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Abstract- Default TCP treats all losses as congestion since it was designed and optimized to work in networks with low non-
congestion losses. In this paper first it is shown that the dominant cause of packet drops in multihop ad hoc network is medium access 

contention and congestion losses, are very rare. Then the most prevalent packet contention drops are analyzed and based on that a 

modification to both TCP and IEEE802.11 MAC is proposed and evaluated. It is also shown that this modification can eliminate TCP 

throughput instability which is regarded as one of main TCP problems in multihop networks.  
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I. Introduction 

 

   Wireless ad hoc networks are multihop wireless 

networks without any fixed infrastructure. An ad hoc 

network is formed solely by its terminals so that each 

terminal connected to the network provides also relaying 

service for others, i.e. acts as a router.  

Transmission Control Protocol (TCP) [1] was designed 

to provide reliable end-to-end delivery of data over 

unreliable networks. In theory, TCP should be 

independent of the technology of the underlying 

infrastructure. In particular, TCP should not care whether 

it is running over wired or wireless connections. In 

practice, this does matter because most TCP parameters 

have been carefully optimized based on assumptions that 

are specific to wired networks. More precisely, in a 

multihop ad hoc networks, the main problem of TCP lies 

in treating all packet losses as network congestion and 

hence performing congestion control unnecessarily [2]. 

Similarly, the 802.11 MAC standard [3] was primarily 

designed and optimized for the infrastructure and single 

hop wireless networks.  

Intuitively, the poor performance of TCP in multihop ad 

hoc networks results from the fact that TCP is unable to 

distinguish the reason of packet loss in wireless networks 

and runs its congestion control mechanism regardless of 

the cause of error. The more frequently the congestion 

control is called, the worst will be the throughput of TCP. 

However, as it has been revealed in [4], losses due to 

link-layer contention due to hidden terminals are the 

dominant source of packet drops in multihop networks.  

In this paper, we first extend and confirm the results 

observed in [4] by considering also the flow of TCP 

acknowledgments (ACKs) in reverse direction in our 

simulation. Then the most prevalent scenarios which result 

to MAC contention packet drop and TCP congestion 

window drop are reviewed and based on that a new 

algorithm to reduce the number TCP congestion window 

drop as a result of contention packet drop will be proposed. 

The rest of this paper is organized as follows: in section 2 

and 3, we will give an overview of TCP and IEEE 802.11 

MAC, respectively. In section 4, the main cause of packet 

contention drops which result to TCP retransmission is 

discussed. In section 5, the simulation model and key results 

obtained from it are given. Finally, in section 6, we conclude 

the paper with some outlines towards future work. 

 

II. Description of TCP response to packet loss 

 

   To estimate the number of packets that can be in transit 

without causing congestion, TCP maintains a congestion 

window (cwnd). New packets are only sent if allowed by 

both this window and the receiver’s advertised window. The 

TCP sender can detect a packet loss in two ways: (1) a 

timeout, and (2) duplicate ACKs. A time-out occurs when 

the sender does not receive any acknowledgment from the 

receiver within a Retransmission Time Out (RTO). When a 

time-out occurs, TCP interprets this as severe congestion in 

the network and sets the slow start threshold (ssthresh) to 

1/2 of the minimum of the current cwnd and the receiver’s 

advertised window. Then it decreases the cwnd to 1 segment 

and performs a slow start. During the slow start, the TCP 

sender increases cwnd by 1 segment every time an ACK is 

received. When the cwnd reaches the ssthresh, it leaves the 

slow start phase and switches to the congestion avoidance, 

where new ACK increments the cwnd by 1/cwnd. On the 

other hand, when duplicate ACKs are received (duplicate 

ACKs signify that the receiver received out-of-order packets, 

TCP interprets this as less severe congestion. When the third 

duplicate ACK is received, TCP goes into the fast 

retransmit. The ssthresh is set to 1/2 of the minimum of 



cwnd and the receiver’s advertised window and the TCP 

sender retransmits the lost packet immediately without 

waiting for the retransmission time-out. During the fast 

retransmit stage, each duplicate ACK is considered as an 

acknowledgment of an out-of-order segment and the 

cwnd is increased by one correspondingly and continues 

to send packets.  

 

III. Overview of IEEE 802.11 MAC standard 

 

   MAC layer in IEEE 802.11 offers two different types 

of service: a contention-based service provided by the 

Distributed Coordination Function (DCF) and an optional 

contention-free service implemented by the Point 

Coordination Function (PCF). Since PCF is based on 

polling and it should be done by a centralized 

coordinator, here we just describe DCF. 

DCF provides the basic access method of the 802.11 

MAC based on the CSMA/CA (Carrier Sense Multiple 

Access with Collision Avoidance) scheme to access the 

channel. According to this scheme, when a node receives 

a packet to be transmitted, it first listens to the channel to 

ensure no other node is transmitting. In order to detect 

the status of the medium, IEEE 802.11 performs carrier 

sensing at both the physical layer, referred to as the 

physical carrier sensing and at the MAC layer, referred 

to as the virtual carrier sensing. A virtual carrier-sensing 

mechanism is done via the use of two control packets 

(RTS/CTS) as follows: A node ready to transmit a 

packet, sends an RTS (Request to Send) packet towards 

the destination. All nodes that hear the RTS then update 

their Network Allocation Vector (NAV), which indicates 

the amount of time that must elapse until the current 

transmission session is complete and the channel can be 

sampled again for idle status. The destination, upon 

reception of the RTS responds with another short control 

packet CTS (Clear to Send). All nodes that hear the CTS 

packet also defer from accessing the channel for the 

duration of the current transmission. This means that, the 

channel is marked busy if either the physical or virtual 

carrier sensing mechanisms indicate the channel is busy. 

The reception of the CTS packet at the transmitting node 

acknowledges that the RTS/CTS dialogue has been 

successful and the node starts the transmission of the 

actual data packet after a specified time, called the 

Distribution InterFrame Space (DIFS) and then transmits 

the packet. Otherwise, it chooses a random back-off 

value and retries later. Hereafter the node listens to the 

medium using carrier sensing to determine whether there 

is any activity in medium or not. Each time the medium 

is sensed to be idle, the backoff time is decremented. 

When the backoff counter reaches zero, the node waits 

for another DIFS and if the channel is still idle, it 

transmits the packet. If the receiver gets the packet 

without error, it initiates the transmission of MAC ACK 

(hereafter is called MACK to be distinguished from TCP 

ACK) after a time interval called Short InterFrame Space 

(SIFS) towards the sender. The SIFS is shorter than DIFS in 

order to give priority to the receiving station to over other 

possible stations waiting for transmission. If the MACK (or 

CTS when we have sent RTS) is not received at the sender 

within a certain time, the data frame is presumed to have 

been lost and a retransmission is scheduled if allowed by 

maximum retransmission counter called MAC_Retry_Limit. 

In fact there are two MAC_Retry_Limits: 

Short_Retry_Limit which is used for short packets (e.g. 

RTS, CTS), and Long_Retry_Limit for long packets (e.g. 

TCP DATA). If the packet cannot be sent successfully to the 

next hop within these limits, it would be dropped and the 

MAC repeats the same procedure to send the next frame in 

its buffer queue. If consecutive packet(s) experience the 

same problem, TCP timeout will happen. However, if some 

of consecutive packets can get through and reach the 

destination, a duplicate ACK would be sent towards sender. 

This leads to triggering TCP Fast Retransmit before timeout 

happens. 

 

IV. Problem definition 

 

   MAC protocols have been shown to significantly affect 

TCP performance [5, 6]. It is shown that hidden and the 

exposed terminal problem [6] are two major reasons for 

preventing one node from reaching the other when the two 

nodes are in each other’s transmission range. In [9] 

simulation results indicate that TCP throughput decreases 

exponentially as the number of hops due to the hidden 

terminals problem, which increases the packet collision. 

Similar problems were evaluated in [7] where the authors 

show that using smaller values for both packet size and 

maximum window size in TCP setup can mitigate such 

problems to some extent. As mentioned in the last section, if 

a node cannot reach its adjacent node within 

MAC_Retry_Limit, it will drop the packet and trigger a 

route failure, which in turn will cause the source node to 

start route discovery. Before a new route is found, no data 

packet can be sent out. During this process, generally TCP 

sender timeout and invokes its congestion control algorithm. 

Serious oscillation in TCP throughput will thus be observed. 

The objective of our work is to minimize the probability of 

incorrect triggering of the congestion control window 

reduction in TCP. For that, an in-depth detail of the 

scenarios which result in congestion window reduction as a 

result of contention packet drop in a chain topology are 

reviewed in this section. Here, we assume RTS/CTS 

handshake is used only for TCP DATA packets and not for 

TCP-ACK. Regarding IEEE802.11 MAC timing 

specification, the DCF protocol ensures that CTS frame 

transmission will be successful if the RTS frame is 



successfully delivered to the destination. This is because 

successful RTS frame transmission silences all the nodes 

in the neighborhood of the source either for a duration 

specified in the duration field of the RTS or for EIFS 

(Extended InterFrame Space) time (if collision occurs) 

which is large enough to transmit a CTS. Therefore, the 

CTS frame cannot collide with any frame at the source. 

Using a similar argument, it can be concluded that a 

successful TCP DATA frame transmission ensures a 

successful MACK frame transmission. Thus, we cannot 

have CTS and MACK frames drop because of medium 

contention. However, there can be RTS, TCP DATA, and 

TCP-ACK frame drop according to the presence of 

hidden terminals in the multi-hop scenario. Section a, b, 

and c reviews the scenarios in which these packets can be 

dropped in a chain topology. Here, node A is sending 

TCP DATA flow to node G using 5 intermediate nodes 

(nodes B to F). The transmission range of nodes is shown 

by a circle around them and as an initial value, all 

stations are assumed to have an NULL NAV field.  

 

a) RTS drop: 

 
Figure 1- TCP-DATA drop due to RTS drop  

 

1) Station D has TCP DATA to send to E. Therefore, it 

initiates RTS transmission towards node E 

2) Station E transmits CTS back to D and consequently D 

starts transmitting TCP DATA to E 

3) Meanwhile B has a TCP DATA to send to C, thus 

starting its own RTS handshake. 

4) Due to ongoing TCP DATA transmission between D 

and E, the B’s RTS is dropped at C. 

5) B resends the RTS after an exponential backoff; 

however due to large size of TCP DATA, in most of 

the cases all RTS retransmissions (7 by default) are 

collided at C, resulting in TCP DATA drop at B. 

 

b) TCP-ACK drop: 

 
Figure 2- TCP-ACK drop 

 

1) Station B has TCP DATA to send to C. So, it starts 

initiating RTS transmission. 

2) Station C transmits CTS back to B and consequently B 

starts transmitting TCP DATA to C 

3) Station B sends an MACK at the end of successful 

reception of TCP DATA.  

4) Meanwhile TCP ACK is flowing back from E to D since E 

is not aware of ongoing transmission between B and C. 

5) Collision happens at D between TCP-ACK and unintended 

MACK received by D. TCP-ACK is dropped. 

 

c) TCP DATA drop: 

 
Figure 3- TCP-DATA drop 

 

1) Station D has TCP DATA to send to E. so, it starts 

initiating RTS transmission. 

2) Station E transmits CTS back to D and consequently D 

starts transmitting TCP DATA to E 

3) Meanwhile station G sends a TCP ACK to F. 

4) Upon reception of TCP ACK, F triggers an MACK 

transmission to G. Note that in general F can not send 

anything as it has updated its NAV by D’s CTS. However, 

regarding 802.11 standard, the MACK should be send 

immediately irrespective of NAV duration. 

5) Collision happens at E between the transmitted MACK 

and ongoing TCP DATA. So TCP DATA will be dropped 

spite of successful RTS/CTS transmission and need to be 

retransmitted. 

 

V. Simulation Model and Results 

A) Simulation Model 

     To validate the analysis given in the previous section, we 

use the same network topology in OPNET simulator. The 

distance between two neighbors is 80m while the 

transmission range is set to 100m according to the 802.11b 

testbed measurements presented in [8]. In all scenarios, the 

application operates in asymptotic condition (i.e., it always 

has packets ready for transmission) and scheduling of packet 

transmission is FIFO. Nodes use DSR as the routing 

protocol. TCP New Reno flavor is deployed since as 

reported in [10], it is currently the most common TCP 

version used in the Internet. TCP packet size is assumed to 

be fixed at 1460B and the TCP advertised window is set to 

infinity so the receiver buffer size does not affect the TCP 

congestion window size. In physical layer Direct Sequence 

Spread Spectrum (DSSS) technology with 2Mbps data rate is 

adopted. The channel uses free-space with no external noise 

and each node has a 20 packet MAC layer buffer pool. 

RTS/CTS message exchange is used for packets larger than 

256B. This means that for TCP ACKs, no RTS/CTS 

exchange is done due to the large overhead they impose to 

system. The number of retransmission at MAC layer is set to 

4 for packets greater than 256B (Long_Retry_Limit) and 7 



for other packets (Short_ Retry_Limit) as has been 

specified in IEEE 802.11 MAC standard [3]. Three 

scenarios have been implemented and tested in the 

simulation. In scenario 1, the current version of 802.11 

MAC and TCP New Reno is used. In scenario 2, an 

extended version of recent and promising modification to 

TCP for single hop wireless communication called TCP-

DCR [11] is used. The basic idea behind DCR is when 

both congestion and non congestion losses can occur, a 

simple solution would be to let the link layer mechanisms 

recover from the losses due to transmission errors and the 

transport protocol to recover from the losses due to 

congestion. In other words, the TCP-DCR modifications 

aim to change the time at which the Fast 

Retransmit/Recovery algorithms are triggered. Therefore, 

in TCP-DCR the receipt of duplicate ACKs is assumed to 

be caused by non-congestion errors, for a bounded delay 

period (one RTT). If within this time the packet is 

recovered by the link level retransmission, TCP would 

continue its normal operation. However, if the packet 

could not be recovered by the end of that time, the packet 

would be recovered through Fast Retransmit/Recovery. 

In Scenario 2, an extended DCR (E-DCR) 

implementation for multihop ad hoc network is 

implemented. Intuitively, in E-DCR approach if the 

MAC can not succeed in accessing the medium in limited 

tries at any hop, the packet should be retransmitted by 

TCP from the sender and start contending for the 

medium from the first hop again. Obviously, this should 

results into more packet contention during simulation. 

However, as showed in the last section, since the 

contention drop is the most dominant cause of packet 

drop in multihop networks, we expect poor performance 

of E-DCR in multihop ad hoc network.  

To alleviate the above problem, a new method is 

proposed and implemented in scenario 3. In this 

approach, the Fast Retransmit/Recovery is delayed for 

one RTT as in scenario 2. However, in the event of 

unsuccessful packet transmission more link level 

retransmission is allowed to be performed by that hop. 

More precisely, after reaching the specified MAC_ 

Limit_Retry, the node is given the chance to try for 

another MAC_Limit_Retry before giving up and 

dropping the packet. We expect this will result to less 

TCP retransmission as a higher chance is given to MAC 

to shield the packet contention drop from TCP.  

  

B) Results: 

     First, in order to support our discussion about the 

main cause of packet drop in multihop ad hoc networks, 

the dropped packets were traced in the default TCP 

(scenario 1). During the simulation time on average, 2% 

of packets were dropped due to the contention and less 

than 0.05% packets were dropped because of congestion. 

This observation confirms the results presented in [4]. In 

addition, the model used here is more realistic than the 

model used in [4]
1
. In the next step, the three mentioned 

scenarios are simulated and evaluated from TCP perspective. 

Figure 4 and 5 depict the total number of TCP timeout and 

TCP Fast Retransmit invocation, respectively.  
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Figure 4- TCP Timeout 
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Figure 5- TCP Fast Retransmit 

 

As it is clear from these graphs, in the default TCP most 

dropped packets due to medium contention are recovered 

through TCP Fast retransmit. The reason behind this is in the 

high sensitivity of the current TCP to duplicate ACKs. In 

other words, while setting the duplicate threshold to 3 in 

wired network is reasonable due to low probability of packet 

reordering, this threshold is very small in wireless networks 

where packet reordering can happen very frequently because 

of packet contention drops. On the other hand, decreasing 

the sensitivity of TCP to duplicate ACKs in TCP-DCR 

approach can bring a very serious and severe problem to 

TCP performance. As shown in figure 5, though the number 

of TCP fast retransmit has decreased in E-DCR comparing to 

default TCP, many TCP timeouts is occurring. This mostly 

happens due to wrong retransmission timing between TCP 

and MAC. Indeed, in E-DCR in most of the cases the TCP 

timeout is triggered earlier than TCP fast retransmit while 

the opposite happens in default TCP. 

                                                 
1
 - The contention drop ratio given in [4] is 1%. However, TCP ACK flows 

in reverse path have not been considered in deriving the results. 



Figure 6 shows a comparison of achieved goodput. 

Clearly, scenario 2 is experiencing a poor TCP 

performance again regarding its large number of 

timeouts. Scenario 1 and 3 almost follow the same TCP 

goodput pattern while the TCP throughput instability that 

was reported in [6] and can be also observed in scenario 

1 (for instance between time 900 to 930 s), has been 

eliminated in scenario 3 (figure 7). This is indeed due to 

less number of TCP congestion window drop as result of 

less TCP retransmissions (both from fast retransmit and 

timeout) in scenario 3 than other scenarios. 

 
Figure 6 - TCP Goodput 
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Figure 7- TCP Throughput instability 

 

To also evaluate the effect of doubling the number of 

MAC retransmission on power consumption in other 

nodes, the total number of short and long retransmissions 

in all the nodes is given in table 1.  

 
Table1- Number of Mac Retransmissions in the whole network 

 Total   Short  
Retransmission Retry 

Total    Long  
Retransmission Retry 

Scenario 1 197140 28130 

Scenario 2 183492 26031 

Scenario 3 204285 29285 

 

VI. Conclusion and future work 

    Default TCP treats all losses as congestion since it was 

designed and optimized to work in networks with low 

non-congestion losses. On the other hand, as showed 

here, the dominant cause of packet drops in multihop ad 

hoc network is medium access contention and congestion 

losses happen very rare. Consequently, most contention 

drops are misinterpreted as congestion causing congestion 

window reduction. More interestingly, the congestion 

window drop is mostly occurring because of Fast Retransmit 

and not Timeout. TCP-DCR which was designed and tested 

in single hop wireless communication, tries to alleviate this 

problem by postponing the congestion window reduction by 

one RTT. However, as discussed, this approach further 

deteriorates the TCP performance in multihop networks. To 

solve the problem, we first investigated the cause of packet 

drop contention in chain topology. Based on that, a new 

technique was proposed to overcome the large number of 

TCP packet retransmissions. The basic concept behind our 

proposal was that in order to minimize the packet contention 

drop, packets should be recovered at each hop rather than 

from TCP sender. It was shown that our modification has 

less number of TCP retransmissions and hence less incorrect 

triggering of the congestion control window reduction. This 

in turn resulted to more stable TCP throughput. However the 

main drawback of our scheme is that this might result to 

more number of MAC retransmission which leads to more 

power consumption in the network. We believe the fact that 

802.11 uses a fixed number of retransmissions in all the hops 

for lost packets, is causing this problem. In future we will 

investigating how to adaptively change the number of MAC 

retransmissions according to cross layer information such as 

number of backoffs the node is experiencing. This 

effectively means that rather than using a similar and 

constant MAC_Limit_Retry in different nodes, more flexible 

and optimized method should be adopted in our approach to 

keep the total network power consumption low.  
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