Neural-Symbolic Learning, Part I, ACAI Summer School on Statistical Relational Artificial Intelligence.
Neural-Symbolic Learning, Part II, ACAI Summer School on Statistical Relational Artificial Intelligence.
Journal of AI Research, special track on Deep Learning, Knowledge Representation and Reasoning
EPSRC Research Network+ on Human-like Computing
Artur Garcez is Professor of Computer Science at City, University of London. He holds a Ph.D. in Computing (2000) from Imperial College London. He is a Fellow of the British Computer Society (FBCS), member of the ACM, AAAI, IEEE, CGCA, and partner at Performance Systems, Rio de Janeiro, and Cognitive Intelligence, London.
Garcez is Director of the
Research Centre for Machine Learning and Chair of the Data Science Institute at City, president of the Steering Committee of the
Neural-Symbolic Learning and Reasoning Association, London, and founding director of City's
MSc in Data Science.
Garcez has an established track record of research in Machine Learning, Neural Computation and Artificial Intelligence. He has co-authored two books:
Neural-Symbolic Cognitive Reasoning, with Lamb and Gabbay (Springer 2009), and
Neural-Symbolic Learning Systems, with Broda and Gabbay (Springer 2002). Garcez has published at Behavioral & Brain Sciences, Theoretical Computer Science, Neural Computation, Machine Learning, Journal of Logic and Computation, Artificial Intelligence, Journal of Applied Logic, IEEE Transactions on Neural Networks and Learning Systems, and Studia Logica. He has consistently published at the flagship Artificial Intelligence and Neural Computation conferences AAAI, NIPS, IJCAI, AAMAS, IJCNN, ECAI.Garcez is associate editor of IEEE Transactions in Neural Networks and Learning Systems, editor-in-chief of the
Neural Computing and Artificial Intelligence book series. He is area scientific editor of the
Journal of Applied Logics (Logics and Neural Networks), area editor of the
Journal of Logic and Computation (Reasoning and Learning, with L. Valiant), associate editor of the
International Journal on Artificial Intelligence Tools, and associate editor of the
Journal of AI Research (JAIR), special track on deep learning and symbolic reasoning, and member of the editorial boards of
The Logic Journal of the IGPL and
The International Journal of Hybrid Intelligent Systems. Garcez is a member of the advisory board of the
Cognitive Technologies book series. He is Associate Member of
Behavioral and Brain Sciences, was founding co-chair of the International
Workshop on Neural-Symbolic Learning and Reasoning (NeSy), held yearly since 2005, and co-organiser of
Dagstuhl seminar 14381 on Neural-Symbolic Learning and Reasoning, September 2014, and
Dagstuhl seminar 17192 on Human-like Neural-Symbolic Computing, May 2017.
Garcez has acted as reviewer for most of the leading international journals on Logic, Cognitive Science, Neural Computation and Artificial Intelligence, including IEEE Transactions on Neural Networks and Learning Systems, Artificial Intelligence, Machine Learning, Journal of Machine Learning Research, Cognitive Systems Research, AI Communications, Cognitive Science, Neurocomputing, Information and Computation. He has guest-edited three journal special issues, and co-edited two research monographs. He has served on the Programme Committee or Organizing Committee of a large number of international conferences and workshops, including IJCAI, NIPS, AAAI, AAMAS, ECAI, ICANN, ASE, HLAI and IJCNN.Garcez was awarded a two-year Nuffield foundation research grant in the area of neural-symbolic integration (2002-2004). He was Principal Investigator in the EU-funded research project BioGrid (2003-2004) and industry-funded projects RoboCup Physical Visualization League (2007) and Dynamic Fraud Prevention (2009). He was co-investigator in the EU-funded research project Genestream (2003), was awarded a Daiwa Foundation Grant (2006), and has been consistently awarded conference travel grants by The Royal Society (2002, 2003, 2004, 2005, 2007, 2010). Garcez was Principal Investigator for the EPSRC/Innovate UK project EP/M50712X/1 Advancing Consumer Protection through Machine Learning (with BetBuddy Ltd.), and the EPSRC/Innovate UK project EP/M507064/1 FareViz: On the Design of Real-Time Data Exploration Tools (with Transport API, Digital MR and Raileasy).
Selected Publications (complete list available here; google scholar profile here):
- I. Donadello, L. Serafini and A. S. d'Avila Garcez. Logic Tensor Networks for Semantic Image Interpretation. In Proc. IJCAI'17, Melbourne, Australia, Aug 2017.
- T. Besold, A. S. d'Avila Garcez, K. Stenning, L. van der Torre and M. van Lambalgen. Reasoning in Non-Probabilistic Uncertainty: Logic Programming and Neural-Symbolic Computing as Examples. Minds and Machines, Springer. DOI:10.1007/s11023-017-9428-3, March 2017.
- S. Tran and A. S. d'Avila Garcez. Deep Logic Networks: Inserting and Extracting Knowledge from Deep Belief Networks. IEEE Transactions on Neural Networks and Learning Systems. DOI 10.1109/TNNLS.2016.2603784, Nov 2016.
- M. Franca, G. Zaverucha and A. S. d'Avila Garcez. Fast Relational Learning using Bottom Clause Propositionalization with Artificial Neural Networks, Machine Learning 94(1):81-104, Springer, 2014.
- R. V. Borges, A. S. d'Avila Garcez and L. C. Lamb. Learning and Representing Temporal Knowledge in Recurrent Networks. IEEE Transactions on Neural Networks, 22(12):2409 - 2421, December 2011.
- L. de Penning, A. S. d'Avila Garcez, L. C. Lamb and J. J. Meyer. A Neural-Symbolic Cognitive Agent for Online Learning and Reasoning. In Proc. IJCAI'11, Barcelona, Spain, July 2011.
- Artur S. d'Avila Garcez, L. C. Lamb and D. M. Gabbay. Neural-Symbolic Cognitive Reasoning. Cognitive Technologies, Springer, ISBN 978-3-540-73245-7, 2009.
- Artur S. d'Avila Garcez, D. M. Gabbay, O. Ray and J. Woods. Abductive Reasoning in Neural-Symbolic Learning Systems. Topoi: An International Review of Philosophy, 26:37-49, March 2007.
- Artur S. d'Avila Garcez, L. C. Lamb and D. M. Gabbay. Connectionist Modal Logic: Representing Modalities in Neural Networks. Theoretical Computer Science, 371(1-2):34-53, February 2007.
- Artur S. d'Avila Garcez, L. C. Lamb and D. M. Gabbay. Connectionist Computations of Intuitionistic Reasoning. Theoretical Computer Science, 358(1):34-55, July 2006.
- Artur S. d'Avila Garcez and L. C. Lamb. A Connectionist Computational Model for Epistemic and Temporal Reasoning. Neural Computation, 18(7):1711-1738, July 2006.
- Artur S. d'Avila Garcez, K. Broda and D. M. Gabbay. Neural-Symbolic Learning Systems: Foundations and Applications, Perspectives in Neural Computing, Springer, ISBN 1-85233-512-2, 2002.
- Artur S. d'Avila Garcez, K. Broda and D. M. Gabbay. Symbolic Knowledge Extraction from Trained Neural Networks: A Sound Approach. Artificial Intelligence, 125(1-2):153-205, January 2001.
Contact details
Artur d'Avila Garcez, FBCS
Professor of Computer Science
Department of Computer Science
City, University of London, EC1V 0HB, UK
Tel: + 44 (0)20 7040 8344
Email: a.garcez@city.ac.uk
URL: http://staff.city.ac.uk/~aag/
Twitter: @AvilaGarcez