
Evaluating and Improving TCP Performance against Contention Losses in Multihop

Ad Hoc Networks
Ehsan Hamadani, Veselin Rakocevic
Information Engineering Research Centre

School of Engineering and Mathematical Sciences

City University, London EC1V 0HB, UK

{E.Hamadani, V.Rakocevic}@city .ac.uk

Abstract- Default TCP treats all losses as congestion since it was designed and optimized to work in networks with low non-
congestion losses. In this paper first it is shown that the dominant cause of packet drops in multihop ad hoc network is medium access

contention and congestion losses, are very rare. Then the most prevalent packet contention drops are analyzed and based on that a

modification to both TCP and IEEE802.11 MAC is proposed and evaluated. It is also shown that this modification can eliminate TCP

throughput instability which is regarded as one of main TCP problems in multihop networks.

Keywords- Contention drop, Hidden Terminal,

IEEE802.11 MAC, Multihop Ad hoc Network, TCP

I. Introduction

 Wireless ad hoc networks are multihop wireless

networks without any fixed infrastructure. An ad hoc

network is formed solely by its terminals so that each

terminal connected to the network provides also relaying

service for others, i.e. acts as a router.

Transmission Control Protocol (TCP) [1] was designed

to provide reliable end-to-end delivery of data over

unreliable networks. In theory, TCP should be

independent of the technology of the underlying

infrastructure. In particular, TCP should not care whether

it is running over wired or wireless connections. In

practice, this does matter because most TCP parameters

have been carefully optimized based on assumptions that

are specific to wired networks. More precisely, in a

multihop ad hoc networks, the main problem of TCP lies

in treating all packet losses as network congestion and

hence performing congestion control unnecessarily [2].

Similarly, the 802.11 MAC standard [3] was primarily

designed and optimized for the infrastructure and single

hop wireless networks.

Intuitively, the poor performance of TCP in multihop ad

hoc networks results from the fact that TCP is unable to

distinguish the reason of packet loss in wireless networks

and runs its congestion control mechanism regardless of

the cause of error. The more frequently the congestion

control is called, the worst will be the throughput of TCP.

However, as it has been revealed in [4], losses due to

link-layer contention due to hidden terminals are the

dominant source of packet drops in multihop networks.

In this paper, we first extend and confirm the results

observed in [4] by considering also the flow of TCP

acknowledgments (ACKs) in reverse direction in our

simulation. Then the most prevalent scenarios which result

to MAC contention packet drop and TCP congestion

window drop are reviewed and based on that a new

algorithm to reduce the number TCP congestion window

drop as a result of contention packet drop will be proposed.

The rest of this paper is organized as follows: in section 2

and 3, we will give an overview of TCP and IEEE 802.11

MAC, respectively. In section 4, the main cause of packet

contention drops which result to TCP retransmission is

discussed. In section 5, the simulation model and key results

obtained from it are given. Finally, in section 6, we conclude

the paper with some outlines towards future work.

II. Description of TCP response to packet loss

 To estimate the number of packets that can be in transit

without causing congestion, TCP maintains a congestion

window (cwnd). New packets are only sent if allowed by

both this window and the receiver’s advertised window. The

TCP sender can detect a packet loss in two ways: (1) a

timeout, and (2) duplicate ACKs. A time-out occurs when

the sender does not receive any acknowledgment from the

receiver within a Retransmission Time Out (RTO). When a

time-out occurs, TCP interprets this as severe congestion in

the network and sets the slow start threshold (ssthresh) to

1/2 of the minimum of the current cwnd and the receiver’s

advertised window. Then it decreases the cwnd to 1 segment

and performs a slow start. During the slow start, the TCP

sender increases cwnd by 1 segment every time an ACK is

received. When the cwnd reaches the ssthresh, it leaves the

slow start phase and switches to the congestion avoidance,

where new ACK increments the cwnd by 1/cwnd. On the

other hand, when duplicate ACKs are received (duplicate

ACKs signify that the receiver received out-of-order packets,

TCP interprets this as less severe congestion. When the third

duplicate ACK is received, TCP goes into the fast

retransmit. The ssthresh is set to 1/2 of the minimum of

cwnd and the receiver’s advertised window and the TCP

sender retransmits the lost packet immediately without

waiting for the retransmission time-out. During the fast

retransmit stage, each duplicate ACK is considered as an

acknowledgment of an out-of-order segment and the

cwnd is increased by one correspondingly and continues

to send packets.

III. Overview of IEEE 802.11 MAC standard

 MAC layer in IEEE 802.11 offers two different types

of service: a contention-based service provided by the

Distributed Coordination Function (DCF) and an optional

contention-free service implemented by the Point

Coordination Function (PCF). Since PCF is based on

polling and it should be done by a centralized

coordinator, here we just describe DCF.

DCF provides the basic access method of the 802.11

MAC based on the CSMA/CA (Carrier Sense Multiple

Access with Collision Avoidance) scheme to access the

channel. According to this scheme, when a node receives

a packet to be transmitted, it first listens to the channel to

ensure no other node is transmitting. In order to detect

the status of the medium, IEEE 802.11 performs carrier

sensing at both the physical layer, referred to as the

physical carrier sensing and at the MAC layer, referred

to as the virtual carrier sensing. A virtual carrier-sensing

mechanism is done via the use of two control packets

(RTS/CTS) as follows: A node ready to transmit a

packet, sends an RTS (Request to Send) packet towards

the destination. All nodes that hear the RTS then update

their Network Allocation Vector (NAV), which indicates

the amount of time that must elapse until the current

transmission session is complete and the channel can be

sampled again for idle status. The destination, upon

reception of the RTS responds with another short control

packet CTS (Clear to Send). All nodes that hear the CTS

packet also defer from accessing the channel for the

duration of the current transmission. This means that, the

channel is marked busy if either the physical or virtual

carrier sensing mechanisms indicate the channel is busy.

The reception of the CTS packet at the transmitting node

acknowledges that the RTS/CTS dialogue has been

successful and the node starts the transmission of the

actual data packet after a specified time, called the

Distribution InterFrame Space (DIFS) and then transmits

the packet. Otherwise, it chooses a random back-off

value and retries later. Hereafter the node listens to the

medium using carrier sensing to determine whether there

is any activity in medium or not. Each time the medium

is sensed to be idle, the backoff time is decremented.

When the backoff counter reaches zero, the node waits

for another DIFS and if the channel is still idle, it

transmits the packet. If the receiver gets the packet

without error, it initiates the transmission of MAC ACK

(hereafter is called MACK to be distinguished from TCP

ACK) after a time interval called Short InterFrame Space

(SIFS) towards the sender. The SIFS is shorter than DIFS in

order to give priority to the receiving station to over other

possible stations waiting for transmission. If the MACK (or

CTS when we have sent RTS) is not received at the sender

within a certain time, the data frame is presumed to have

been lost and a retransmission is scheduled if allowed by

maximum retransmission counter called MAC_Retry_Limit.

In fact there are two MAC_Retry_Limits:

Short_Retry_Limit which is used for short packets (e.g.

RTS, CTS), and Long_Retry_Limit for long packets (e.g.

TCP DATA). If the packet cannot be sent successfully to the

next hop within these limits, it would be dropped and the

MAC repeats the same procedure to send the next frame in

its buffer queue. If consecutive packet(s) experience the

same problem, TCP timeout will happen. However, if some

of consecutive packets can get through and reach the

destination, a duplicate ACK would be sent towards sender.

This leads to triggering TCP Fast Retransmit before timeout

happens.

IV. Problem definition

 MAC protocols have been shown to significantly affect

TCP performance [5, 6]. It is shown that hidden and the

exposed terminal problem [6] are two major reasons for

preventing one node from reaching the other when the two

nodes are in each other’s transmission range. In [9]

simulation results indicate that TCP throughput decreases

exponentially as the number of hops due to the hidden

terminals problem, which increases the packet collision.

Similar problems were evaluated in [7] where the authors

show that using smaller values for both packet size and

maximum window size in TCP setup can mitigate such

problems to some extent. As mentioned in the last section, if

a node cannot reach its adjacent node within

MAC_Retry_Limit, it will drop the packet and trigger a

route failure, which in turn will cause the source node to

start route discovery. Before a new route is found, no data

packet can be sent out. During this process, generally TCP

sender timeout and invokes its congestion control algorithm.

Serious oscillation in TCP throughput will thus be observed.

The objective of our work is to minimize the probability of

incorrect triggering of the congestion control window

reduction in TCP. For that, an in-depth detail of the

scenarios which result in congestion window reduction as a

result of contention packet drop in a chain topology are

reviewed in this section. Here, we assume RTS/CTS

handshake is used only for TCP DATA packets and not for

TCP-ACK. Regarding IEEE802.11 MAC timing

specification, the DCF protocol ensures that CTS frame

transmission will be successful if the RTS frame is

successfully delivered to the destination. This is because

successful RTS frame transmission silences all the nodes

in the neighborhood of the source either for a duration

specified in the duration field of the RTS or for EIFS

(Extended InterFrame Space) time (if collision occurs)

which is large enough to transmit a CTS. Therefore, the

CTS frame cannot collide with any frame at the source.

Using a similar argument, it can be concluded that a

successful TCP DATA frame transmission ensures a

successful MACK frame transmission. Thus, we cannot

have CTS and MACK frames drop because of medium

contention. However, there can be RTS, TCP DATA, and

TCP-ACK frame drop according to the presence of

hidden terminals in the multi-hop scenario. Section a, b,

and c reviews the scenarios in which these packets can be

dropped in a chain topology. Here, node A is sending

TCP DATA flow to node G using 5 intermediate nodes

(nodes B to F). The transmission range of nodes is shown

by a circle around them and as an initial value, all

stations are assumed to have an NULL NAV field.

a) RTS drop:

Figure 1- TCP-DATA drop due to RTS drop

1) Station D has TCP DATA to send to E. Therefore, it

initiates RTS transmission towards node E

2) Station E transmits CTS back to D and consequently D

starts transmitting TCP DATA to E

3) Meanwhile B has a TCP DATA to send to C, thus

starting its own RTS handshake.

4) Due to ongoing TCP DATA transmission between D

and E, the B’s RTS is dropped at C.

5) B resends the RTS after an exponential backoff;

however due to large size of TCP DATA, in most of

the cases all RTS retransmissions (7 by default) are

collided at C, resulting in TCP DATA drop at B.

b) TCP-ACK drop:

Figure 2- TCP-ACK drop

1) Station B has TCP DATA to send to C. So, it starts

initiating RTS transmission.

2) Station C transmits CTS back to B and consequently B

starts transmitting TCP DATA to C

3) Station B sends an MACK at the end of successful

reception of TCP DATA.

4) Meanwhile TCP ACK is flowing back from E to D since E

is not aware of ongoing transmission between B and C.

5) Collision happens at D between TCP-ACK and unintended

MACK received by D. TCP-ACK is dropped.

c) TCP DATA drop:

Figure 3- TCP-DATA drop

1) Station D has TCP DATA to send to E. so, it starts

initiating RTS transmission.

2) Station E transmits CTS back to D and consequently D

starts transmitting TCP DATA to E

3) Meanwhile station G sends a TCP ACK to F.

4) Upon reception of TCP ACK, F triggers an MACK

transmission to G. Note that in general F can not send

anything as it has updated its NAV by D’s CTS. However,

regarding 802.11 standard, the MACK should be send

immediately irrespective of NAV duration.

5) Collision happens at E between the transmitted MACK

and ongoing TCP DATA. So TCP DATA will be dropped

spite of successful RTS/CTS transmission and need to be

retransmitted.

V. Simulation Model and Results

A) Simulation Model

 To validate the analysis given in the previous section, we

use the same network topology in OPNET simulator. The

distance between two neighbors is 80m while the

transmission range is set to 100m according to the 802.11b

testbed measurements presented in [8]. In all scenarios, the

application operates in asymptotic condition (i.e., it always

has packets ready for transmission) and scheduling of packet

transmission is FIFO. Nodes use DSR as the routing

protocol. TCP New Reno flavor is deployed since as

reported in [10], it is currently the most common TCP

version used in the Internet. TCP packet size is assumed to

be fixed at 1460B and the TCP advertised window is set to

infinity so the receiver buffer size does not affect the TCP

congestion window size. In physical layer Direct Sequence

Spread Spectrum (DSSS) technology with 2Mbps data rate is

adopted. The channel uses free-space with no external noise

and each node has a 20 packet MAC layer buffer pool.

RTS/CTS message exchange is used for packets larger than

256B. This means that for TCP ACKs, no RTS/CTS

exchange is done due to the large overhead they impose to

system. The number of retransmission at MAC layer is set to

4 for packets greater than 256B (Long_Retry_Limit) and 7

for other packets (Short_ Retry_Limit) as has been

specified in IEEE 802.11 MAC standard [3]. Three

scenarios have been implemented and tested in the

simulation. In scenario 1, the current version of 802.11

MAC and TCP New Reno is used. In scenario 2, an

extended version of recent and promising modification to

TCP for single hop wireless communication called TCP-

DCR [11] is used. The basic idea behind DCR is when

both congestion and non congestion losses can occur, a

simple solution would be to let the link layer mechanisms

recover from the losses due to transmission errors and the

transport protocol to recover from the losses due to

congestion. In other words, the TCP-DCR modifications

aim to change the time at which the Fast

Retransmit/Recovery algorithms are triggered. Therefore,

in TCP-DCR the receipt of duplicate ACKs is assumed to

be caused by non-congestion errors, for a bounded delay

period (one RTT). If within this time the packet is

recovered by the link level retransmission, TCP would

continue its normal operation. However, if the packet

could not be recovered by the end of that time, the packet

would be recovered through Fast Retransmit/Recovery.

In Scenario 2, an extended DCR (E-DCR)

implementation for multihop ad hoc network is

implemented. Intuitively, in E-DCR approach if the

MAC can not succeed in accessing the medium in limited

tries at any hop, the packet should be retransmitted by

TCP from the sender and start contending for the

medium from the first hop again. Obviously, this should

results into more packet contention during simulation.

However, as showed in the last section, since the

contention drop is the most dominant cause of packet

drop in multihop networks, we expect poor performance

of E-DCR in multihop ad hoc network.

To alleviate the above problem, a new method is

proposed and implemented in scenario 3. In this

approach, the Fast Retransmit/Recovery is delayed for

one RTT as in scenario 2. However, in the event of

unsuccessful packet transmission more link level

retransmission is allowed to be performed by that hop.

More precisely, after reaching the specified MAC_

Limit_Retry, the node is given the chance to try for

another MAC_Limit_Retry before giving up and

dropping the packet. We expect this will result to less

TCP retransmission as a higher chance is given to MAC

to shield the packet contention drop from TCP.

B) Results:

 First, in order to support our discussion about the

main cause of packet drop in multihop ad hoc networks,

the dropped packets were traced in the default TCP

(scenario 1). During the simulation time on average, 2%

of packets were dropped due to the contention and less

than 0.05% packets were dropped because of congestion.

This observation confirms the results presented in [4]. In

addition, the model used here is more realistic than the

model used in [4]
1
. In the next step, the three mentioned

scenarios are simulated and evaluated from TCP perspective.

Figure 4 and 5 depict the total number of TCP timeout and

TCP Fast Retransmit invocation, respectively.

0 200 400 600 800 1000 1200 1400
0

50

100

150

200

250

Time (sec)

N
u
m

b
e
r
o
f
T
C
P
 T

im
e
o
u
t

Scenario-1
Scenario-2
Scenario-3

Figure 4- TCP Timeout

0 200 400 600 800 1000 1200 1400
0

100

200

300

400

500

600

700

Time (sec)

N
u
m

b
e
r
o
f
T
C
P
 F

a
s
t
R
e
tr
a
s
n
m

it

Scenario-1
Scenario-2

Scenario-3

Figure 5- TCP Fast Retransmit

As it is clear from these graphs, in the default TCP most

dropped packets due to medium contention are recovered

through TCP Fast retransmit. The reason behind this is in the

high sensitivity of the current TCP to duplicate ACKs. In

other words, while setting the duplicate threshold to 3 in

wired network is reasonable due to low probability of packet

reordering, this threshold is very small in wireless networks

where packet reordering can happen very frequently because

of packet contention drops. On the other hand, decreasing

the sensitivity of TCP to duplicate ACKs in TCP-DCR

approach can bring a very serious and severe problem to

TCP performance. As shown in figure 5, though the number

of TCP fast retransmit has decreased in E-DCR comparing to

default TCP, many TCP timeouts is occurring. This mostly

happens due to wrong retransmission timing between TCP

and MAC. Indeed, in E-DCR in most of the cases the TCP

timeout is triggered earlier than TCP fast retransmit while

the opposite happens in default TCP.

1
 - The contention drop ratio given in [4] is 1%. However, TCP ACK flows

in reverse path have not been considered in deriving the results.

Figure 6 shows a comparison of achieved goodput.

Clearly, scenario 2 is experiencing a poor TCP

performance again regarding its large number of

timeouts. Scenario 1 and 3 almost follow the same TCP

goodput pattern while the TCP throughput instability that

was reported in [6] and can be also observed in scenario

1 (for instance between time 900 to 930 s), has been

eliminated in scenario 3 (figure 7). This is indeed due to

less number of TCP congestion window drop as result of

less TCP retransmissions (both from fast retransmit and

timeout) in scenario 3 than other scenarios.

Figure 6 - TCP Goodput

900 905 910 915 920 925 930
0

1

2

3

4

5

6

x 10
4

Time (s)

T
C

P
 G

o
o
d
p
u
t
(B

y
te

/s
e
c
)

Scenario-1
Scenario-2
Scenario-3

Figure 7- TCP Throughput instability

To also evaluate the effect of doubling the number of

MAC retransmission on power consumption in other

nodes, the total number of short and long retransmissions

in all the nodes is given in table 1.

Table1- Number of Mac Retransmissions in the whole network

 Total Short
Retransmission Retry

Total Long
Retransmission Retry

Scenario 1 197140 28130

Scenario 2 183492 26031

Scenario 3 204285 29285

VI. Conclusion and future work

 Default TCP treats all losses as congestion since it was

designed and optimized to work in networks with low

non-congestion losses. On the other hand, as showed

here, the dominant cause of packet drops in multihop ad

hoc network is medium access contention and congestion

losses happen very rare. Consequently, most contention

drops are misinterpreted as congestion causing congestion

window reduction. More interestingly, the congestion

window drop is mostly occurring because of Fast Retransmit

and not Timeout. TCP-DCR which was designed and tested

in single hop wireless communication, tries to alleviate this

problem by postponing the congestion window reduction by

one RTT. However, as discussed, this approach further

deteriorates the TCP performance in multihop networks. To

solve the problem, we first investigated the cause of packet

drop contention in chain topology. Based on that, a new

technique was proposed to overcome the large number of

TCP packet retransmissions. The basic concept behind our

proposal was that in order to minimize the packet contention

drop, packets should be recovered at each hop rather than

from TCP sender. It was shown that our modification has

less number of TCP retransmissions and hence less incorrect

triggering of the congestion control window reduction. This

in turn resulted to more stable TCP throughput. However the

main drawback of our scheme is that this might result to

more number of MAC retransmission which leads to more

power consumption in the network. We believe the fact that

802.11 uses a fixed number of retransmissions in all the hops

for lost packets, is causing this problem. In future we will

investigating how to adaptively change the number of MAC

retransmissions according to cross layer information such as

number of backoffs the node is experiencing. This

effectively means that rather than using a similar and

constant MAC_Limit_Retry in different nodes, more flexible

and optimized method should be adopted in our approach to

keep the total network power consumption low.

References:
[1] J. Postel, “Transmission Control Protocol,” RFC 793, Sep.1981
[2] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. H. Katz, “A

Comparison of Mechanisms for Improving TCP Performance over Wireless

Links,” IEEE/ACM Trans. on Net, 1997.
[3] IEEE std. 802.11. “Wireless LAN Media Access Control (MAC) and

Physical Layer (PHY) specifications”, 1999.

[4] Z. Fu, H. Luo, P. Zerfos, and M. Gerla, “The Impact of Multihop
Wireless Channel on TCP Performance" IEEE Trans. on Mobile Comp,2005

[5] S. Xu and T. Saadawi, “Does the IEEE 802.11MAC protocol work well

in multihop wireless ad hoc networks?” IEEE Communications Magazine,
vol. 39, no. 6, pp.130-137, June 2001

[6] S. Xu and T. Sadawi, “Revealing the Problems with 802.11 MAC

Protocol in Multihop Wireless Networks”, Comp. Net., Vol. 38, 2002
[7] S. Xu, T. Saadawi and M. Lee. “On TCP over Wireless Multi-hop

Networks” In proceedings of IEEE MILCOM2001, October 2001

[8] G. Anastasi, E.Borgia, M.Conti,E. Gregori, “IEEE 802.11b Ad Hoc
Network:Performance Measurement”,Bechtel Telecom Technical Journal 2002

[9] E. Altman and T. Jimenez, “Novel delayed ACK techniques for

improving TCP performance in multihop wireless networks”, in proc. of the
Personal Wireless Communication, Italy, Sep2003, pp237-253

[10] A. Medina, M. Allman, and S. Floyd “Measuring the Evolution of

Transport Protocols in the Internet”, To appear in ACM CCR, April 2005
[11] S. Bhandarkar, N. Sadry, A. L. Reddy and N. Vaidya, “TCP-DCR: A

novel protocol for tolerating wireless channel errors”. IEEE Trans. on

Mobile Computing, February 2004

