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Abstract—We consider the problem of supporting traffic with
elastic bandwidth requirements and average end-to-end delay
constraints in multi-hop wireless networks, with focus on source
rates and link data rates as the key resource allocation de-
cisions. The network utility maximisation-based approaches to
support delay-sensitive traffic have been predominantly based
on either reducing link utilisation, or approximation of links
as M/D/1 queues, which lead to inefficient link utilisation under
optimal resource allocation, and mostly to unpredictable transient
behaviour of packet delays. On the contrary, we present an
alternative formulation where the delay constraint is omitted
and sources’ utility functions are multiplied by a weight factor.
The alternative optimisation problem is solved by a scheduling
algorithm incorporating a duality-based rate control algorithm
at its inner layer, where link prices correlate with their average
queueing delays. We then present an alternative strategy where
the utility weight of each source is adjusted to ensure its desired
optimal path prices, and hence the desired average path delays.
Since the proposed strategy is based on solving a concave
optimisation problem for the elastic traffic, it leads to maximal
utilisation of the network capacity. The proposed approach is
then realised by a scheduling algorithm that runs jointly with an
integral controller whereby each source independently regulates
the queueing delay on its paths at the desired level, using
its utility weight factor as the control variable. The proposed
algorithms are shown, using theoretical analysis and simulation,
to achieve asymptotic regulation of end-to-end delay with good
performance.

Index Terms—Ad hoc networks, Quality of service, Cross layer
design, Wireless networks.

I. INTRODUCTION

MULTI-HOP wireless networks in essence use multi-
hop routing, where autonomous nodes can act as relay

for the traffic, in order to provide enhanced wireless network
capacity, connectivity and power efficiency without the need
for a fixed infrastructure and centralised control. However,
supporting applications with high data rate requirements and
strict delay constraints over such networks is a challenging
design problem due to their dynamic and distributed nature.
Specifically, since the wireless channel is shared by all nodes,
their transmission interfere with each other and consequently
the data rates of the wireless links are intertwined. As nodes
join or leave the network, new links are set up or disappear,
resulting in the interference level changes. Thus, the data rates
of wireless links vary over time as a result of fluctuating
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interference as well as shadow fading. Furthermore, multi-hop
routing and distributed control compromise the performance
due to the additional communication overhead and time needed
for coordination.

As pointed out in [1], approaches for quality of service
(QoS) provision can be classified into bandwidth reservation,
and best-effort schemes. Bandwidth reservation based schemes
are suitable for supporting traffic with minimum bandwidth
requirements. Inevitably, the rejection of some of the traffic
results in inefficient utilisation of network capacity. More
importantly, Bandwidth reservation based schemes lead to a
significant communication overhead in networks with dynamic
settings and as a result are unsuitable for multi-hop wireless
networks. In contrast, best-effort schemes are suitable for
supporting traffic whose demand for bandwidth is elastic,
but their perceived QoS referred to as their utilities, are
generally assumed to be an increasing and concave function
of their transmission rates. As concluded in [2], for elastic
traffic the overall network QoS is maximised by admitting
all connections and allocating network capacity based on the
connections’ perceived QoS. This is the main design principle
of best-effort schemes. The key advantage of the best-effort
approach is that it enables QoS optimal allocation of network
resources using simple and distributed algorithms [1], and as
a result is a suitable approach for QoS provision in multi-hop
wireless networks.

The problem of supporting traffic with high data rate re-
quirements and average end-to-end delay constraints in multi-
hop wireless networks is the main focus of this paper. We
assume that all incoming traffic have elastic bandwidth re-
quirements, but their perceived signal qualities, which exclude
the effect of end-to-end delay, are increasing and concave
functions of their transmission rates. Furthermore, all or some
of the incoming traffic impose a strict limit on the average
end-to-end queueing delay. With focus on source data trans-
mission rates and link data rates as the key resource allocation
decisions, our main objective is then to develop a source
rate control and scheduling strategy that guarantees bounded
average end-to-end queueing delay and maximises the overall
signal quality of all incoming traffic, and furthermore can be
implemented in the dynamic and distributed setting of multi-
hop wireless networks. Scheduling here encompasses resource
allocation decisions such as power assignment for each link
which determines its data rate.

Recent research has shown the potential benefits of using
network utility maximisation framework in systematic design
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of hierarchical (or ‘layered’) distributed solutions of network
resource allocation problems [3]. The benefits of this ap-
proach are even more profound in multi-hop wireless network
design problems due to interdependencies between resource
allocation decisions at different network modular layers, and
consequently we also adopt such approach here to address
the aforementioned objectives. As will be seen in Section III,
the network utility maximisation based approaches to support
delay-sensitive traffic have been predominantly based on either
reducing link utilisation, or approximation of links as M/D/1
queues. The former approach includes methods such as using
virtual data rates [4], [5] and minimising network conges-
tion [6], which normally lead to nearly zero queue lengths
in the long term due to reduced link utilisation, but provide
no control over the transient behaviour of packet delays, as
well as window-based flow control methods [7] which provide
end-to-end delay guarantees and controlled transient behaviour
of packet delay but utilise only less than half of the network
capacity. The latter approach which is adopted in [8] and [9]
is based on assumptions that contrast with realistic scenarios.
Moreover, it also results in under-utilised links under optimal
resource allocation. On the contrary, our prime objective here
is to regulate average queueing delay with high accuracy,
efficiency and performance.

Our proposed solution is based on an alternative formu-
lation to the original optimisation problem, where the delay
constraint is omitted and instead the utility function for each
source is multiplied by a primarily unknown weight factor.
We present a solution to the alternative optimisation prob-
lem which comprises a scheduling algorithm incorporating a
duality-based rate control algorithm at its inner layer. The
key feature of the proposed algorithm is that optimal link
prices computed by the rate control algorithm correspond
to the average link queueing delays. Based on the analy-
sis of sensitivity of optimal path prices for each source to
the variation of its weight factor, we present an alternative
strategy where bounded average end-to-end queueing delay
is provided through adjustment of sources’ weights. In the
proposed strategy, we still assume that the perceived signal
quality of an incoming traffic is an increasing and strictly
concave function of its transmission rate. However, the weight
of its utility is adjusted to ensure the desired optimal path
prices, and hence the desired average path delays, which can
be interpreted as sources understating (overstating) their level
of perceived signal quality from the allocated transmission
rate in order to obtain their desired optimal path prices, and
hence the desired average path delays at the equilibrium. This
approach may result in slight reduction in the overall optimal
perceived signal quality, due to possible different optimal rate
allocation, but ensures the required average end-to-end delay
and still leads to efficient utilisation of the network capacity.
Given the dynamic and distributed nature of multi-hop wireless
networks, the proposed strategy is realised by incorporating an
integral controller in the scheduling algorithm whereby each
source independently regulates the average queueing delay
on its paths at the desired level, using its weight factor as
the control variable. The proposed algorithm can be deployed
in a distributed setting. Moreover, it is efficient and robust

to the changes in the network configuration. The transient
behaviour of the average end-to-end queueing delay can be
further controlled by appropriate adjustment of the delay
regulator parameter. We then study the conditions under which
the proposed scheduling policy combined with the proposed
integral controller achieve asymptotic regulation of end-to-end
queueing delay. Simulation experiments further demonstrate
the asymptotic regulation of end-to-end delay with good
precision and performance.

The rest of this paper is organised as follows. In Section II
the problem is introduced formally as a network utility max-
imisation problem, and the limitations of the M/D/1 approxi-
mation of links for delay estimation is discussed. In Section III
the predominant network utility maximisation approaches to
support delay sensitive traffic as well as their limitations are
described. In Section IV-A the proposed alternative optimi-
sation problem, its representation as a scheduling problem
and the corresponding solution is presented. In Section V the
result of sensitivity of delay to the variation of sources weights
is presented followed by the proposed solution for providing
bounded delay. Simulation results are given in Section VI, and
Section VII concludes the paper.

II. PROBLEM DEFINITION

A. Assumptions and Notations

Throughout the text, vectors are denoted by boldface low-
ercase letters, and matrices and sets by capital letters. For
simplicity, the same notations are used to denote the sets and
their cardinality.

This paper considers the problem of rate control and
scheduling for simultaneous transmissions of multiple delay-
sensitive traffic over a multi-hop wireless network. Let S be
the set of sources which generate the delay-sensitive traffic and
L be the set of links which constitute the multi-hop wireless
network. Each source s ∈ S has multiple alternative paths to
its destination denoted by Is. For notational simplicity, let L,
S and Is also denote the total number of links, total number
of sources, and total number of paths available to source s,
respectively. The set of links used by each path i ∈ Is are
defined by the L× 1 vector Rsi with elements

Rsl,i =

{
1 if path i ∈ Is uses link l,

0 otherwise.

The L×Is routing matrix for source s is subsequently defined
by Rs = [Rs1 . . . R

s
Is

], and the L × I routing matrix for the
network, where I =

∑
s∈S Is, by R = [R1 . . . RS ]. We denote

the lth row of R by Rl.
Let pl be the power assignment, or any other resource

control decisions such as activation/inactivation, and retrans-
mission probability in random access MAC protocols, and cl
be the data rate at link l. Link data rates are assumed to be a
function of global power assignments, i.e. c = u(p). Let Π be
the set of feasible power assignments and C = {u(p),p ∈ Π}.
The convex hull of C denoted by Co(C) is assumed to be
closed and bounded.

Let xsi be the data transmission rate on path i ∈ Is, and xs =∑
i∈Is x

s
i be the aggregate data transmission rate of source s.
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We assume that each source s ∈ S gains a utility fs(xs) at
rate xs, where fs are twice continuously differentiable, strictly
concave, and increasing for all s ∈ S. Furthermore f ′′s < 0.

We assume that the average delay experienced by a packet
at link l is given by θl(cl, yl), where yl = Rlx is the total
traffic rate on link l. Furthermore, θl(cl, yl) are differentiable,
decreasing in cl and increasing in yl, for all l ∈ L. Let θ be
the L × 1 vector with elements θl(cl, yl), for all l ∈ L. The
average end-to-end delay on path i ∈ Is of source s ∈ S is
then given by Rsi

Tθ, and is assumed to be upper bounded by
ds. Let d be an I× 1 vector of upper bounds on average end-
to-end delay on each path with elements dsi . Since for every
source s ∈ S the average end-to-end delay upper bound is
assumed to be an identical value of ds for all paths i ∈ Is, we
have dsi = ds, for all i ∈ Is.

B. Problem Formulation

The optimisation objective is to find data transmission rates
x and link data rates c such that

maxx,c
∑
s∈S

fs(xs) (1)

subject to Rx ≤ c (2)
c ∈ Co(C) (3)
RTθ ≤ d (4)
x ≥ 0. (5)

The optimisation objective (1) maximises the aggregate utility
of all sources. Constraint (2) requires that the traffic rate
entering each link not to exceed its allocated data rate. Con-
straint (3) restricts link data rates to the convex hull of feasible
link data rates. Constraint (4) imposes an upper bound on
the average end-to-end delay faced by a packet on individual
paths.

Recall that θ(cl, yl) is increasing in yl and decreasing in
cl. So the values of d for which the feasible set (2)-(5) is
non-empty is given by

∑
l∈LR

s
l,iθl(cl, 0) ≤ ds, ∀i ∈ Is, and

∀s ∈ S, where c satisfies (3).

C. Limitations of approximation of Links as M/D/1 Queues

As will be discussed in Section III, estimation of the average
delay experienced by a packet at a link, i.e. θl(cl, yl), l ∈ L,
has been predominantly based on approximation of links
as independent M/D/1 queues. This approach stems from
the Kleinrock independence approximation [10], which is
in principle based on assumptions that the traffic arrives at
network entry points according to a Poisson process, and the
network is densely connected. Using this approach the average
packet delay θl(cl, yl) can be estimated as

θl(cl, yl) =
1

cl
+

yl
2cl(cl − yl)

∀l ∈ L

≤ 1

cl
+

1

2(cl − yl)
∀l ∈ L. (6)

The upper bound (6) is based on assumption that at optimality
yl is close to but not greater than cl for all l ∈ L. Using the
upper bound (6), the optimisation problem (1)-(5) becomes

convex, and can be solved, for example, using primal decom-
position [3] as follows

max
c
Ũ(c) subject to (3) (7)

where

Ũ(c) = max
x

∑
s∈S

fs(xs) subject to (2), (4) and (5). (8)

Subproblem (8) can be solved using primal or dual algorithms
proposed in [8]. Moreover, Ũ is concave (Proposition 3.4.3
in [11]), and therefore the set of optimal Lagrange multipliers
associated with constraints (2) and (4) in subproblem (8) is
the subdifferential of Ũ [11]. This property can then be used
to develop algorithms for solving (7), when duality-based
approaches are used to solve (8).

However, the M/D/1 queue approximation of links has
several flaws. Firstly, the key assumptions behind the M/D/1
approximation (6) do not hold since the traffic at entry points
are regulated by the rate controller and are deterministic, multi-
hop networks are composed of mostly disjoint paths which
comprise serial links, and the traffic entering the links can be
further regulated to limit its burstiness [12], [13]. The delay
caused by the burstiness of the arriving traffic at each link can
therefore be assumed to be negligible and consequently the
average delay a packet experiences at equilibrium is primarily
a function of number of packets in the system at equilibrium,
which is determined by the dynamics of the rate control and
scheduling algorithms at their transient state. Secondly, in
the approximation (6), as traffic rates at links approach their
capacities, their delays grow exponentially. This implies that at
optimality links are not efficiently utilised, in order to ensure
bounded delay.

III. RELATED WORK

A. Joint Rate Control and Scheduling for Elastic Traffic

The problem of joint rate control and scheduling for
elastic traffic has been extensively studied [14], [15]. Dual
optimisation-based approach has been the preferred solution
strategy for this problem since it enables decomposition of the
problem into the rate control and scheduling ‘layers’ coupled
loosely through ‘link prices’. Alternative formulations of this
problem lead to different solutions, as described in following
sections.

1) Link-Centric Formulation: The optimisation prob-
lem (1), (2), (3) and (5), which is the focus of this paper,
is based on the link-centric formulation. The dual problem is
given by

min
λ≥0

D(λ) (9)

where

D(λ) = max
x,c

L(x, c,λ) subject to (3), (5)

= max
x,c

∑
s∈S

fs(xs)− λT (Rx− c) s.t. (3), (5) (10)

and λ is the vector of Lagrange multipliers associated with
constraint (2). Using the shadow price interpretation of La-
grange variables [16], λ can also be interpreted as the link data
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rate prices. The optimisation problem (10) can be decomposed
into the following rate control and scheduling subproblems,
respectively

Ds
1(λ) = max

xs≥0
fs(xs)− λTRsxs ∀s ∈ S (11)

and

D2(λ) = max
c∈u(p),p∈Π

λT c (12)

where xs is the aggregate data transmission rate of source s,
and xs is Is×1 vector of path transmission rates for source s.
The dual problem (9) can be solved using the subgradient
method as follows

λl(t+1) = [λl(t) + β (Rlx(λ(t))− cl(λ(t)))]
+ ∀l ∈ L (13)

where β > 0, Rl is the lth row of R, and x(λ(t)) and
c(λ(t)) are the solutions of (11) and (12) given λ(t), respec-
tively. The rate control subproblem (11) and the scheduling
subproblems (12) are coupled via link prices λ(t). In (11),
each source s ∈ S adjusts its path rates xs according to its
path prices. In (12), link data rates c are updated based on
the link prices. The link price algorithm (13) and rate control
algorithm (11) can be performed in a distributed fashion
by individual links and sources, respectively. The scheduling
problem (12) is a computationally complex problem in general,
since u(p) is not concave in many cases and as a result convex
programming methods cannot be used. Given the fact that link
prices λ(t) are updated at every timeslot and therefore (12)
has to be solved at every timeslot, finding an efficient, simple
and distributed solution becomes crucial. Cases where the
scheduling problem (12) is solvable include node-exclusive
interference model, low-SINR model, and high-SINR model
which are described in detail in [14]. Moreover, alternative
suboptimal solutions that are simpler and enable distributed
implementation have been developed and their efficiency have
been studied for similar cases [14].

2) Node-Centric Formulation: In this formulation, links are
denoted by node pairs (i, j), and the data rate on link (i, j)
that is allocated for data towards destination d is denoted by
cdij . Furthermore, the source and destination nodes of sources
s are denoted by es and ds, respectively. The transmission rate
of source s is denoted by xs. The constraints (2) and (3) in
the optimisation problem are then replaced by∑
j:(i,j)∈L

cdij −
∑

j:(j,i)∈L

cdji −
∑
s:es=i,
ds=d

xs ≥ 0 ∀d, ∀i 6= d (14)

[∑
d

cdij

]
∈ Co(C) (15)

cdij ≥ 0 ∀(i, j) ∈ L, ∀d.

Consequently, dual decomposition results in the following rate
control and scheduling subproblems, respectively

xs = arg max
(
fs(xs)− xsλdsfs

)
∀s ∈ S (16)

and

c = arg maxc∈u(p),p∈Π

∑
(i,j)∈L

cij max
d

(
λdi − λdj

)
(17)

where λdi is the Lagrange multiplier associated with constraint
(d, i) in (14). After solving (17), for each link (i, j) ∈ L,
cdij = cij , if d = arg maxd̂(λ

d̂
i − λd̂j ), and cdij = 0, otherwise.

The Lagrange multipliers are updated using the subgradient
method by individual nodes as described in [14].

Compared with the link-centric formulation, the scheduling
problem (17), which is referred to as maximum weight back-
pressure algorithm, has the same form as (12) but it also
incorporates routing decisions. Furthermore, the rate control
problem (16) for each source s ∈ S is only dependent on
the price λdsfs at the source node, whereas the rate control
problem (11) for each source s ∈ S is dependent on the sum
of the link prices along its paths qsi , i ∈ Is.

B. Network Utility Maximisation Approaches to Support De-
lay Sensitive Traffic

1) Minimising Delay Using Virtual Data Rates: Since the
algorithm (13) couples the link prices to their average queue
lengths, it may lead to large queue lengths and hence large
queueing delays at the equilibrium. As suggested in [4], [5],
this can be avoided by using the slightly smaller ‘virtual’
link data rates in (13) instead of the actual link data rates.
Specifically, cl(λ(t)), l ∈ L in (13) is replaced by ρcl(λ(t)),
where ρ is a positive factor slightly smaller than 1. While the
modified algorithm still leads to the link prices close to their
optimal level, it results in zero equilibrium queue lengths, since
links traffic loads are slightly less than their actual data rates
at equilibrium. Main disadvantages of this approach are that
it does not completely utilise network capacity and provides
no control over the transient behaviour of packet delays.

2) Guaranteeing Bounded Delay Using Window-Based
Flow Control: In [7], the problem of designing a joint
rate control and scheduling algorithm that provide provable
throughput and provable per-flow delay is considered. The
node-centric formulation (1), (14), (15) and (5) is considered
where the queue-length based back-pressure algorithm (17) or
the developed low-complexity algorithms described in Section
III-A have been shown to have poor delay performance under
certain cases, and have difficult to quantify or control delay.
A new distributed and low-complexity congestion control and
scheduling algorithm is proposed where the packet transmis-
sions are scheduled by a rate-based rather than a queue-length
based scheduling algorithm, and congestion control is based
on window flow control, which deterministically bounds the
end-to-end delay backlog within the network. It is shown that
by appropriately choosing the number of backoff mini-slots
for the scheduling algorithm and the window size of each
flow, the proposed algorithm can utilise close to half of the
systems capacity under the one-hop interference constraint,
and guarantee a per-flow expected delay upper bound that
increases linearly with the number of hops. Furthermore,
each flow’s trade-off between throughput and delay can be
individually controlled by the window size.

Similar to the approaches based on M/D/1 queue ap-
proximation and virtual data rates, the main limitation of
this approach is that bounded end-to-end delay can only
be guaranteed by under-utilisation of system capacity, i.e.
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less than half under the one-hop interference constraint. In
addition, there is a trade-off between the guaranteed delay
bounds and throughput levels within this reduced capacity
region. The guaranteed delay bound for each flow is also a
factor of number of hops.

Our approach is similar to this approach in that it is
too based on controlling the end-to-end backlog to control
the delay both at equilibrium and the transient state. In
our approach this is accomplished by correlating the link
prices in a duality-based rate control algorithm similar to (13)
with the average link queueing delays, and then using the
utility weight coefficient of sources as control variables to
asymptotically regulate path prices at the desired level. The
transient behaviour of the average end-to-end queueing delay
can be further controlled by appropriate adjustment of the
delay regulator parameter. However, our approach differs from
the approach presented in [7] in that it can guarantee any
bound on the average end-to-end queueing delay, as long as R
has full column rank, while ensuring maximal utilisation of the
system available capacity. Hence, in our approach only packet
end-to-end transmission time is lower bounded by a factor
of number of hops, which is negligible when the equilibrium
end-to-end backlog is modest. Rather than trade-off between
delay and throughput, in our approach the average end-to-
end queueing delay bounds are guaranteed by the appropriate
choice of utility weight coefficient of sources that ensure the
desired optimal path prices. This approach may result in the
same or slightly different optimal rate allocation, but still leads
to maximal utilisation of the network capacity.

3) Minimising Network Congestion: In [6] the primary
objective is to find a joint link data rate and flow assign-
ment strategy that supports maximum data rates and yields
minimum end-to-end delay; however, for general queueing
systems, this leads to an intractable problem formulation.
Hence, an alternative problem formulation is proposed where
the network congestion, defined as maximum link utilisation
over all links

∆(c,y) = max
l∈L

yl
cl

(18)

is minimised while allowing communication between source
and destinations at a given data rate. Since the objective
function is quasi-convex, the resulting optimisation problem
can be solved, for example, by a bisection algorithm that
involves solving a sequence of convex feasibility problems.
Evidently, this approach neither aims to efficiently utilise links
nor can guarantee bounded delay.

4) Maximising Utility as a Function of Rate and Delay:
In [8] the congestion control problem in networks supporting
traffic with various levels of rate, delay and packet loss
sensitivity, is studied. The proposed approach is based on
incorporating the requirements for rate, delay and packet loss
in the utility function of sources. It is assumed that each
source transmits only one flow using a fixed path, and that
link data rates c are fixed. The utility of each source s ∈ S is
subsequently defined by

Us = asfs(xs)− bs
∑
l∈L

Rsl θl(yl)

where coefficients as and bs indicate the degree of sensitivity
of the traffic to rate and delay, respectively. It is shown that
similar to the basic congestion control problem for elastic
traffic, the alternative optimisation problem can be solved
using both primal and dual algorithms. The analysis is then
applied to networks with mixed voice and data traffic, includ-
ing the case where priority queueing is used. It is shown using
simulation that priority queueing improves both the R-factor of
voice traffic and the throughput of data traffic, at the expense
of the packet delay of data traffic. However, the estimation of
packet delay is based on approximation of links as independent
M/D/1 queues which, as discussed in Section II-B, stems
from unrealistic assumptions and results in under-utilised links
under optimal resource allocation.

In [9] the congestion control problem for networks where
traffic sources are heterogeneous with respect to their levels of
sensitivity to both rate and delay is considered. It is assumed
that source s ∈ S incurs a delay cost hsd per unit of flow
rate, where d is the average end-to-end delay experienced by
a packet. The utility of each source s ∈ S is subsequently
defined by

Us = fs(xs)− hsxs
∑
l∈L

Rsl θl(yl). (19)

The resulting optimisation problem is shown to be non-
concave in general and consequently may have several station-
ary points. Several variants of a primal rate control algorithm
are shown to converge to a local maximum, but never to
a saddle point. It is concluded that dynamic rate control
algorithms such as TCP may not be able to attain efficient rate
allocations and levels of delay that are acceptable to diverse
classes of traffic, in the absence of differentiated services. In
this paper we assume that the average packet end-to-end delay
on each path is upper bounded in which case, as explained
in Section II-B, the problem can be formulated as convex
optimisation problem (1)-(5), given approximation (6).

This paper extends the ideas presented in our previous
papers [17], [18]. In both papers we exploit the correlation
between optimal link prices and equilibrium link average
queueing delays in duality-based rate control algorithm, in
order to provide bounded average end-to-end queueing delay.
In [17] we first present an approach in which lower bounds
on sources’ transmission rates are derived in order to ensure
the required bounded delay. This approach inevitably entails
admission control. In the second approach, we introduce an
alternative formulation where the delay constraint is omitted
and instead the utility function for each source is multiplied by
a weight factor. The proposed solution comprises a scheduling
algorithm incorporating a duality-based rate control algorithm
at its inner layer, and an algorithm that dynamically adjusts
sources’ weights to ensure the required bounded delay. In this
paper we further develop the latter approach by designing a
new scheduling algorithm and delay regulator that regulate
average queueing delay with high accuracy and performance.
Moreover, we provide a complete analysis of the stability of
the proposed algorithms. In [18] we analyse the sensitivity
of optimal path prices for each source to the variation of its
weight factor, and present a delay regulator that is integrated
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into the duality-based rate control and scheduling algorithms
given in [14]. In this paper we use the sensitivity analysis
results in [18] to develop a solution that regulates average
queueing delay with higher accuracy and performance.

IV. ALTERNATIVE PROBLEM FORMULATION

The proposed solution for providing bounded delay is based
on an alternative formulation for optimisation problem (1)-
(5) which is presented in this section and its properties are
examined.

A. The Alternative Optimisation Problem

The proposed alternative optimisation problem has the fol-
lowing form

max
x,c

∑
s∈S

wsfs(xs) subject to (2), (3), (5) (20)

where wsfs(xs) represents utility of source s, or preference
over transmission rate xs. Compared with original prob-
lem (1)-(5), in the alternative problem (20), delay constraint (4)
has been omitted and instead the utility function for each
source s ∈ S is multiplied by the weight parameter ws. A
geometric interpretation of ws is that higher (respectively,
lower) values of ws result in higher (respectively, lower)
marginal increase in preference or utility of source s at a
particular rate.

The dual problem for (20) is given by

min
λ≥0,µ≥0

D(λ,µ) (21)

where

D(λ,µ) = max
x,c

L(x, c,λ,µ) subject to (3)

= max
x,c

∑
s∈S

wsfs(xs)− λT (Rx− c) + µTx

subject to (3) (22)

and λ and µ are the Lagrange multipliers associated with
constraints (2) and (5), respectively. Using the shadow price
interpretation of Lagrange variables [16], λ can also be
interpreted as the link data rate prices.

The optimisation problem (20) is convex and constraints (2)
and (5) are affine. Moreover, since C is a finite set, Co(C)
is a polyhedral set which can be expressed by a set of affine
inequalities and equalities. Thus, Slater’s condition reduces
to feasibility [16] and the optimal duality gap is zero. Let
(x∗, c∗) and (λ∗,µ∗) be the primal and dual optimal solu-
tions, respectively. Let also q∗ = RTλ∗. It then follows from
Karush-Kuhn-Tucker (KKT) optimality conditions [16] that

wsf
′
s(x
∗
s)− qsi

∗ + µsi
∗ = 0 ∀i ∈ Is, ∀s ∈ S (23)

λ∗l (Rlx
∗ − c∗l ) = 0 ∀l ∈ L (24)
µsi
∗xsi
∗ = 0 ∀i ∈ Is, ∀s ∈ S. (25)

Equation (25) implies that µsi
∗ = 0 for any i ∈ Is for which

xsi
∗ > 0. It then follows from (23) that

qsi
∗ = wsf

′
s(x
∗
s) ∀i ∈ Is, xsi

∗ > 0, ∀s ∈ S (26)

, q∗s

which means that for each source s ∈ S the values of
qsi
∗ associated with paths with positive flows are minimum

and hence equal. Since the objective function in (20) is
strictly concave with respect to {xs}, {x∗s} is unique and
it follows from (26) that q∗ is also unique. However, (20)
is not strictly concave in either c, or x in general, since
every xs =

∑
i∈Is x

s
i , s ∈ S is a hyperplane of x for which

fs(xs) is identical. Hence neither c∗ nor x∗ may be unique.
Furthermore, given that q∗ = RTλ∗, and R may have linearly
dependent rows, λ∗ may not be unique in general.

B. Representation as a Scheduling Problem

Optimisation problem (20) can be alternatively presented as
the following equivalent form

max
c
Uw(c) subject to (3) (27)

where

Uw(c) = max
x

∑
s∈S

wsfs(xs) subject to (2), (5). (28)

The key feature of the alternative form (27) is the decom-
position of the problem into master scheduling problem (27),
and the well-known rate control subproblem (28) with fixed
link data rates. In addition, Uw is concave by Proposition 3.4.3
in [11], and therefore, as shown in Section 5.4.4 in [11], the set
of optimal Lagrange multipliers associated with constraint (2)
in subproblem (28) is the subdifferential of Uw.

The dual problem for (28) is similar to (21) and (22) with
fixed link data rates c. Consequently, KKT conditions (23)-
(25) as well as (26) also hold for problem (28). Let x(c)
and (λ(c),µ(c)) be the primal and dual optimal solutions
of (28) given c, respectively. Let also q(c) = RTλ(c). Since
the objective function in (20) is strictly concave with respect
to {xs}, {xs(c)} is unique and it follows from (26) that q(c)
is also unique. However, as in the case of problem (20), λ(c)
is not unique in general. Hence λ(c) ∈ Λ(c), where Λ(c)
is the set of optimal Lagrange multipliers associated with
constraint (2).

1) Solution of the Multipath Rate Control Subproblem:
Rate control problem (28) has been extensively studied in the
literature [19]. Here, we consider the duality-based solutions
where Lagrange variables are updated according to

λ̇l =
β

cl
[Rlx(λ)− cl]+λl

∀l ∈ L (29)

where β > 0, x(λ) = arg maxx≥0

∑
s∈S wsfs(xs)− λ

TRx,
and [g(x)]+x is defined by

[g(x)]+x =

{
g(x) x > 0

max(g(x), 0) x = 0.

As discussed in [20], path rates of sources with multiple
paths in (29) continuously oscillate and do not converge,
since fs(

∑
i∈Is x

s
i ) is not strictly concave. To circumvent

this problem Proximal Optimisation Algorithms [21] or the
distributed algorithm proposed in [20] which is suitable for on-
line implementation can be used. Since the objective function
in (28) is not strictly concave in x, by Proposition 6.1.1 in [11],
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the dual function of (28) may not be differentiable at every
point. Moreover, as shown in Section 6.1 in [11], the term
within the brackets in (29) is a subgradient of the dual function
and thus the term on right side of (29) is discontinuous.

The right-hand side of algorithm (29) corresponds to the
β multiple of marginal increase in average queueing delay at
link l, given the traffic rate entering link l is equal to Rlx(λ).
While this condition holds at links at the network traffic entry
points, the traffic rate at the other links are bounded by the data
rates of the links connected to their source node. However, at
the equilibrium, the right-hand side of (29) is the β multiple of
marginal increase in average queueing delay for all links l ∈
L. This implies that, by the results from stability of systems
with vanishing perturbation [22], if link prices are updated
according to β multiple of the link average queueing delays
(i.e. λl(t) = βNl(t)

cl
, l ∈ L, where Nl(t) is the number of

packets in link l at time t), path rates x(λ) and link prices
λ converge to the primal and dual optimal solutions of (28),
respectively, given β is sufficiently small. In this case, link
average queueing delays at equilibrium are equal to β−1λ(c).

2) Solution of the Scheduling Problem: Using ideas from
the gradient optimisation methods [11], we propose the fol-
lowing solution for scheduling problem (27)

ċ = γ(c̃− c) (30)

where γ > 0, and

c̃ =

{
c c = arg maxς∈Co(C) λ (c)

T
ς

arg maxς∈C λ (c)
T
ς otherwise

(31)
where λ (c) is the optimal Lagrange variable of (28) given
c. Since C is a finite set, Co(C) is a polyhedral set and
hence by Proposition B.21 in [11], the optimisation problem
in (31) attains a maximum at some extreme point of Co(C).
Therefore, the solution space in (31) is reduced to C. At
each step of (30), c̃ is computed as follows. The optimisation
problem in (31) is computed over the set C. If the solution
results in the same objective value as the current link data
rates c, c̃ equals c and (30) stops. Otherwise, c̃ takes the
value of the any of the solutions and (30) continues. The
optimisation problem in (31) is of the same form as the well-
known scheduling problem (12) and thus can be solved using
distributed algorithms in some cases, as discussed in Section
III-A. Efficient implementation of the equilibrium condition
in (31) also depends on these solution algorithms.

The right-hand side of (30) may not be continuous in
general, for example, when λ (c) is not unique, or when
in (31) strict complimentary slackness condition does not hold
at c̃ (Theorem 3.2.2 in [23]), and as a result the existence
of solutions is not guaranteed. In the analysis that follows
we assume that the assumptions H1 (existence of solutions
of (30)-(31)), and H2 (right-hand side of (30) is Lebesgue
measurable and locally bounded) in [24] hold.

By Theorem 2.2.6 in [23], the mapping q(c) is continuous,
and since q(c) is also unique, it is a continuous function. We
assume that q(c) is also nonpathological [24].

Theorem 1: Algorithms (30)-(31) converge to an optimal
solution of (27).

The proof is given in the Appendix.

V. PROPOSED SOLUTION FOR PROVIDING BOUNDED
DELAY

A. The Impact of Sources’ Weights on Delay

As explained in Section IV-B1, if link prices in the duality-
based algorithm (29) are instead updated proportionally to
link average queueing delays, optimal link prices are then
proportional to the equilibrium link average queueing delays.
Furthermore, by (26) optimal path prices for each source s ∈ S
are equal to its marginal utility at its optimal aggregate data
transmission rate, multiplied by its weight. This suggests an
alternative approach to the original formulation (1)-(5), in
which the delay bounds in (4) are instead guaranteed by
adjusting the weight of sources.

The following lemma shows that for the alternative prob-
lem (20) the optimal path prices for each source s ∈ S, that
is q∗s = Rsi

Tλ∗, i ∈ Is, grow as its weight ws increases.
Lemma 1: Under the assumptions in Section II-A, upper

and lower bounds on the sensitivity of q∗s (w) and x∗s(w) to
the variation of parameters ws are given by

0 <
∂q∗s
∂ws

≤ f ′s(x∗s) (32)

0 ≤ ∂x∗s
∂ws

< − f ′s(x
∗
s)

wsf ′′s (x∗s)
(33)

for all s ∈ S.
The proof is given in the Appendix. As explained in Section

IV-B1, if link prices in the duality-based rate control algorithm
are updated according to β multiple of the link average
queueing delays, link average queueing delays at equilibrium
are equal to β−1λ(c), and as a result path average queueing
delays at equilibrium equal β−1q(c). Consequently, Lemma 1
suggests an alternative strategy for providing bounded end-
to-end delay based on the adjustment of sources’ weights.
Specifically, in the proposed strategy, we still assume that the
perceived signal quality of an incoming traffic is an increasing
and strictly concave function of its transmission rate. However,
the weight of its utility is adjusted to ensure the desired optimal
path prices, and hence the desired average path delays. This
adjustment of the weights of the utilities can be interpreted as
sources understating (overstating) their level of satisfaction,
or perceived signal quality, from the allocated transmission
rate in order to obtain their desired optimal path prices, and
hence the desired average path delays at the equilibrium.
This approach may result in the same or slightly different
optimal rate allocation compared with the case with the initial
source weights. Precisely, by (33), the optimal transmission
rate of each source either remains unchanged or increases as
its weight increases. In the latter case, the optimal transmission
rate of some other sources decreases. Given the uniqueness of
optimal source transmission rates, optimal source transmission
rates for the perturbed objective function in this case is not
optimal for the original problem. Consequently, this approach
may lead to slight reduction in the overall perceived signal
quality, but ensures the required optimal path prices and still
leads to maximal utilisation of the network capacity.
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B. Delay Regulation via Dynamic Adjustment of Sources’
Weights

The main challenge in guaranteeing bounded delay through
adjustment of sources’ weights is that sources’ weights that
guarantee the required bounded delay generally vary for dif-
ferent network configurations. Clearly, a concave utility func-
tion always implies that a connection has elastic bandwidth
requirements and as a result best-effort strategies may allocate
different rates to the same connection (with the same weight)
under various network configurations, in order to maximise the
aggregate utility of all connections. This means that for every
network configuration, sources’ weights have to be recomputed
to ensure the required bounded delay. Hence, the dynamic and
decentralised nature of multihop wireless networks calls for a
robust, responsive and distributed algorithm that can adjust
sources’ weights so as to ensure bounded end-to-end delay
under modest parameter perturbations.

In order to design an algorithm that meets these require-
ments, recall that (32) implies that optimal path price q∗s for
each source s ∈ S increase with its weight ws. This suggests
that for each source s ∈ S, utility weight ws can be used as
control variable to regulate its average path queueing delay.
Thus, the following integral controller is proposed whereby
each source adjust its weight ws in proportion to the average
end-to-end delay tracking error to regulate average end-to-end
delay at the desired level

ẇs = α

[
ds −

qs(c,w)

β

]+

ws

∀s ∈ S. (34)

Algorithm (34) is performed by each source independently
and ensures bounded end-to-end delay under parameter pertur-
bations that do not destabilise the system. Incorporating (34)
in the scheduling algorithms (30)-(31) leads to continuous
perturbation of utility weights w and thus the objective func-
tion in (27), which tends to zero as the algorithms approach
the equilibrium. In this case, λ(c) can be interpreted as the
perturbed supergradient of the new objective function Uw̃
at c, where w̃ is the perturbed utility weights. Intuitively,
as long as the perturbation rate of the objective function
in (27) is small compared with speed at which link data
rates approach the optimal solution of the current (27), link
data rates in algorithms (30)-(31) and (34) track the changing
optimal solution of (27). The following theorem examines
the conditions under which algorithms (30)-(31) combined
with (34) achieve asymptotic regulation of end-to-end delay.

Theorem 2: Given R has full column rank and α in (34)
is sufficiently small, algorithms (30)-(31) combined with (34)
converge to an optimal solution of (27) with parameter w∗,
where w∗ is the weight of sources that guarantees bounded
delay specified in (4), if subproblem (28) is solved using
duality-based algorithm (29), where link prices are instead
updated as β multiple of link average queueing delays.

The proof is provided in the Appendix. Note that the full
column rank condition for R ensures that (30)-(31) combined
with (34) has an equilibrium for any d. This condition is not
very restrictive and holds for typical scenarios, such as the
case when source-destination pairs are distinct.

VI. SIMULATION RESULTS

The objective of the simulation experiments is twofold.
Firstly, to illustrate that algorithms (30)-(31) converge to an
optimal solution of (27), where link prices λ (c) are updated
according to β multiple of link average queueing delays
over a finite time. Secondly, to examine the accuracy of
algorithms (30)-(31) combined with (34) in regulating packet
end-to-end latency at the desired level, and to compare their
performance against the commonly used virtual data rate
approach described in Section III-A.

A. Network Model

For simulation experiments we consider the network topol-
ogy in Fig.1, where there are two source-destination pairs
A → C and D → E. For source-destination pair A → C,
there are two alternative paths A → B → D → C and
A → D → C. For source-destination pair D → E, there
is only a single path D → C → E.

Each active link is assumed to have a fixed data rate of c0
packets per second. To model the scheduling constraint (3), we
use the notions of contention graph and contention matrix [15].
In the contention graph, vertices represent links and edges
represent the contention between the links. Maximal cliques
of the contention graph embody the local contention among
links; Links that belong to the same maximal clique cannot be
active simultaneously. Let N be the number maximal cliques
in the contention graph. The N × L contention matrix F is
then defined by

Fn,l =

{
1
c0

if link l ∈ L belongs to the maximal clique n

0 otherwise.

Thus, a necessary condition for scheduling is given by

Fc ≤ 1. (35)

It can be shown that (35) is also a sufficient condition for
scheduling if the contention graph is perfect [15].

We assume that each wireless node can only communicate
with one other node at any time. This results in the contention
graph shown in Fig.2. There are three maximal cliques: links
(1,2,3), links (2,3,4), and links (4,5). Thus, on path D → C →
E only one link, either link 4 or 5 can be active. Similarly,
on path A → D → C only one link, either link 3 or 4 can
be active. However, on path A → B → D → C links 1
and 4 can be active simultaneously. This provides incentives
for using path A → B → D → C, despite being longer, to
increase the transmission rate of A→ C, since link 1 can be
active while data is being transmitted on link 4 for any of the
three flows. Since the contention graph in Fig.2 has no odd
holes, it is perfect and therefore (35) is a sufficient scheduling
constraint in this case.

The utility functions for both sources are assumed to be of
the form wsfs(xs) = ws ln(xs).

B. Experimental Results

We use SimEvents discrete-event simulation software for
simulation experiments. As discussed in Section IV-B1, path
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Fig. 1. Network topology and alternative paths for source-destination pairs
A→ C and D → E
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Fig. 2. Network contention graph and its maximal cliques

rates in (29) can be computed using Proximal Optimisation
Algorithms [21] or the distributed algorithm proposed in [20].
Both of these algorithms are based on solving an equivalent
optimisation problem where the objective function has an
additional quadratic function of the difference between the
auxiliary variables and the path rates. The equivalent problem
is then solved using a two-level iterative algorithm, where
at the outer level the auxiliary variables are updated, and
at the inner level a strictly concave optimisation problem is
solved given the current value of the auxiliary variables. At
every step of the outer level, the auxiliary variable values
become closer to the solution of the inner level optimisation
problem and thus the added quadratic term becomes smaller
and eventually converges to zero. Here, for simplicity we add
a small quadratic term −δxTx in (22) in order to make it
strictly concave. When δ is sufficiently small, the modified
objective function remains increasing over the feasible rate
region (2) and (5) for all c that satisfy (3). Moreover, the
computed primal solutions are close to the those computed
using Proximal Optimisation based algorithms when they run
for finite time, since the added quadratic term in these algo-
rithms does not completely vanish. Source delay regulation
is based on algorithm (34), using current average end-to-end
queueing delays as feedback. In all experiments it is assumed
that c0 = 1 packet/msec, γ = 1 × 10−2, β = 1 × 10−3, and
δ = 3× 10−1.

In the first experiment, source weights are fixed at w1 = 2
and w2 = 1 and algorithms (30)-(31) are simulated where
link prices λ(t) are updated for a fixed time period ac-
cording to β multiple of link average queueing delays, i.e.
λl(t) = βNl(t)

cl
, l ∈ L, where Nl(t) is the number of

packets in link l at time t. The evolution of link data rates,
path prices and path transmission rates are shown in Fig.3,
Fig.4, and Fig.5, respectively. As seen in Fig.3, link data rates
converge rapidly to the neighbourhood of their optimal values

(0.3333, 0.1496, 0.1838, 0.6665, 0.3333), although continue to
oscillate slightly due to the fact that the rate control algorithm
runs for finite time and thus path prices do not fully converge
to their optimal values λ (c). Moreover, link data rates have
a non-differentiable curve due to discontinuous nature of the
right-hand side of (30).

The oscillation of link data rates also results in mod-
est oscillation of path prices, and thus source aggregate
rates, around their optimal levels (5.9976, 5.9976, 3.0024) and
(0.3335, 0.33331), as seen in Fig.4, and Fig.5, respectively.
Also, as seen in Fig.5, although path prices for source 1
must be equal (see Section IV-A) at every step of (30)-(31),
they diverge at some points since the values of λ (c) are
approximate. Specifically, when path rates are computed in a
duality-based algorithm (see Section IV-B1), only paths with
minimum prices have positive rates. Thus, the slight difference
in path prices at some points caused by the approximate
values of λ (c) results in significant oscillation of path rates
of source 1, around the their optimal levels (0.1496, 0.1838).
The added quadratic term in this example, however, somewhat
limits the extent of the divergence of path rates.

In the second experiment, algorithms (30)-(31), with the
same setup as the first experiment, are simulated jointly
with (34) with delay bounds d1 = d2 = 1× 103 milliseconds,
and α = 2 × 10−5. Moreover, algorithms (30)-(31) are
simulated where link prices λ(t) are updated for a fixed time
period according to (29), using virtual data rates with ρ = 0.98
to retain high link utilisation. The evolution of instantaneous
packet end-to-end delays in both first and second experiments
are compared in Fig.6. It can be seen that algorithms (30)-(31)
combined with (34) with proper choice of parameter α regulate
packet end-to-end delay at their upper bound levels with good
precision in a relatively short time. The slight oscillation
of delay is caused by the oscillations of link data rates
and link prices in algorithms (30)-(31) described previously.
The transient behaviour of packet end-to-end delay can be
further controlled by adjustment of parameter α. Since their
equilibrium is the solution to the optimisation problem (27)
with equilibrium weights w∗ ≈ (0.37, 0.33) (Fig.7), they also
lead to maximal utilisation of network capacity.

The approach based on virtual data rates reduces the delay
to near zero in the long term, since it leads to under-utilised
links at equilibrium, however, the rate at which it reduces the
delay in inversely correlated to the level of link utilisation at
its equilibrium. Thus, as seen in Fig.6, this approach can only
achieve high link utilisation at the expense of slow reduction
of end-to-end delays and unpredictable transient behaviour.

VII. CONCLUSION

We consider the problem of supporting traffic with elas-
tic bandwidth requirements and average end-to-end delay
constraints in multi-hop wireless networks, and present an
approach where the utility weight of each elastic traffic is
adjusted to ensure the desired average path delays, as well
as maximal utilisation of network capacity and hence high
level of overall perceived signal quality. The proposed solution
comprises a scheduling algorithm incorporating a duality-
based rate control algorithm at its inner layer, and an integral
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Fig. 3. Link data rates when source weights are fixed at w1 = 2 and w2 = 1
and algorithms (30)-(31) are simulated
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and algorithms (30)-(31) are simulated
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Fig. 5. Path transmission rates when source weights are fixed at w1 = 2
and w2 = 1 and algorithms (30)-(31) are simulated

controller whereby each source regulates average end-to-end
queueing delay by using its utility weight as the control
variable. Simulation experiments indicate that when the inner-
layer rate control algorithm run over a finite time period, with
proper choice of parameter α, the proposed algorithms regulate
delay with good precision and transient performance compared
with the commonly used virtual data rates approach, which
under-utilises link capacities to reduce packet delay.
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Fig. 6. Instantaneous packet end-to-end delay when algorithms (30)-(31) are
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APPENDIX

Proof of Theorem 1: Let ĉ be an equilibrium point
of (30)-(31). From (31) it follows that

ĉ = arg max
ς∈Co(C)

λ(ĉ)T ς. (36)

Since λ(ĉ) is a supergradient of Uw at ĉ,

Uw(c) ≤ Uw(ĉ) + λ(ĉ)T (c− ĉ). ∀c ∈ Co(C)

It follows from (36) that λ(ĉ)T (c − ĉ) ≤ 0, so Uw(c) ≤
Uw(ĉ), for all c ∈ Co(C). This means that ĉ is an optimal
solution of (27), i.e. ĉ ∈ C∗, where C∗ denotes the set of
optimal solutions of (27). With a slight abuse of notation, here
we define q as an S × 1 vector with elements qs.

Consider the Lyapunov function

V (c) =
1

2
‖q(c∗)− q(c)‖22

where c∗ ∈ C∗. Since q(c∗) = q∗ is unique, V (c∗) = 0
and V (c) > 0, for all c /∈ C∗. Moreover, since q(c) is
nonpathological, V (c) is also nonpathological. Let V̇ be the
nonpathological derivative of the map V with respect to (30)-
(31) at c ∈ AV , where AV and V̇ are defined in Definition
4 in [24]. Let ψs ∈ ∂Cqs(c), s ∈ S, where ∂Cqs(c) is the
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Clarke gradient of qs at c [25]. Also let Ψ = [ψ1 · · ·ψS ]T .
Then

V̇ (c) = − (q(c∗)− q(c))
T
q̇(c)

= − (q(c∗)− q(c))
T

Ψ ċ

= − (q(c∗)− q(c))
T

Ψ γ(c̃− c)
= −γ (q(c∗)− q(c))

T
Ψ (c∗ − c+ c̃− c∗)

= −γ (q(c∗)− q(c))
T

Ψ (c∗ − c)
− γ (q(c∗)− q(c))

T
Ψ (c̃− c∗).

Using the characterisation of Clarke gradient in equation A.11
in [25], it follows from Taylor’s theorem that q(c∗)− q(c) ≈
Ψ (c∗ − c), as c approaches c∗. Furthermore, since Uw is
concave, by Proposition B.24 in [11], there exists λ̂ ∈ Λ(c∗)
such that

λ̂
T

(c− c∗) ≤ 0 ∀c ∈ Co(C). (37)

Let R̃c be any L×S routing matrix that defines the links used
by only one arbitrary path with positive optimal rate given c
that is associated with each source. It then follows that

V̇ (c) ≈ −γ ‖q(c∗)− q(c)‖22 − γ(λ̂− λ(c))T R̃c Ψ(c̃− c∗)

where λ̂ satisfies (37).
It can be shown that typically R̃c Ψ ≈ −k(c)IL, where

k(c) > 0 and IL is the identity matrix. To see this, consider
the case where each source has only a single path, i.e.
Is = 1. In this case x(λ) is differentiable with respect to
λ and ∂x(λ)

∂λ = diag
{

1
wsf ′′s (xs(λ))

}
R̃Tc [26]. Evaluating the

sensitivity equation (2.9) in [22] for dual algorithm (29) at its
equilibrium point λ(c) yields

0 = diag
{
βl
cl

}
R̃c

∂x(λ(c))

∂λ

∂λ(c)

∂c
− diag

{
βl
c2l
R̃clx(λ(c))

}
= diag

{
βl
cl

}
R̃c diag

{
1

wsf ′′s (xs(λ(c)))

}
R̃Tc

∂λ(c)

∂c

− diag
{
βl
c2l
R̃clx(λ(c))

}
≈ R̃c diag

{
1

wsf ′′s (xs(λ(c)))

}
∂q(c)

∂c
− IL.

The last approximation is based on the fact that at optimality
total flow on each link is near or equal its capacity. Thus,
after factoring out diag

{
βl

cl

}
, the second term on the right-

hand side of the equality can be approximated as an identity
matrix. Furthermore, it is assumed that the system operates at
points where ws and as a result x∗s are close for all s ∈ S.
Consequently, the values of wsf ′′s (xs(c)), s ∈ S are close.
Hence, R̃c

∂q(c)
∂c ≈ −k(c)IL, where k(c) ≈ |wsf ′′s (xs(c)) |,

s ∈ S.
From (31) it follows that

λ(c)T (c̃− c∗) ≥ 0 ∀c ∈ Co(C).

Also, (37) implies

λ̂
T

(c̃− c∗) ≤ 0.

Adding both inequalities yields

(λ̂− λ(c))T (c̃− c∗) ≤ 0 ∀c ∈ Co(C). (38)

Thus

V̇ (c) = −γ ‖q(c∗)− q(c)‖22
+ γk(c)IL(λ̂− λ(c))T (c̃− c∗)

≤ −γ ‖q(c∗)− q(c)‖22 . (39)

Furthermore, the largest weakly invariant set of points c ∈ Av
for which V̇ (c) = 0 is the set of equilibrium points C∗. Hence,
by Proposition 3 in [24], every solution of algorithms (30)-(31)
approaches the set of equilibrium points C∗ as t→∞.

Proof of Lemma 1: It results from (26) that

∂q∗s
∂wr

=

{
wsf

′′
s (x∗s)

∂x∗s
∂ws

+ f ′s(x
∗
s) r = s

wsf
′′
s (x∗s)

∂x∗s
∂wr

r 6= s
∀s ∈ S. (40)

Let w̃ be a perturbation of parameter w defined by

w̃s =

{
ws + dwr s = r

ws otherwise
∀s ∈ S

where r ∈ S and dwr > 0. If x∗r(w̃) = x∗r(w), taking the
limit dwr → 0 yields ∂x∗r

∂wr
= 0, and from (40), ∂q∗r

∂wr
= f ′r(x

∗
r).

If x∗r(w̃) 6= x∗r(w), given the strict concavity of f , {x∗s(w)}
and {x∗s(w̃)} are the unique maximisers for problem (20) with
parameters w and w̃, respectively. So∑

s∈S
wsfs(x

∗
s(w)) >

∑
s∈S

wsfs(x
∗
s(w̃))

and ∑
s∈S

w̃sfs(x
∗
s(w̃)) >

∑
s∈S

w̃sfs(x
∗
s(w)).

Adding both inequalities results in∑
s∈S

(w̃s − ws)(fs(x∗s(w̃))− fs(x∗s(w))) > 0.

Except for s = r, all the elements in the above summation are
zero. Since w̃r − wr = dwr > 0, fr(x∗r(w̃)) > fr(x

∗
r(w)),

which implies x∗r(w̃) > x∗r(w), since f is an increasing
function. Thus

x∗r(w̃)− x∗r(w)

dwr
> 0.

Taking the limit dwr → 0 yields the lower bound of (33).
It results from the optimality condition in Proposition 2.2.2

in [11] for optimisation problem (20) at w that∑
s∈S

wsf
′
s(x
∗
s(w))(x∗s(w̃)− x∗s(w)) ≤ 0.

Similarly, it results from the optimality condition for (20) at
the perturbed w̃ that∑

s∈S
w̃sf

′
s(x
∗
s(w̃))(x∗s(w)− x∗s(w̃)) ≤ 0.

Using definition (26), adding both inequalities and taking the
limit dwr → 0 yields∑

s∈S

∂x∗s
∂wr

∂q∗s
∂wr

≥ 0 ∀r ∈ S. (41)
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Let Sd = {s ∈ S, s 6= r|x∗s(w̃) < x∗s(w)}. Since x∗r(w̃) >
x∗r(w), Sd is non-empty, otherwise {x∗s(w)} would not be
optimal. Since it is assumed that f ′′ < 0, f ′s(x

∗
s(w̃)) >

f ′s(x
∗
s(w)), and hence from (26), q∗s (w̃) > q∗s (w) for all

s ∈ Sd. Taking the limit dwr → 0 results in ∂x∗s
∂wr

< 0 and
∂q∗s
∂wr

> 0, so ∑
s∈Sd

∂x∗s
∂wr

∂q∗s
∂wr

< 0 ∀r ∈ S.

Let Si = {s ∈ S, s 6= r|x∗s(w̃) ≥ x∗s(w)}. Using a similar
argument, q∗s (w̃) ≤ q∗s (w), for all s ∈ Si, so∑

s∈Si

∂x∗s
∂wr

∂q∗s
∂wr

≤ 0 ∀r ∈ S.

Hence, since it was assumed that ∂x
∗
s

∂ws
> 0, it follows from (41)

that ∂q∗s
∂ws

> 0, for all s ∈ S.
In (40), since f ′′s (x∗s) < 0, the first and second terms

on the right side of the equation are negative and positive,
respectively. Since the term on the left side of the equation is
positive

0 ≤ −wsf ′′s (x∗s)
∂x∗s
∂ws

< f ′s(x
∗
s)

from which the upper bounds in (32) and (33) follow.
Proof of Theorem 2: Similar to the proof of Theorem

1, we abuse the notation slightly and here define q as an
S × 1 vector with elements qs. Given R has full column
rank, β−1q(c) = β−1RTλ(c) = d has a solution and hence
the equilibrium of (30)-(31) combined with (34) exists for
any d. As explained in Section IV-B1, if link prices in the
duality-based rate control algorithm are updated according to
β multiple of the link average queueing delays, link average
queueing delays at equilibrium are equal to β−1λ(c), and as
a result path average queueing delays at equilibrium equal
β−1q(c), which are bounded by d at the equilibrium (c∗,w∗).

By Theorem 2.2.6 in [23], the mapping q∗(w) is con-
tinuous, and since q∗(w) is also unique, it is a continuous
function. We assume that q∗(w) is also nonpathological.
Consider the Lyapunov function

V (c,w) =
1

2
‖q∗(w∗)− q∗(w)‖22 +

1

2
‖q∗(w)− qw(c)‖22

where qw∗(c
∗) = q∗(w∗) = βd. Therefore, V (c∗,w∗) =

0 and V (c,w) > 0, for all (c,w) 6= (c∗,w∗). Moreover,
since qw(c) and q∗(w) are nonpathological, V (c,w) is also
nonpathological. Let V̇ be the nonpathological derivative of
the map V with respect to (30)-(31) and (34) at (c,w) ∈ AV ,
where V̇ and AV are defined in Definition 4 in [24]. Also
let Φ = [φ1 · · ·φS ]T , where φs ∈ ∂Cq

∗
s (w), s ∈ S, and

∂Cq
∗
s (w) is the Clarke gradient of q∗s at w. Then

V̇ (c,w) = −(q∗(w∗)− q∗(w))T q̇∗(w)

+ (q∗(w)− qw(c))T (q̇∗(w)− q̇w(c))

= −(q∗(w∗)− q∗(w))TΦ ẇ

+ (q∗(w)− qw(c))TΦ ẇ

− (q∗(w)− qw(c))T q̇w(c)

= −α
β

(q∗(w∗)− q∗(w))TΦ (βd− qw(c))

+
α

β
(q∗(w)− qw(c))TΦ (βd− q∗(w)

+ q∗(w)− qw(c))− (q∗(w)− qw(c))T q̇w(c)

= −α
β

(q∗(w∗)− q∗(w))TΦ (βd− qw(c))

+
α

β
(q∗(w)− qw(c))TΦ (βd− q∗(w))

+
α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))

− (q∗(w)− qw(c))T q̇w(c).

Since f ′′ < 0, (40) implies that ∂x∗s
∂wr

∂q∗s
∂wr
≤ 0, for all r 6= s. It

then follows from (41) and (40) that

∂x∗s
∂ws

∂q∗s
∂ws

≥

∣∣∣∣∣∣∣
∑
r∈S
r 6=s

∂x∗s
∂wr

∂q∗s
∂wr

∣∣∣∣∣∣∣ ∀s ∈ S
(
∂q∗s
∂ws

− f ′s(x∗s)
)
∂q∗s
∂ws

1

wsf ′′s (x∗s)
≥

∣∣∣∣∣∣∣
∑
r∈S
r 6=s

(
∂q∗s
∂wr

)2
1

wrf ′′r (x∗r)

∣∣∣∣∣∣∣
∀s ∈ S.

We assume that the system operates at points where ws and
as a result x∗s are close for all s ∈ S. Therefore, the values
of wsf ′′s (xs(c)), s ∈ S are close. Furthermore, in this case it
can be assumed that ∂q∗s

∂ws
has approximately the average value

of the range given in (32), so
∣∣∣ ∂q∗s∂ws

− f ′s(x∗s)
∣∣∣ ≈ ∂q∗s

∂ws
. Thus

∂q∗s
∂ws

'

∑
r∈S
r 6=s

(
∂q∗s
∂wr

)2


1
2

≥ 1√
S − 1

∑
r∈S
r 6=s

∣∣∣∣ ∂q∗s∂wr

∣∣∣∣
'
∑
r∈S
r 6=s

∣∣∣∣ ∂q∗s∂wr

∣∣∣∣ , for small S. (42)

Inequality (42) implies that Φ can be approximated as a
strictly diagonally dominant matrix (Definition 6.1.9 in [27]).
Moreover, off-diagonal elements of Φ are very small relative to
the diagonal elements, and as a result Φ can be approximated
as a symmetric matrix. Since by (32) the diagonal elements
of Φ are positive, it then follows from Theorem 6.1.10 in [27]
that all eigenvalues of Φ are real and positive and hence Φ is
positive definite. Thus

V̇ (c,w) = −α
β

(q∗(w∗)− q∗(w))TΦ (βd− qw(c))

+
α

β
(βd− q∗(w))TΦ (q∗(w)− qw(c))

+
α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))

− (q∗(w)− qw(c))T q̇w(c)

= −α
β

(q∗(w∗)− q∗(w))TΦ (q∗(w∗)− q∗(w))
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+
α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))

− (q∗(w)− qw(c))T q̇w(c)

<
α

β
(q∗(w)− qw(c))TΦ (q∗(w)− qw(c))

− (q∗(w)− qw(c))T q̇w(c).

In the first equality, the second term on the right-hand side
results from the assumption that Φ is symmetric. The above
inequality results from the positive definiteness of Φ. It follows
from Geršgorin Theorem (Theorem 6.1.1 in [27]) and inequal-
ities (42) and (32) that eigenvalues of Φ are upperbounded by
2f ′s(x

∗
s), s ∈ S. Applying Rayleigh-Ritz Theorem (Theorem

4.2.2 in [27]) to the first term, and using the upperbound (39)
for the second term on the right-hand side of the above
inequality then yields

V̇ (c,w) <

(
2α

β
max
s∈S

f ′s(x
∗
s)− γ

)
‖q∗(w)− qw(c)‖22 (43)

Consequently, if

α <
βγ

2 maxs∈S f ′s(x
∗
s)

(44)

then V̇ (c,w) ≤ 0 for all (c,w). Furthermore, the largest
weakly invariant set of points (c,w) ∈ AV for which
V̇ (c,w) = 0 is the set of equilibrium points (c∗,w∗). Hence,
by Proposition 3 in [24], every solution of algorithms (30)-(31)
combined with (34) approaches the set of equilibrium points
(c∗,w∗) as t→∞.
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