeger.?

The model provides a good fit to masking data in which
the orientation of the mask is varied, in which contrast
discrimination is accomplished in the presence of a fixed
mask, and in which the phase of the mask is varied.

A. Quality of Fit

The rms error of the fit for the two observers is 1.67 and
2.0 dB. This compares with Foley’s Model 3, which he re-
ports yields rms fits of 1.23 and 1.48 dB, respectively.
However, the latter model, despite its lesser generality,
contains 12 estimated parameters, whereas ours contains
only 9. (Indeed, several of these parameters, notably f,
and s, , have little influence on the predictions.) Another
relevant comparison is the rms error between the two ob-
servers: 2.14 dB. We propose here a “prediction Turing
test,” whereby we ask whether the predictions of the
model could be identified as such when cast into a hat
along with the data of several observers (to truly pass this
test, some noise must be added to our predictions). In
this case, the optimized fit of the model is in each case
closer to the data than the data of the two observers are to
one another.



2388 J. Opt. Soc. Am. A/Vol. 14, No. 9/September 1997

B. Estimated Model Parameters

The estimated values of the excitatory pooling exponent
p, 2.323 for KMF and 2.298 for JYS, are comparable with
values of 2.55 and 2.72 estimated by Foley.? However,
we fixed the value of the inhibitory exponent g at 2, while
Foley allowed it to vary, estimating values of 2.18 and
2.32. Thus estimates of p — ¢, which largely determine
the log-log slope of the masking data, are quite similar for
the two models.

The estimated pooling width (Gaussian scale) in orien-
tation is 89 deg for KMF and 80 deg for JYS. This very
broad orientation pooling is consistent with estimates ob-
tained by Foley and Boynton.

The estimates of spatial pooling width are 1.55 (KMF)
and 0.53 (JYS), expressed in units of wavelength of the
channel frequency, though the predictions are not very
sensitive to this parameter. This suggests very localized
pooling over space. Other recent experiments that di-
rectly address the spatial extent of inhibitory pooling,
however, also suggest very local pooling.?>?? Estimates
of spatial pooling of contrast gain that are based on ap-
parent contrast, rather than detection thresholds, appear
to yield much larger extents. For example, D’Zmura and
Singer?? estimate a Gaussian scale of 6.3 deg for channels
centered at 1.45 c/deg, while our scale at 2 c/deg is ap-
proximately 0.5 deg. Note that the Foley—Boynton?® ex
periments, on which we have based our simulations, were
not designed to explore spatial pooling. This is clearly a
subject for further investigation.

Because the experiments of Foley and Boynton that we
simulate employ cosine or Gabor stimuli of 2 c¢/deg, they
do not provide much evidence regarding the size of the
pool in the frequency dimension. In our simulations we
have therefore assumed no inhibitory pooling over fre-
quency. Indeed, simulation results change very little if
channels at 1 and 4 c¢/deg are omitted altogether.

C. Size and Resolution of Simulations

Predictions of psychophysical performance that rely on
simulations of arrays on neurons (so-called neural im-
ages) raise questions regarding the required density of
spatial samples and of the size of the portion of the visual
field that is simulated. Often these questions are fi-
nessed by simulation of a large area at a high density.
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Here we used a more economical approach, simulating as
small a region as possible (usually a 2-deg square) at as
low a resolution as possible (usually 4 samples/cycle for
each channel). It is comforting to know that even
smaller simulations yield, with the same parameters,
nearly identical results. For example, since the results
shown in Fig. 13 depend primarily on the channel at 2
c/deg, one can obtain very similar predictions from an
8 X 8 pixel simulation covering a 1-deg square. We be-
lieve that, regardless of the computational environment,
such intelligent economy will prove essential as research-
ers attempt to simulate additional dimensions (e.g., time),
additional visual functions, and additional visual areas of
the brain.

D. Pattern Versus Noise Masking

In this paper we have tried with some success to account
for one set of masking effects with a contrast gain control
model. Contrast gain control, however, is but one of sev-
eral means by which masks may reduce the visibility of a
target. For example, masking by intense dynamic white
noise will certainly elevate thresholds, but the conven-
tional interpretation of this elevation is that the noise
adds variance to the decision variable. If the noise is
static but white, a statistical interpretation is still likely
to be proffered. As the noise bandwidth narrows, inter-
pretations are more likely to be in terms of contrast gain
control. It seems likely that many pattern-masking situ-
ations will involve both deterministic contrast gain con-
trol and so-called noise-masking effects. Some of the
masking effects exhibited here may therefore be due to
noise masking. This is another area in need of clarifica-
tion.

E. Relation to Other Models

An important distinction between our model and that of
Foley is the set of elementary component responses in
which it is expressed. In our model they are the putative
responses of neurons. In Foley’s they are responses to
the particular stimuli employed in his experiments. The
virtue of Foley’s scheme is that the number of quantities
computed is of the order of the number of stimuli, while in
our scheme it is of the order of the number of neurons,
which is typically a much larger number. The virtue of
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Fig. 15. Effect of mask phase. Target was a 2-c/deg Gabor function; mask was a cosine at either 0 or 90 deg phase relative to the center
of the Gabor. The curves are fits of the model. The 0-deg prediction is also reproduced on the right for comparison.
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our scheme is that it can compute the outcome for an ar-
bitrary pair of stimuli, while Foley’s cannot generalize be-
yond the particular stimuli employed. A second virtue of
our scheme is that it can embody specific assumptions
about the internal machinery, for example, an assertion
that in the inhibitory path there is complete pooling be-
tween odd- and even-phase receptive field pairs, while
such a concept does not even arise in a parameter-driven
model.

The most prominent differences between our model and
that of Teo and Heeger are the latter’s use of (1) multiple
contrast channels, and (2) exponents of 2 in both excita-
tory and inhibitory paths. These two features are re-
lated. In general, use of an exponent of 2 in both paths
leads to rapid saturation, so that single neurons cannot
respond over the full range of contrast. In our model
(and in Foley’s) this is dealt with by having an excitatory
exponent slightly larger than the inhibitory exponent. In
Heeger’s model it is handled by having several channels
(usually four) to handle different parts of the total con-
trast range.

F. Recruitment

These two approaches can be reconciled through the
mechanism of recruitment. Consider a set of rapidly
saturating neurons that are all identical except that their
input gains vary over a broad range (like the multiple-
contrast channels in Heeger’s model). A recruitment
mechanism that linearly sums their responses can behave
very much like a single nonsaturating neuron. Figure 16
shows, as a thick solid curve, the example of summing the
responses of four saturating mechanisms whose input
gains vary in steps of 0.5 log unit (thin solid curves). For
comparison, a single nonsaturating neuron with a similar
response is also shown as a dashed curve. The sum
clearly yields a nonsaturating mechanism, though it is
not identical to the single nonsaturation neuron. Alter-
natively, the responses of a set of rapidly saturating neu-
rons could be combined nonlinearly, say, with a
Minkowski exponent of 4, reflecting probability summa-
tion. We have not studied the mathematics of this prob-
lem in detail, but it is clear that, if a larger number of
saturating mechanisms are allowed, or if their output
gains are allowed to vary, or if the exponent of the satu-
rating mechanisms is allowed to vary, then an essentially
perfect match can be obtained. Figure 16(b) shows an ex-
ample with varying output gains. This means that our
model simulations are consistent with an alternate re-
cruitment model incorporating linear summation over
multiple saturating mechanisms that vary in input gain.

G. Effect of Duration

The data shown in Figs. 13 and 15 are for targets and
masks of 33-ms duration. More recently, Foley has re-
ported data for a duration of 100 ms (Ref. 24), which show
a reduced spread of masking over orientation. Such a
change could be accommodated within our model by a
change reduction in the parameter s,, but such varia-
tions should remind us that there are many detailed as-
pects of contrast gain control that are yet to be under-
stood. Furthermore, in a practical application such as
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Fig. 16. Thin curves show the responses of a set of saturating
neurons with p = ¢, and input gains ranging between 0 and 1.5
log units in 0.5-log-unit steps. The thick solid curve is the sum
of these responses. The dashed curve is the response of a single,
nonsaturating neuron with p =24, ¢ =2, a=1, b =1,
g=00316. (@p=qgq=2;a=1;,b=1. (b)p=q=24
a = {0.850606, 1.01095, 1.20151, 1.428}; b = 1.

evaluation of still image quality, a longer duration is
probably more appropriate to mimic typical viewer behav-
ior.

H. Objections to the Standard Model of Masking
Recently, traditional models of masking (e.g., Ref. 2),
which base performance on the differential response to
mask and target plus mask of a single neuron, have been
questioned.?> Nachmias noted that, when one is dis-
criminating a 10-c/deg cosine mask from that mask plus a
2-c/deg target, the overall contrast in each interval of the
forced-choice trial could be independently perturbed, with
little effect on performance. While the main target of
Nachmias’s critique was the single-neuron postulate, this
observation also apparently causes problems for the
model presented here. Adding different contrasts to the
two intervals will generally increase our decision vari-
able; indeed, it will typically be nonzero even when target
contrast is zero.

However, it should be understood that ours is a model
of discrimination, not identification. In effect, we are
asking whether the two intervals are different, not what
they look like. If in Nachmias’s experiment the observ-
ers were instructed to report whether the intervals were
different, then the contrast perturbation would presum-
ably have had a large effect.
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But the fact that performance is little changed by this
rather radical change in the task does suggest that the
observer’s discrimination algorithm may be sufficiently
sophisticated that it can operate under either set of con-
ditions, and such sophisticated models may be required
when more elaborate psychophysical tasks are explored.

5. SUMMARY

We have implemented an image-driven model of pattern
discrimination that incorporates a contrast gain control
mechanism. The gain control is achieved by division of
the excitatory signal from each neuron by an inhibitory
signal that is a linear combination of responses of neurons
within a neighborhood in space, frequency, orientation,
and phase. The model is designed to allow simple adjust-
ment of the size of this neighborhood. Excitatory and in-
hibitory paths are each subject to possibly different accel-
erating nonlinearities. We have found that this model,
with optimized parameters, provides a good account of
pattern-masking data. In particular, the model accounts
for the effect of cosine mask orientation on thresholds for
a Gabor target, for the effect of a combined mask consist-
ing of both a Gabor and a cosine, and for the effect of co-
sine mask phase.

APPENDIX A: PARAMETERIZATION OF
NEURAL RESPONSE

A few brief observations on the parameterization of the
basic transducer function may be useful, given the variety
of schemes evident in the literature. We begin with an
expression that includes parameters ¢ (signal contrast)
g; (input gain of neuron i to signal), ¢ (output gain), b
(saturation constant), p and ¢ (excitatory and inhibitory
exponents), and w; (weight of contribution to inhibitory
pool of neuron i):

a(gpe)?
. (A1)
> wilgie)? + b
We let
g
v=|> wi<gi/gk>Q} . (A2)

For simplicity we also write g for g, (excitatory input
gain). Then the neural response simplifies to

a(ge)?

(gcv)? + b7 (A3)

The relationships among the parameters may be seen
most easily when the transducer is plotted in log-log co-
ordinates. There it is essentially two straight lines, with
slopes of p and p — ¢g. The corner between the two seg-
ments (the zero of the third derivative) is at ¢ = b/(gwv).
Figure 17 shows example responses for several values of
b.

The actions of the three parameters a, g, and b on the
log-log curve are as follows: a produces a purely vertical
shift; g produces a purely horizontal shift, and b produces
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Fig. 17. Neural response functions for several values of b
(0.01, 0.0316, 0.1, 0.316, 1). The corner of each curve, which oc-
curs at ¢ = b/(gv), is plotted as a point. Other parameters are
v=05,a=1¢g=10,p = 24, q = 2.

both a horizontal and a vertical shift. This is because the
curve does not change shape but merely shifts horizon-
tally and vertically. It is easy to see that there are only 2
degrees of freedom and how the parameters may be inter-
changed.

For example, to eliminate g, we set

a' =agPq,

b' = blg. (A4)
To eliminate b (i.e., b = 1), we set
a' = abP i,
g' =glb. (A5)
To eliminate a, we set
g = gal/uz—q)’
b' = barD, (A6)

Note that this last procedure will not work when
p = q. In that case the parameter a is required, but ei-
ther b or g can be eliminated. In optimization of model
parameters, it is important to eliminate these redundan-
cies. We have usually selected a parameterization in
which ¢ = 1, leaving b and g free to vary.
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