Emmanuel M. Pothos

Department of Psychology
City, University of London

A person smiling for the picture

Description automatically generated with low confidence

 

Welcome to my home page. I did a BSc in physics (1992, Imperial) followed by a DPhil in experimental psychology (1998, Oxford). I have been at City Psychology for the last eight years.

 

address: Social Sciences Building, 32-38 Whiskin Street, London EC1R 0JD

office: D439, Rhind building

tel: +44 (0) 207 040 0267

email: emmanuel.pothos.1 at city.ac.uk

 


 Current funding

 

A picture containing diagram

Description automatically generated

We started (June 2019) a three-year project for ONRG global on "Anticipating decisions and Bell's bound. " This is a project about the extent to which two decision agents can coordinate or super (in a formal sense) coordinate. The project is run collaboratively with Pawel Blasiak, Christoph Gallus, James Yearsley, and Bartosz Wojciechowski. Oliver Waddup is working on the project.

 

Two recent publications from this grant concern:

**the way knowledge partitions can simplify complex probabilistic inference, in PROCB, see here.

**the equivalence of the free choice and locality assumptions in simulating Bell statistics, in PNAS, see here.

This specially commissioned artwork (from Iwona Michniewska) illustrates the general idea!

A picture containing blurry, ocean floor

Description automatically generated

 

 

Dr. Irina Basieva's Marie Curie fellowship project on ambivalence is now completed. Please click here for the project web page!

 


My current research.  

The world is uncertain. Whatever our mind does, part of it involves quantifying uncertainty. Behavioral scientists typically employ Bayesian probability theory or individual heuristics and biases to understand how the mind deals with uncertainty.

A nice quote by Laplace is "probability theory is nothing but common sense reduced to calculation. " However, interestingly there are several alternative probability theories. The best known alternative is quantum theory. Most of my research concerns whether quantum theory might be useful in cognitive modelling.

For an overview of the application of quantum theory in cognition, click here.

For one of the first quantum cognitive models, click here (conjunction fallacy) or here (disjunction fallacy).

For an interesting novel prediction from a quantum decision model, click here.

Jerome Busemeyer's web pages have lots of relevant material (notably tutorials and a collection of relevant papers).    


 

Journal publications

(my CV can be found here)

 

1.     Wilcockson, T. D. W., Pothos, E. M., Osborne. A. M., Crawford, T. J. (in press). Top-down and bottom-up attentional biases for smoking-related stimuli: comparing dependent and non-dependent smokers. Addictive Behaviors.

2.     Pothos, E. M., Lewandowsky, S., Basieva, I., Barque-Duran, A., Tapper, K., & Khrennikov, A. (in press). Information overload for (bounded) rational agents. Proceedings of the Royal Society B.

3.     Barque-Duran, A. & Pothos, E. M. (in press). Untangling Decision Routes in Moral Dilemmas: The Refugees’ Dilemma. American Journal of Psychology.

4.     Laasonen, M., Lahti-Nuuttila, P., Leppamaki, S., Tani, P., Wikgren, J., Harno, H., Oksanen-Hennah, H., Pothos, E. M., Cleeremans, A., Dye, M. W. G., Cousineau, D., & Hokkanen, L. (in press). Project DyAdd: Nonlinguistic theories of dyslexia predict intelligence. Frontiers Human Neuroscience.

5.     White, L. C., Pothos E. M., & Jarrett, M. (2020). The cost of asking: how evaluations bias subsequent judgments. Decision, 7, 259-286.

6.     Atmanspacher, H., Basieva, I., Busemeyer, J., Khrennikov, A., Pothos, E., Shiffrin, R., & Wang, Z. (2020). What are the appropriate axioms of rationality for reasoning under uncertainty with resource-constrained systems? Behavioral and Brain Sciences, 43, E2.

7.     Broekaert, J. B., Busemeyer, J. R., & Pothos, E. M. (2020). The disjunction effect in two-stage simulated gambles. An experimental study and comparison of a heuristic logistic, Markov and quantum-like model. Cognitive Psychology, 117, 101262.

8.     Wilcockson, T.D.W., Pothos, E.M., & Cox, W.M. (2020). An online cognitive bias task: The Rough Estimation Task using Qualtrics. Behavioural Pharmacology, 31, 97-101.

9.     Pothos, E. M., Basieva, I., Khrennikov, A., & Yearsley, J. M. (2019). Perspectives on correctness in probabilistic inference from psychology. The Spanish Journal of Psychology, 22, E55.

10.  Laasonen, M., Smolander, S., Lahti-Nuuttila, P., Leminen, M., Lajunen, H., Heinonen, K. Pesonen, A., Bailey, T. M., Pothos, E. M., Kujala, T., Leppänen, P., Bartlett, C. W., Geneid, A., Lauronen, L., Service, E., Kunnari, S., & Arkkila, E. (2018). Understanding developmental language disorder – the Helsinki longitudinal SLI study (HelSLI): a study protocol. BMC Psychology, 6:24.

11.  Mistry, P. K., Pothos, E. M., Vandekerckhove, J., & Trueblood, J. S. (2018). A quantum probability account of individual differences in causal reasoning. Journal of Mathematical Psychology, 87, 76-97.

12.  Khrennikov, A., Basieva, I., Pothos, E. M., & Yamato, I. (2018). Quantum probability in decision making from quantum information representation of neuronal states. Scientific Reports, 8, 16225.

13.  Wilcockson, T. D. W., Pothos, E. M., & Parrott, A. C. (2019). Substance usage intention does not affect attentional bias: implications from Ecstasy/MDMA users and alcohol drinkers. Addictive Behaviors, 88, 175-181.

14.  Asano, M., Basieva, I., Pothos, E. M., & Khrennikov, A. (2018). State entropy and differentiation phenomenon. Entropy, 20, 394-408.

15.  Khrennikov, A., Bagarello, F., Basieva, I., & Pothos, E. M. (2018). Quantum like modelling of decision making: quantifying uncertainty with the aid of the Heisenberg-Robertson inequality. Journal of Mathematical Psychology, 84, 49-56.

16.  Wojciechowski, B. W. & Pothos, E, M. (2018). Is there a conjunction fallacy in legal probabilistic making? Frontiers in Psychology, 9, article 391.

17.  Basieva, I., Khrennikova, P., Pothos, E. M., Asano, M., & Khrennikov, A., (2018). Quantum-like model of subjective expected utility. Journal of Mathematical Economics, 78, 150-162.

18.  Lea, S. E. G., Pothos, E. M., Wills, A. J., Leaver, L. A., Ryan, C. M. E., & Meier, C. (2018). Multiple feature use in pigeons’ category discrimination: The influence of stimulus set structure and the salience of stimulus differences. Journal of Experimental Psychology: Animal Learning and Cognition, 44, 114-127.

19.  Broekaert, J., Basieva, I., Blasiak, P., & Pothos, E. M. (2017). Quantum-like dynamics applied to cognition: A consideration of available options. Proceedings of the Royal Society A, 375, 20160387.

20.  Barque-Duran, A., Pothos, E. M., Hampton, J. A., & Yearsley, J. M. (2017). Contemporary morality: moral judgments in digital contexts. Computers in Human Behavior, 75, 184-193.

21.  Trueblood, J. S., Yearsley, J. M., & Pothos, E. M. (2017). A quantum probability framework for human probabilistic inference. Journal of Experimental Psychology: General, 146, 1307-1341. 

22.  Yearsley, J. M., Barque-Duran, A., Scerrati, E., Hampton, J. A., & Pothos, E. M. (2017). The triangle inequality constraint in similarity judgments. Progress in Biophysics and Molecular Biology, 130, 26-32.

23.  Pothos, E. M., Busemeyer, J. R., Shiffrin, R. M., & Yearsley, J. M. (2017). The rational status of quantum cognition. Journal of Experimental Psychology: General, 146, 968-987.

24.  Hoffman, Y. S. G., Perlman, A., Orr-Urtreger, B., Tzelgov, J. Pothos, E. M., & Edwards, D. J. (2017). Unitization of route knowledge. Psychological Research, 81, 1241-1254.

25.  Basieva, I., Pothos, E. M., Trueblood, J. Khrennikov, A., & Busemeyer, J. R. (2017). Quantum probability updating from zero priors (by-passing Cromwell’s rule). Journal of Mathematical Psychology, 77, 58-69.

26.  Perlman, A., Hoffman, Y., Tzelgov, Y., Pothos, E. M., & Edwards, D. J. (2016). The notion of contextual locking: inaccessibility to previously learnt items when appearing in a different context. Quarterly Journal of Experimental Psychology, 69, 410-431.

27.  Yearsley, J. M. & Pothos, E. M. (2016). Zeno’s paradox in decision making. Proceedings of the Royal Society B, 283, 20160291.

28.  Wilcockson, T. D. W. & Pothos, E. M. (2016). How cognitive biases can distort environmental statistics: introducing the Rough Estimation Task. Behavioral Pharmacology, 27, 165-172.

29.  Conway, M. A., Pothos, E. M., & Turk, D. J. (2016). The self-relevance system? Cognitive Neuroscience, 7, 20-21.

30.  Wilcockson, T. D. W., Pothos, E. M., & Fawcett, A. (2016). Dyslexia and substance use in a university undergraduate population. Substance Use and Misuse, 51, 15-22.

31.  White, L. C., Barque-Duran, A., & Pothos, E. M. (2015). An investigation of a quantum probability model for the constructive effect of affective evaluation. Philosophical Transactions of the Royal Society A, 374, 20150142.

32.  Cox, W. M., Fadardi, J. S., Hosier, S. G., & Pothos, E. M. (2015). Differential effects and temporal course of attentional and motivational training on excessive drinking. Experimental and Clinical Psychopharmacology, 23, 445-454.

33.  Barque-Duran, A., Pothos, E. M., Yearsley, J. M., & Hampton, J. A. (2015). Patterns and evolution of moral behavior: moral dynamics in everyday life. Thinking & Reasoning, 22, 31-56.

34.  Pothos, E. M., Barque-Duran, A., Yearsley, J. M., Trueblood, J. S., Busemeyer, J. R., & Hampton, J. A. (2015). Progress and current challenges with the Quantum Similarity Model. Frontiers in Psychology, 6, 205. 

35.  Wilcockson, T. D. W. & Pothos, E. M. (2015). The automatic nature of habitual goal-state activation in substance use; implications from a dyslexic population. Journal of Substance Use, 21, 244-248.

36.  Wilcockson, T. D. W. & Pothos, E. M. (2015). Measuring inhibitory processes for alcohol-related attentional biases: Introducing a novel attentional bias measure. Addictive Behaviors, 44, 88-93.

37.  Pothos, E. M. & Trueblood, J. S. (2015). Structured representations in a quantum probability model of similarity. Journal of Mathematical Psychology, 64, 35-43.

38.  White, L. C., Pothos, E. M., & Busemeyer, J. R. (2015). Insights from quantum cognitive models for organizational decision making. Journal of Applied Research in Memory and Cognition, 4, 229-238.

39.  Busemeyer, J. R., Wang, J., Pothos, E. M., & Trueblood, J. S. (2015). The conjunction fallacy, confirmation, and quantum theory: comment on Tentori, Crupi, & Russo (2013). Journal of Experimental Psychology: General, 144, 236-243. 

40.  Ziori, E., Pothos, E. M., & Dienes, Z. (2014). Role of prior knowledge in implicit and explicit learning of artificial grammars. Consciousness & Cognition, 28, 1-16.

41.  White, L. C., Pothos, E. M., & Busemeyer, J. R. (2014). Sometimes it does hurt to ask: the constructive role of articulating impressions. Cognition, 133, 48-64.

42.  Trueblood, J. S., Pothos, E. M., & Busemeyer, J. R. (2014). Quantum probability theory as a common framework for reasoning and similarity. Frontiers in Cognitive Science, 5.

43.  Pothos, E. M. & Reppa, I. (2014). The fickle nature of similarity change as a result of categorization. The Quarterly Journal of Experimental Psychology, 67, 2425-2438.

44.  Yearsley, J. M. & Pothos, E. M. (2014). Challenging the classical notion of time in cognition: a quantum perspective. Proceedings of the Royal Society B, 281, 1471-1479.

45.  Pothos, E. M. & Busemeyer, J. R. (2014). In search for a standard of rationality. Frontiers in Cognitive Science, 5, 1-3.

46.  Pothos, E. M., Shiffrin, R. M., & Busemeyer, J. R. (2014). The dynamics of decision making when probabilities are vaguely specified. Journal of Mathematical Psychology, 59, 6-17. 

47.  Laasonen, M., Vare, J., Oksanen-Hennah, H., Leppamaki, S., Tani, P., Harno, H., Hokkanen, L., Pothos, E. M., & Cleeremans, A. (2014). DyAdd: implicit learning in adult dyslexia and ADHD. Annals of Dyslexia, 64, 1-33.

48.  Pothos, E. M., Busemeyer, J. R., & Trueblood, J. S.  (2013). A quantum geometric model of similarity. Psychological Review, 120, 679-696. 

49.  Wang, Z., Busemeyer, J. R., Atmanspacher, H., &  Pothos, E. M. (2013). The potential of using quantum theory to build models of cognition. Topics in Cognitive Science, 5, 672-688.

50.  Blutner, R., Pothos, E. M., & Bruza, P. (2013). A quantum probability perspective on borderline vagueness. Topics in Cognitive Science, 5, 1-26.

51.  Pinhas, M., Pothos, E. M., & Tzelgov, Y. (2013). Zooming in and out from the mental number line: evidence for a number range effect. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 972-976.  

52.  Pothos, E. M. & Busemeyer, J. R. (2013). Can quantum probability provide a new direction for cognitive modeling? Behavioral & Brain Sciences, 36, 255-327.  (target article) Web of Science rank 200/7480 in the category Psychology Biological, for 2010- 2014 period.

53.  Wills, A. J. & Pothos, E. M. (2012). On the adequacy of Bayesian evaluations of categorization models: Reply to Vanpaemel & Lee (2012). Psychological Bulletin, 138, 1259-1261 .

54.  Close, J. & Pothos, E. M. (2013). “Object categorization: reversals and explanations of the basic-level advantage” (Rogers & Patterson, 2007): a simplicity account. Quarterly Journal of Experimental Psychology, 65, 1615-1632.

55.  Busemeyer, J. R. & Pothos, E. M. (2012). Social projection and a quantum approach for behavior in Prisoner’s Dilemma. Psychological Inquiry, 23, 28-34.

56.  Edwards, D. J., Pothos, E. M., & Perlman, A. (2012). Relational vs. absolute representation in categorization. American Journal of Psychology, 125, 481-497.

57.  Perlman, A., Hahn, U., Edwards, D. J., & Pothos, E. M. (2012). Further attempts to clarify the importance of category variability for categorization. Journal of Cognitive Psychology, 24, 203-220.

58.  Wills, A. J. & Pothos, E. M. (2012). On the adequacy of current empirical evaluations of formal models of categorization. Psychological Bulletin, 138, 102-125.

59.  Pothos, E. M., Perlman, A., Bailey, T. M., Kurtz, K., Edwards, D. J., Hines, P., & McDonnell, J. V. (2011). Measuring category intuitiveness in unconstrained categorization tasks. Cognition, 121, 83-100.

60.  Milton, F. & Pothos. E. M. (2011). Category structure and the two learning systems of COVIS. European Journal of Neuroscience, 34, 1326-1336.

61.  Pothos, E. M. & Busemeyer, J. R. (2011). Formalizing heuristics in decision-making: a quantum probability perspective. Frontiers in Cognition, 2, 1-3.

62.  Pothos, E. M. & Busemeyer, J. R. (in press). Open peer commentary. The fallacy of normativism: falling in love with ourselves. A case for limited prescriptive normativism. Behavioral and Brain Sciences.

63.  Pothos, E. M., Edwards, D. J., & Perlman, A. (2011). Supervised vs. unsupervised categorization: Two sides of the same coin? Quarterly Journal of Experimental Psychology, 64, 1692-1713.

65.  Pothos, E. M., Perry, G., Corr, P. J., Matthew, M., & Busemeyer, J. R. (2011). Understanding cooperation in the Prisoner’s Dilemma game. Personality and Individual Differences, 51, 210-215.

66.  Pothos, E. M. (2010). An entropy model for Artificial Grammar Learning. Frontiers in Cognitive Science, 1, 1-13.

67.  Tapper, K., Pothos, E. M., & Lawrence, A. D. (2010). Feast your eyes: hunger and trait reward drive predict attentional bias for food cues. Emotion, 10, 949-954.

68.  Calitri, R., Pothos, E. M., Tapper, K., Brunstrom, J. M., & Rogers, P. J. (2010). Cognitive biases to healthy and unhealthy food words predict change in BMI. Obesity, 18, 2282-2287.

69.  Pothos, E. M., Hahn, U., & Prat-Sala, M. (2010). Contingent necessity vs. logical necessity in categorization. Thinking & Reasoning, 16, 45-65.

70.  Tapper, K. & Pothos, E. M. (2010). Development and validation of a food preoccupation questionnaire. Eating Behaviors, 11, 45-53.            

71.  Hahn, U., Prat-Sala, M., Pothos, E. M., & Brumby, D. (2010). Exemplar similarity and rule application. Cognition, 114, 1-18. 

72.  Kosnes, L., Pothos, E. M., & Tapper, K. (2010). Increased affective influence: situational complexity or deliberation time? American Journal of Psychology, 123, 29-38. 

73.  Pothos, E. M. & Tapper, K. (2010). Inducing a Stroop effect. Applied Cognitive Psychology, 24, 1021-1033.

74.  Perlman, A., Pothos, E. M., Edwards, D. J., & Tzelgov, J. (2010). Task-relevant chunking in sequence learning. Journal of Experimental Psychology: Human Perception and Performance, 36, 649-661.

75.  Nikolopoulos, D. S. & Pothos, E. M. (2009). Dyslexic participants show intact spontaneous categorization processes. Dyslexia, 15, 167-186.

76.  Pothos, E. M. & Wood, R. L. (2009). Separate influences in learning: evidence from artificial grammar learning with traumatic brain injury patients. Brain Research, 1275, 67-72.

77.  Pothos, E. M., Tapper, K., & Calitri, R. (2009). Cognitive and behavioral correlates of BMI among male and female undergraduate students. Appetite, 52, 797-800.

78.  Pothos, E. M. & Busemeyer, J. R. (2009). A quantum probability explanation for violations of 'rational' decision theory. Proceedings of the Royal Society B, 276, 2171-2178.

79.  Pothos, E. M. & Bailey, T. M. (2009). Predicting category intuitiveness with the rational model, the simplicity model, and the Generalized Context Model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35, 1062-1080.

80.  Pothos, E. M., Hahn, U., & Prat-Sala, M. (2009). Similarity chains in the transformational paradigm. European Journal of Cognitive Psychology, 21, 1100-1120.

81.  Pothos, E. M., Calitri, R., Tapper, K., Brunstrom, J. M., & Rogers, P. J. (2009). Comparing measures of cognitive bias relating to eating behavior. Applied Cognitive Psychology, 23, 936-952.

82.  Visser, I., Raijmakers, M. E. J., & Pothos, E. M. (2009). Individual strategies in artificial grammar learning. American Journal of Psychology, 122, 293-307.

83.  Pothos, E. M. (2008). Spontaneous categorization: A mechanism for the creation of (simple) concepts. Noisis, 3, 181-208. (in Greek).

84.  Tapper, K., Pothos, E. M., Fadardi, J. S., & Ziori, E. (2008). Restraint, disinhibition and food-related processing bias. Appetite, 51, 335-338.

85.  Brunstrom, J. M., Rogers, P. J., Pothos, E. M., Calitri, R., & Tapper, K. (2008). Estimating everyday portion size using a ‘method of constant stimuli’: In a student sample, portion size is predicted by gender, dietary behaviour, and hunger, but not BMI. Appetite, 51, 296-301.

86.  Pothos, E. M. & Close, J. (2008). One or two dimensions in spontaneous classification: A simplicity approach. Cognition, 107, 581-602.

87.  Bailey, T. M. & Pothos, E. M. (2008). AGL StimSelect: Software for automated selection of stimuli for Artificial Grammar Learning. Behavior Research Methods, 40, 164-176. 

88.  Hatzidaki, A. & Pothos, E. M. (2008). Bilingual language representation and cognitive processes in translation. Applied Psycholinguistics, 29, 125-150.

89.  Pothos, E. M. (2007). Occam and Bayes in predicting category intuitiveness. Artificial Intelligence Review, 28, 257-274.

90.  Pothos, E. M. (2007). Theories of Artificial Grammar Learning. Psychological Bulletin, 133, 227-244.

91.  Hines, P., Pothos, E. M., & Chater, N. (2007). A non-parametric approach to simplicity clustering. Applied Artificial Intelligence, 21, 729-752.

92.  Cox, W. M., Pothos, E. M., & Hosier, S. G. (2007). Cognitive-motivational predictors of excessive drinkers’ success in changing. Psychopharmacology, 192, 499-510.

93.  Pothos, E. M. & Juola, P. (2007). Characterizing linguistic structure with mutual information. British Journal of Psychology, 98, 291-304.

94.  Pothos, E. M. & Wolff, J. G. (2006). The Simplicity and Power model for inductive inference. Artificial Intelligence Review, 26, 211-225.

95.  Cox, W. M., Fadardi, J. S., & Pothos, E. M. (2006). The addiction-Stroop test: Theoretical considerations and procedural recommendations. Psychological Bulletin, 132, 443-476.

96.  Pothos, E. M., Chater, N., & Ziori, E. (2006). Does stimulus appearance affect learning? The American Journal of Psychology, 119, 277-301.

97.  Pothos, E. M. (2005). Expectations about stimulus structure in implicit learning. Memory & Cognition, 33, 171-181.

98.  Pothos, E. M. & Chater, N. (2005). Unsupervised categorization and category learning. Quarterly Journal of Experimental Psychology, 58A, 733-752.

99.  Pothos, E. M. (2005). The rules versus similarity distinction. Behavioral & Brain Sciences, 28, 1-49. (target article)

100.         Pothos, E. M., Chater, N., & Stewart, A. J. (2004). Information about the logical structure of a category affects generalization. British Journal of Psychology, 95, 371-386.

101.         Pothos, E. M. & Kirk, J. (2004). Investigating learning deficits associated with dyslexia. Dyslexia, 10, 61-76.

102.         Pothos, E. M., & Cox, W. M.  (2002). Cognitive bias for alcohol-related information in inferential processes. Drug and Alcohol Dependence, 66(3), 235-241. (Included in abstracts collection: Alcohol Research (2002), vol. 7, p. 222.)

103.         Pothos, E. M. & Chater, N. (2002). A simplicity principle in unsupervised human categorization. Cognitive Science, 26, 303-343.

104.         Cox, W. M., Pothos, E. M., Laberg, J., & Johnsen, B. (2001). Methodological issues attached to the alcohol Stroop paradigm: Comments on a paper by Sharma, Albery, and Cook (2001). Addiction, 96, 1261-1265.

105.         Leek, E. C. & Pothos, E. M. (2001). Open peer commentary. What is specific about category-specificity? Fractionating patterns of impairments and the spurious living/nonliving dichotomy. Behavioral and Brain Sciences, 24, 487-488.

106.         Pothos, E. M. (2001). Open peer commentary. Context effects equally applicable in generalization and similarity. Behavioral and Brain Sciences, 24, 699-700.

107.         Pothos, E. M. & Juola, P. (2001). Open peer commentary. Linguistic structure and short term memory. Behavioral and Brain Sciences, 24, 138-139.

108.         Cox, W. M., Pothos, E. M., & Bauer, D. (2000). More recommendations for the Stroop colour-naming task and addictive behaviours:  A Reply to Faunce and Job. Addiction, 95, 1440-1442.

109.         Pothos, E. M. & Bailey, T. M. (2000). The importance of similarity in artificial grammar learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 847-862.

110.         Pothos, E. M. & Hahn, U. (2000). So concepts aren't definitions, but do they have necessary *or* sufficient features? British Journal of Psychology, 91, 439-450.

Pothos, E. M. & Ward, R. (2000). Symmetry, repetition, and figural goodness: an investigation of the weight of evidence theory. Cognition, 75, B65-B78.

 


Tools.

Tel directory

City Map

Online Journals

Sending big files

Web email

Web of knowledge

 

Humour. Life can be stressful. These links can help. 

Dilbert

PhD Comics.

Calvin and Hobbes.

 

Consider supporting the Woodland Trust.  A picture containing drawing

Description automatically generated


 

If you are looking for the StimSelect Matlab package, this can be found here.

 

This is the abstract from the paper Todd and I wrote, which summarizes the purpose of the software:

 

Artificial Grammar Learning (AGL) is an experimental paradigm that has been used extensively in cognitive research for many years to study implicit learning, associative learning, and generalization based either on similarity or rules. Without computer assistance it is virtually impossible to generate appropriate grammatical training stimuli along with grammatical or non-grammatical test stimuli that control relevant psychological variables. We present the first flexible, fully automated software for selecting AGL stimuli. The software allows users to specify a grammar of interest, and to manipulate characteristics of training and test sequences, and their relationship to each other. The user thus has direct control over stimulus features that may influence learning and generalization in AGL tasks. The software enables researchers to develop AGL designs that would not be feasible without automatic stimulus selection. It is implemented in Matlab.

 

The full reference is this:

Bailey, T. M. & Pothos, E. M. (2008). AGL StimSelect: Software for automated selection of stimuli for Artificial Grammar Learning. Behavior Research Methods, 40, 164-176.